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EXPLORING THE CONNECTION BETWEEN NEURON COVERAGE AND
ADVERSARIAL ROBUSTNESS IN DNN CLASSIFIERS

William PIAT *

Safran Tech
DST Departement
Chateaufort, France.

ABSTRACT

The lack of robustness in neural network classifiers, espe-
cially when facing adversarial attacks, is a significant lim-
itation for critical applications. While some researchers
have suggested a connection between neuron coverage
during training and vulnerability to adversarial pertur-
bations, concrete experimental evidence supporting this
claim is lacking. This paper empirically investigates
the impact of maximizing neuron coverage during train-
ing and assess the effectiveness of adversarial attacks on
under-covered neurons. Additionally, we explore the po-
tential of leveraging coverage for designing more efficient
attacks. Our experiments reveal no clear correlation be-
tween neuron coverage, adversarial robustness, or attack
effectiveness.

Keywords: Deep learning, Coverage, Robustness, Ad-
versarial Training

1. INTRODUCTION AND RELATED WORK

Code coverage [1] is a widely used metric that assesses
the robustness of source code by measuring the portion
of code executed during a test suite. It plays a crucial
role in identifying potential undetected bugs and is con-
sidered a critical evaluation metric for code quality before
deployment.

Drawing inspiration from code coverage, researchers
[2, 3, 4] have explored the concept of neuron coverage to
detect faulty behavior in deep learning classifiers. Due to
the prevalence of the ReLU activation function in mod-
ern neural networks, certain parts of the network remain
unused during training, creating vulnerabilities that can
lead to incorrect predictions when the model is deployed.

The vulnerability of deep neural networks (DNNs) to
adversarial attacks has raised significant concerns. Ad-
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versarial attacks pose a serious threat to the reliability
of neural networks. In the context of a neural network
f:OxX — Y, withaloss function/ : Y x Y — R, pa-
rameters 6 € 6, and a positive value ¢, adversarial attacks
aim to find € Argmax,.,_, <. ¢(f(0,%),y), where
(z,y) € X x Y represents an input/output tuple. Com-
monly used algorithms for generating adversarial exam-
ples include Projected Gradient Descent (PGD) [5], Fast
Gradient Sign Method (FGSM) [6], and Carlini and Wag-
ner attack (C&W) [7].

Existing approaches for countering adversarial at-
tacks generally follow a dual strategy: generating adver-
sarial examples and retraining the classifier by incorpo-
rating these examples into the training set (as seen in [8],
for example).

As mentioned earlier, several authors have high-
lighted the relationship between coverage and robustness.
The pioneering work of DeepXplore [2] drew a paral-
lel between coverage and adversarial attacks, suggesting
that adversarial attacks exploit parts of the deep neu-
ral network (DNN) that were not utilized during train-
ing. Pei et al. [2] defined neuron coverage in the con-
text of a test set X = x1,...,x,, € X™,m € N.
Neuron coverage is calculated as the ratio of activated
neurons in the test set to the total number of neurons,
ie. NCov(X,0) = |{”'iwwex‘}\'f"i(9’w)>o}l, where N =
{n1,na, ...} is the set of neurons, and n; : @ x X —» R
is a function that returns the activation value of neu-
ron ¢ before applying the nonlinearity for a given input
x € X. However, this metric has been experimentally
shown to be insufficient in capturing the diversity of ac-
tivation distributions [3]. It lacks sensitivity to the dis-
tribution of activations across the test set and does not
account for the specific patterns of activation. To address
these limitations, DeepGauge [3] introduced the concept
of k-multisection coverage. For a neuron n; € N, k-
multisection coverage involves dividing the activation in-




terval [I;, ;] of neuron n; into & subdivisions (S7'*) je(x,
such that ¢4y 57 = [li, us]. 1deally, the subdivisions
should be of equal length. The coverage metric is then
computed by counting the number of sections that contain
activation values when tested on the test set and dividing

it by the total number of sections: KMNCov (X, 6, k) =

urs ng
1 |{Sj1|3$EX,711(0,1)ESj1}| . .
TAT 2-i€[|N]] - . This metric ex-

hibits high non-smoothness and non-convexity, making
it challenging to optimize. Furthermore, the original pa-
per did not investigate the impact of the parameter k£ on
the metric, leaving it as an open question for further ex-
ploration.

In the software engineering community, there is
a growing concern that current coverage-based testing
methods may not be suitable for effectively testing neu-
ral networks, as they do not seem to generate robust tests.
Several studies, such as [9, 10, 11], have discussed this
issue. While some works, like [12, 13], focus on com-
paring the correlations between coverage and robustness,
little attention has been given to their joint effect. This
paper aims to bridge this gap and investigates the poten-
tial of utilizing adversarial attacks and coverage together
to disrupt predictions.

In this context, we propose a novel sub-differentiable
coverage metric that can be employed in conjunction with
robust training methods. The primary objective is to
explore the relationship between coverage and adversar-
ial training, specifically how adversarial attacks impact
the model’s accuracy when both coverage and robustness
are taken into account. Our research focuses on the de-
fender’s perspective, aiming to leverage coverage during
training to enhance the model’s robustness.

2. DEFINITION OF A NOVEL COVERAGE
METRIC

Let a; € P(R) represent the activation distribution of
a single neuron ¢, where ¢ € [|N|] and P(R) denotes the
space of probability measures on the real line. The activa-
tion distribution a; is computed before applying the non-
linearity, meaning that a; represents the distribution of
n;(0,-) : X — R evaluated on the input distribution. to
lighten notation, we have omitted the dependence of a; on
0. The activation distribution a; is supported on a com-
pactinterval [I;, u;], where (I; < u;) and (I;,u;) € R?, as
we assume bounded input and parameter spaces through-
out our analysis. Let U(l;,u;) denote the uniform dis-
tribution over the interval [l;,u;]. In our context, max-
imizing the coverage metric entails making the activa-
tion distribution lean towards the uniform distribution on
the activation interval. Therefore, we define coverage as

the negative Kullback-Leibler (KL) divergence between
Z/[(li, ui) and Q;.

Cov(a;,0) = —KLU(;,u;), a;). (1)

One advantage of this metric is that it does not re-
sort to any binning strategy influencing the result. In
practice, we approximate this metric using m samples
(ni(0,21), ..., ni(0,2m)) = (ai,...,a’™) and a kernel
density estimator [ 14, 15],

where K is akernel function, and 2 > 0 is the bandwidth.
This approximation is called the activation trace [106, 17]:
itis used as a way to quantify surprise in a new input. We
use it to approximate (1) as

By extension, we define the coverage of a network

6o\v( f,0)(X) as the mean coverage across all neurons
in the network. The dependence on 6 is crucial since we
will subsequently aim to optimize the model parameters
based on this coverage metric. In this paper, we choose K
as the Gaussian kernel which then ensures that the KL di-
vergence is well-defined regardless of the activation val-
ues. Moreover, ¥! smoothness of the Gaussian kernel
enables us to employ gradient-based optimization meth-
ods. The bandwidth parameter h is determined based on
a standard bias-variance trade-off [14]: h = 34& where

1>
5

m
o0 represents the standard deviation of the data points used
for estimating the distribution. The values of /; and u; are
determined after randomly initializing the weights.

2.1. Attacking the uncovered neurons of DNNs

In this section we present different ways of perturbing the
prediction of a neural network by changing the input val-
ues within a given perturbation set. These attacks, like
the code coverage tests, target the neurons that are not ac-
tivated. Throughout this section, we will set ¥ = RP and
Y =R4.

Coverage attack. This “attack™ is simply a search
of a bounded local perturbation § = {d1,...,0m} €
(RP)™ of the input values of the test set X =
{z1,...,xm} € (RP)™ in order to increase the cov-
erage of the model. It corresponds to maximizing
@(f, 0)({z; + d;,1 € [m]}) with respect to J. In prac-
tice, the (d;);¢[m) are found by running a PGD-like algo-
rithm on a batch of data, but using the coverage loss.



FGSM and PGD attack with added coverage. By
incorporating a coverage penalty into adversarial attacks
during batch processing, it is possible to introduce a no-
tion of coverage to the attacks themselves:

161 ]l Sovicm [ Zé 1O,z +00), i)

+v Cov(f,0)({zi + 6;,i € [m]})].

3

v allows balances between pure adversarial attacks (for

v = 0) and pure coverage attacks (as v approaches infin-
ity).
Carlini and Wagner attack with added coverage.
The C&W attack can also be processed in batch mode,
so we can define a coverage version of this attack in the
same way as we did in (3):

zy

—v Cov(f,0)({zi + 6,1 € [m]}].

min { F(0,25 + 61, 4)
18: ll oo e,y #yi,y; €V, Vi€[m]

C)

The sign before the coverage has changed since the C&W
attack is solution to a minimization problem, not a maxi-
mization like FGSM or PGD.

2.2. Coverage as a defense for DNNs

The idea is to ensure that the maximum number of neu-
rons in the network are activated during training, so that
no weights in the network remain untrained.

Vanilla training with added coverage. A first logical
approach when considering a coverage metric is basically
to increase the coverage in the training phase to ensure
that activations are well covered. More specifically, we
act on the parameters 6 € 6 of the neural network to si-
multaneously minimise an empirical loss and maximise
coverage. Similarly to adversarial attacks, we will trade
off between training loss and coverage via a parameter
v>0

ggg;euw,zi),yi)—v ov(f,0) {1,y zm}). (5

This problem can be solved using classical stochastic
(sub)gradient-based algorithms.

Robust training against attacks.  This approach lever-
ages the attacks described in Section 2.1 to conduct adver-
sarial training. As a result, it enables the development of
multiple defenses against different attack types. These de-
fenses encompass protection against the coverage attack,
adversarial defenses against FGSM, PGD, and C&W at-
tacks, as well as their variants augmented with coverage.
Furthermore, this approach also facilitates the creation of
defenses against random attacks.

3. EXPERIMENTS

The objective of these experiments is to investigate the
impact of incorporating coverage into training procedures
on the robustness of models and the effectiveness of ad-
versarial attacks. We use the attacks and defenses de-
scribed in the previous sections for adversarial training
and subsequently evaluate the adversarial accuracy using
both reference attacks and coverage attacks. The follow-
ing list provides an overview of the training and attack
methods we examine:

Unperturbed Coverage (UC): This method involves
performing training as described in Section 2.2. It serves
as a defense and is not considered within the range of at-
tacks. No Perturbation (NP): This method uses an un-
perturbed test set as an attack and employs vanilla train-
ing as a defense. Random (R): This method perturbs the
inputs randomly with uniform noise as an attack and in-
cludes training against white noise as a defense. FGSM
(F): This method sets v = 0 and performs a single-step
approximation of the argument in (3) as an attack, while
adversarial training against this attack is used as a de-
fense. FGSM + Coverage (F+C): Similar to FGSM, this
method involves a single-step approximation of the argu-
ment in (3) as an attack. Adversarial training against this
attack is employed as a defense. PGD (P): This method
sets v = 0 and performs a multistep approximation of the
argument in (3) as an attack. Adversarial training against
this attack is used as a defense. PGD + Coverage (P+C):
Similar to PGD, this method involves a multistep approx-
imation of the argument in (3) as an attack. Adversar-
ial training against this attack is employed as a defense.
C&W (CW): This method aims to maximize the likeli-
hood of the second most probable class (for classification
only) as an attack. Adversarial training using these sam-
ples is used as a defense. C&W + Coverage (CW+C):
This method adds a coverage penalty to the C&W attack
(see (4)). Adversarial training against this attack is em-
ployed as a defense.

Tables 1, 2, and 3 present the evolution of adversarial
robustness (i.e., the accuracy against the corresponding
attack) for v = 100 on the SVHN, FMINIST, and CI-
FARI10 datasets. The value of v = 100 was chosen empir-
ically as it represents a good compromise between cover-
age training and adversarial training. From the defender’s
perspective, a higher accuracy indicates better resilience,
and thus, higher values are desirable.

In all the tables, we observe similar performance be-
tween the coverage used for adversarial training and the
coverage-maximizing training procedure (row 4 and row
1, respectively), except for the coverage attacks (columns
3, 5,7, and 9). In those cases, the coverage training (row



Attacks Q Q k4 Attacks Q Q k4
m%mvmamaiém%momamaég
uc 0.95 0.95 0.76 0.62 0.80 0.47 0.81 0.35 0.46 uc 0.81 0.80 0.58 0.40 0.80 0.28 0.73 0.24
NP 0.95 0.95 0.92 0.34 0.89 0.24 0.90 0.27 0.71 NP 0.82 0.80 0.81 0.81 0.79 0.57
R 0.95 0.95 0.92 0.35 0.91 0.28 0.90 0.27 0.73 R 0.83 0.82 0.82 0.80 0.79 0.58
C 0.95 0.94 0.94 0.49 0.93 0.42 091 0.59 0.85 c 0.82 0.81 0.84 0.27 0.83 0.80 023 0.64
F 10.92 0.93 0.93 0.85 0.93 0.87 0.93 0.89 0.90 F 078 0.79 0.81 0.69 0.80 0.72 0.79 0.73 0.76
F+C 095 094 094 046 0.93 034 091 049 0.82 F+C 0.82 0.82 0.81 0.24 0.83[0.18 0.80 020 0.64
P 10.93 0.93 0.93 0.82 0.93 0.88 0.92 0.90 0.92 P 0.79 0.79 0.82 0.69 0.81 0.71 0.81 0.74 0.78
P+C 094 0.94 0.94 0.57 0.94 0.65 0.92 0.70 0.8 P+C 077 0.81 0.84 0.34 0.83 0.34 0.80 0.41 0.72
CW 093 094 094 0.79 0.94 0.83 0.93 0.88 0.91 cw 0.81 0.81 0.83 0.64 0.82 0.69 0.81 0.73 0.78

CW+C 0.94 095 0.95 0.67 0.94 0.74 0.94 0.82 091

Table 1: Adversarial performance of multiple adversarial trainings on
SVHN, trainings row-wise and attacks column-wise.

Attacks Q Q g
m I T
uc 0.92 0.82 0.77 0.46 0.74 0.74 0.29
NP 0.93 0.88 0.91 0.27 0.90 0.88 0.59
R 0.93 0.92 0.92 0.35 0.91 0.89 0.72
C 0.92 0.92 0.92 0.42 0.91 0.89 033 0.77
F 10.88 0.90 0.90 0.87 0.76 0.70 0.89 0.70 0.83
F+C 091 092 092 036 0.91 [6109] 0.89 020 0.72
P 10.86 0.83 0.83 0.85 0.74 0.91 0.84 0.90 0.86
P+C 092 0.92 0.92 0.62 091 0.54 0.90 0.69 0.86
CW 091 0.88 0.88 0.86 0.79 0.88 0.89 0.91 0.88

CW+C 0.92 0.93 0.93 0.69 091 0.65 091 0.78 0.88

Table 2: Adversarial performance of multiple adversarial trainings on
FMNIST, trainings row-wise and attacks column-wise.

4) exhibits a slight advantage since it has been specifically
trained against coverage attacks. However, the increase in
robustness is not as significant as that achieved through
pure adversarial training (rows 3, 5, 7, and 9). Both cov-
erage methods (rows 1 and 4) demonstrate a slight im-
provement over vanilla training (row 2) in all measures
of adversarial robustness. The non-adversarial coverage
training (row 1) proves to be as effective as regulariza-
tion and produces better results than unconstrained train-
ing (row 2). Adversarial training is still the best in terms
of adversarial robustness, as it performs best against the
full range of adversarial attacks.

The main observations we derived from these exper-
iments are as follows: i) The different approaches to cov-
erage training perform similarly: there seems to be little
difference between employing coverage-guided training
or coverage-guided adversarial training. Both approaches
yield better training results than vanilla training by en-
hancing robustness against adversarial noise. ii) Cover-
age approaches outperform the addition of white noise

CW+C 0.82 0.82 0.84 0.48 0.83 0.53 0.82 0.60 0.77

Table 3: Adversarial performance of multiple adversarial trainings on
CIFARI10, trainings row-wise and attacks column-wise.

to input data: they provide a more meaningful sense of
robustness compared to random noise. iii) Coverage ap-
proaches are surpassed by adversarial training in terms
of adversarial robustness: when it comes to defending
against adversarial attacks, pure adversarial training out-
performs coverage-based approaches. iv) There is no
optimal balance between coverage and adversarial ap-
proaches: combining coverage and adversarial training
never achieves better performance, regardless of the value
of v, compared to pure adversarial training.

These experiments demonstrate that coverage-based
approaches can serve as effective regularization tech-
niques, yielding parameter sets that are more suitable than
those obtained through vanilla training. However, when it
comes to adversarial robustness, the benefits of incorpo-
rating coverage into adversarial training appear limited.

4. CONCLUSIONS

The connections between robustness and coverage, as
suggested in the literature, do not hold as expected. From
the defender’s perspective, training with coverage acts as
a regularizer and is preferable to vanilla training when
considering robustness metrics. However, it falls short
of outperforming adversarial training against targeted at-
tacks. Adversarial training remains the preferred choice
in white box settings, where the attacker has access to
the learned function and can customize the attack accord-
ingly. In light of these findings, it appears that neuron
coverage is not a relevant metric for quantifying or en-
hancing the robustness of neural networks, contrary to
common beliefs.
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