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Abstract 23 

As the global toll on human lives and ecosystems exacted by urban pollution grows, planning 24 

tools still lack the resolution to identify priority sites where toxic pollution can be most 25 

efficiently averted at a spatial scale that matches funding and management. Here we tackle this 26 

gap by demonstrating novel scalable methods to monitor and predict urban metal pollution at 27 

high resolution (< 5 meter) across large areas (10,000-100,000 km2) to guide pollution reduction 28 

and stormwater management. We showcase and calibrate predictive models of Zn, Cu, and a 29 

synthetic index of pollution for the Puget Sound region of Washington State, U.S., a densely 30 

urbanized yet important ecosystem of conservation interest, and exemplify their transferability 31 

across the entire United States. We leveraged widely and freely available datasets of car traffic 32 

characteristics and land use as predictor variables and trained the models with biological 33 

monitoring data of metal concentrations in epiphytic moss from > 100 trees based on new rapid 34 

and low-cost protocols introduced in this study. Our model predictions, showing that 50% of the 35 

total Cu and Zn pollution across the Puget Sound watershed is deposited over only 3.3% of the 36 

land area, will allow cities to effectively and efficiently target toxic hotspots. 37 

  38 



3 

 

1. Introduction 39 

The global expansion of urban areas over the past century has led to widespread 40 

pollution, yielding a cascade of impacts on ecosystems and human health 1–4. Car ownership 41 

underlies much of this impact as the world’s fleet continues growing, exceeding one billion 42 

vehicles in 2015 5. Ambient air pollution is now considered one of the leading causes of 43 

premature death 6–8. Additionally, precipitation flowing over impervious surfaces transfers a 44 

complex mixture of contaminants to streams and waterbodies — metals, polycyclic aromatic 45 

hydrocarbons (PAH), pesticides and other pollutants emitted by urban activities are washed off 46 

from streets and parking lots or leached from roofs and other construction material by 47 

stormwater runoff and subsequently carried into nearby ecosystems 9. This stormwater runoff is 48 

the fastest growing source of water pollution in many areas 10. With nearly 80% of the 49 

population of the world projected to live in cities by the end of the 21st century 3, and the number 50 

of vehicles expected to double or triple by 2050 11, it is imperative to tackle the negative effects 51 

of urban dwelling.   52 

Metals are among the pollutants of highest concern in urban areas due to their 53 

persistence, bioavailability and toxicity 12–14. High concentrations of metals threaten aquatic 54 

ecosystem functioning and biodiversity, as well as human health  10,15. In cities, metals are 55 

commonly reported pollutants, reaching waterways directly through atmospheric deposition and 56 

indirectly through rain runoff by being leached or picked up as dust after depositing and building 57 

up on impervious surfaces 16. Road dust naturally contains metals from eroded soil but 58 

anthropogenic sources like building and road materials, vehicle brake, tire wear, and tailpipe 59 

emissions are the main non-point sources of metal pollution in urban areas 17–19.  60 
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High-resolution estimates of pollutant sources are required to mitigate exposure to toxic 61 

compounds by identifying the specific locations and associated site characteristics where the 62 

deposition of metals is greatest 20. Pollution predictions must also be available for large 63 

geographic areas to match the spatial scale of funding, management, and some environmental 64 

issues 8. Low-resolution (coarse) models cannot identify emission hot spots, as pollution sources 65 

are averaged over large spatial units of analysis, and models developed for small spatial extents 66 

may not match the ecological scale relevant to species targeted by management 10. However, the 67 

few models that focus on metals usually lack the combination of resolution and scale for this 68 

purpose (but see 21–23). Therefore, high-resolution, scalable models that describe the relative 69 

magnitude of metal pollution sources across space are needed to guide investments across large 70 

areas. 71 

 72 

Further complicating the training and validation of high-resolution models of urban metal 73 

pollution is the dearth of monitoring data at the appropriate temporal and spatial scales. For 74 

stormwater management, infrastructure siting requires long-term average metal emission 75 

measures in flowing and standing water bodies, yet common monitoring data usually represent 76 

snapshots in time subject to high sub-daily, daily, and seasonal variability 24. Air quality 77 

monitoring networks, on the other hand, measure the concentration of metals in Nfine (< 2.5 μm 78 

diameter – PM2.5) and coarse (2.5–10 μm diameter – PM10) particulate matter 25–27 through costly 79 

protocols. Consequently, the geographic density and temporal grain of metal pollution 80 

monitoring is currently insufficient to train fine scale models of pollution, and most developing 81 

countries lack the resources to install such monitoring infrastructure. Affordable approaches to 82 

assess metal pollutant emissions integrated over long time periods thus hold the potential to 83 
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greatly facilitate air pollution and stormwater management across large spatial scales and in 84 

areas with limited resources28,29. 85 

 86 

The aim of this study was to develop scalable methods to monitor and predict urban 87 

metal pollution at high resolution to guide pollution reduction and stormwater management. 88 

Here, we showcase and calibrate these methods for the Puget Sound region of Washington State, 89 

U.S., a densely urbanized yet important ecosystem of conservation interest 30. We modeled long-90 

term average pollution levels for two metals of concern, Zn and Cu, as well as a pollution index 91 

combining the pollution levels of these two metals with Pb. The model was trained with an 92 

extensive set of passive biological monitoring data. We measured metal concentrations in 93 

epiphytic moss collected by in-situ portable X-Ray Fluorescence (XRF) spectroscopy for > 100 94 

trees based on new protocols introduced in this study. Lastly, we exemplify the utility of the 95 

models by assessing its ability to predict metal air pollution across the U.S.  96 

 97 

2. Materials and Methods 98 

2.1. Overview 99 

We first compiled spatial data for six of the main variables that have been reported to 100 

drive the spatial distribution of urban metal pollution 31–35: land use; motor vehicle traffic 101 

volume, speed, and congestion; road gradient; and over-ground public transit frequency (TOC.1). 102 

Second, we generated pollution source “density maps” that simulate the cumulative and diffuse 103 

emissions from each road-based source of pollution (TOC.2). In these source maps, each location 104 

is assigned the distance-weighted sum of the value of the variable (e.g. traffic volume) across the 105 

entire area within a buffer around that location. This allowed us to account for the cumulative 106 
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effect of the variable from multiple roads around every location while accounting for pollution 107 

concentrations decay away from each road. Third, we measured the concentrations of metals in 108 

epiphytic moss at 87 sites across the greater Seattle area (WA, U.S.) using portable XRF 109 

(TOC.3). Fourth, a set of multiple regression models were developed using the density maps 110 

values and land use at the sampling sites as candidate predictor variables and the XRF 111 

measurements as response variables (i.e. training data, TOC.5). Three models were developed 112 

separately for Zn, Cu, and the synthetic pollution index (PI). Zn, Cu, and Pb were selected as our 113 

pollutants of study as these elements are among the most commonly studied and reported metal 114 

pollutants in urban environments 36–38. Zn and Cu, in particular, are closely associated with 115 

automobile traffic volume and congestion through the emission of rubber tire dust and brake 116 

wear dust, respectively 18,37. The three trained models were subsequently used to make spatially 117 

continuous predictions of the relative concentrations of each pollutant across the entire study 118 

area (TOC.6). Lastly, we predicted Zn pollution around every air quality monitoring station from 119 

the United States Environmental Protection Agency (EPA) that recorded ambient air 120 

concentrations of Zn in the form of fine particulate matter (TOC.7). This allowed us to assess 121 

how well our predictions fit standard measurements of long-term average air pollution. See 122 

Appendix 1 for a detailed description of the methodology and data sources. 123 

 124 

2.2. Study area 125 

 126 

The Puget Sound region encompasses 41,500 km2 of upland, freshwater, estuarine and 127 

marine habitats, and currently supports a large and increasingly urban population from 128 

Vancouver, British Columbia (Canada) to Olympia, Washington (U.S., Fig. 1).  Population 129 

projections suggest that human numbers in the greater Puget Sound region will increase by two 130 
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million in the next 30 years, and Seattle, Washington, the largest city in the region, is one of the 131 

fastest growing in the country 39. With over 40 species of birds, mammals, fishes, plants and 132 

invertebrates currently listed as threatened, endangered, or as candidates for state and federal 133 

endangered species lists, Puget Sound is considered a “hot-spot” of extinction risk 30. 134 

Importantly, some of these imperiled species, such as Chinook salmon 135 

(Onchorhynchus tshawytscha) and killer whales (Orcinus orca), are regional icons that have 136 

been commemorated in art, culture and tradition for millennia (e.g. 40). 137 

 138 

2.3. Candidate predictor variables: data sources and pre-processing 139 

We used the Percent Developed Imperviousness dataset from the 2016 Multi-Resolution 140 

Land Characteristics Consortium's National Land Cover Data (NLCD, spatial resolution of 30 m) 141 

41 as a continuous measure of land use intensity. Because the effects of urban land-use on air and 142 

water pollution are diffuse, two spatially smoothed imperviousness layers were also generated 143 

from this dataset with 3x3 pixel mean and median filters.  144 

A single spatial road network dataset with traffic volume (Annual Average Daily Traffic) 145 

and speed was compiled from the U.S. Department of Transportation (DOT) and the U.S. Census 146 

Bureau (Table S1). The slope of each road segment in the network was calculated from the 3D 147 

Elevation Program Digital Elevation Models (Table S1) at the highest resolution available for 148 

every location by first smoothing the elevation dataset and then computing the ratio of each road 149 

segment’s elevation range and length. To quantify traffic congestion, we computed the average 150 

traffic flow across the area of interest based on data from the Bing™ Maps REST Services 151 

Application Programming Interface (API). To do so, we built a custom tool similar to Tostes and 152 

colleagues’ 42. We applied our tool to obtain traffic conditions throughout the Puget Sound 153 
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watershed area from November 28th, 2018 at 08:00 am to December 5th, 2018 at 08:00. For Air 154 

Quality Monitoring Stations, the tool was run from April 9th at 18:00 2019 to April 16th at 18:00 155 

2019, resulting in 169 hourly snapshots.  156 

Maps of over-ground public transit frequency were generated for the Puget Sound 157 

watershed and within the vicinity of Air Quality Monitoring Stations based on static General 158 

Transit Feed Specification (GTFS) data from the National Transit Map (Table S1) — the largest 159 

seamless compilation of GTFS data in the U.S. at the time of this study. The result provided us 160 

with a single seamless layer of the average weekly number of times that a public transit vehicle 161 

went through every location across the landscape, thus integrating across all agencies, modes of 162 

transport, routes, and schedules. 163 

 164 

2.4. Pollution spread models 165 

To simulate the spread of pollutants away from roads and thus the cumulative pollution 166 

from multiple roads, we generated pollution source density maps of public transit frequency, 167 

road gradient, and traffic volume, speed and congestion. For each density map, the value at each 168 

location was calculated as the distance-weighted sum of all pixel values within a maximum 169 

distance from that location, whereby the weight attributed to each pixel was determined by a 170 

distance-decay function. To encompass various possible rates and functional forms of metal 171 

particle deposition, we generated 24 candidate density maps for each of these five road-based 172 

variables based on a set of 24 different distance-decay functions, each function illustrating a 173 

different hypothesized pattern and distance of pollution spread (see Appendix 1). The resulting 174 

120 continuous maps of pollution sources were subsequently used as candidate predictor 175 

variables to select and train the models of metal pollution across the Greater Seattle area. 176 
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 177 

2.5. Data collection and model training  178 

We used the elemental composition of epiphytic moss on trees from 87 sites determined 179 

by portable XRF to train and validate our predictive models of pollution (Fig. 1, see Appendix 1 180 

and [Messager et al. companion paper] for more information on sampling design and protocols). 181 

Mosses have been widely used in Europe as biological monitors of metal pollution for decades, 182 

because they readily accumulate pollutants over time, reflecting long term pollution levels 43,44. 183 

Unlike plants, they lack roots and a cuticle, so they absorb nutrients from the atmosphere over 184 

their entire surface and all cells are directly exposed to wet deposition 45. Pollutants in dust also 185 

accumulate on their surface through dry deposition 46.  Their high cation exchange capacity 186 

results in moss cells passively trapping pollutants, including metals 45. As a result, mosses more 187 

readily accumulate atmospheric metals than vascular plants, and metal concentrations in moss 188 

pseudo-tissues are not as influenced by local variations in soil metal levels 29,47. In addition, 189 

mosses are ubiquitous in the study region, in both rural and urban settings, and persist even in the 190 

most polluted urban sites.  Leveraging these characteristics, multiple studies have successfully 191 

used elemental analysis of mosses to assess the spatial distribution and sources of urban and 192 

motor vehicle traffic-related metal pollution with high specificity 28,31,48.  193 

 194 

For this study, a new protocol of rapid in-situ elemental analysis by portable XRF was 195 

developed. With this method, photons are emitted from an X-ray tube in a portable instrument 196 

whose measuring window is directly applied against moss mats growing on tree bark. The 197 

emitted photons interact with the atoms within the moss sample, which in turn emit photons at 198 

energy levels that are specific to each element. Photons from the moss atoms are then received, 199 
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counted, and converted by the instrument into a spectrum of energy with clearly identifiable 200 

peaks whose size reflects the relative quantity of each element in the sample 49. Portable XRF is 201 

now a common tool whose performance is comparable to more conventional methods like 202 

benchtop XRF and inductively-coupled plasma-optical emission spectrometry (ICP-OES) for the 203 

analysis of hazardous metal concentrations in soils and plants 50–52. We show in [Messager et al. 204 

companion paper] that, compared to quantitation by ICP-OES,  pXRF enables quantitative 205 

screening of Cu (pseudo-R2 = 0.75) and Zn (pseudo-R2 = 0.81), and qualitative screening of Pb 206 

(R2 = 0.63), with high measurement replicability.  While epiphytic moss has previously been 207 

used for urban metal pollution mapping 28, this is, to the authors’ knowledge, the first time that 208 

portable XRF was used for biological monitoring of fine-scale spatial patterns in ambient metal 209 

pollution.  210 

 211 

Although 87 different sites were selected for sampling, measurements were separately 212 

taken from two closely adjacent trees in a quarter of the sites to assess small-scale variations in 213 

metal concentration. Moss mats were thus sampled on a total of 109 trees (measurements from 214 

single trees, rather than sites, are hereon used as our unit of analysis). Sampling took place in 215 

July-August 2018 and March-April 2019. As various studies have shown that air-moss metal 216 

concentration relationships vary among species 53, measurements were taken from a single moss 217 

species, Orthotrichum lyelli Hook. & Taylor growing on hardwood tree species. Portable XRF 218 

assays were obtained from three different moss mats on each tree using a Bruker Tracer III-SD 219 

(T3S2606, Bruker Elemental, Kennewick, WA, U.S.). Spectral data were processed and 220 

normalized to yield a comparable ‘concentration’ index across samples using standard analysis 221 

protocols (See Appendix 1 and [Messager et al. companion paper] for details on the protocol) 51. 222 
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 223 

Figure 1. Spatial distribution of sampled trees used in model development (black points, after 224 

outlier removal: n = 107), roads (grey lines, excluding local roads) and surface imperviousness 225 

(National Land Cover Dataset 2016) across the Greater Seattle area (Washington State, U.S.), 226 

the most densely urbanized region of the Puget Sound watershed (pink polygon in inset map).  227 

[1.5 column-fitting image] 228 

 229 

We developed three separate models for Cu, Zn, and a pollution index. These multiple 230 

regression models were developed through model selection 54, all using the density map values 231 

and imperviousness at the sampling sites as candidate predictor variables and the element 232 

concentrations as response variables (see Appendix 1 for a detailed description). 233 
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The pollution index was computed with the following equation for each sampled tree i: 234 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑖 = (
[𝐶𝑢]𝑖

[𝐶𝑢]𝑟𝑒𝑓
× 

[𝑃𝑏]𝑖

[𝑃𝑏]𝑟𝑒𝑓
×

[𝑍𝑛]𝑖

[𝑍𝑛]𝑟𝑒𝑓
)

1/3

        (Equation 1) 235 

Where [Element]i  is the element’s normalized net count rate averaged over the three XRF assays 236 

at that site and [Element]ref is the background normalized net count rate (after within-site 237 

averaging) for that element recorded at a reference site away from pollutant sources.  238 

 After selecting a reduced set of predictor variables through preliminary selection, a 239 

systematic model selection was conducted to develop a multiple regression model for each 240 

response variable 54. We then assessed whether including sampling season (summer 2018 or 241 

spring 2019) as a fixed effect improved the model, to take in account the potential influence of 242 

temperature and precipitation on moss pollution retention 55–57. The model residuals were also 243 

evaluated for spatially collinearity; we built spatial simultaneous autoregressive error models 244 

(linear regression models accounting for spatial error structure) when appropriate 58.  245 

 246 

2.6.Model predictions and fit to air pollution measurements 247 

Using the trained models described above, we made spatially continuous predictions of 248 

pollution for the Puget Sound region and around every air quality monitoring station operated by 249 

the EPA across all states of the contiguous U.S. The latter allowed us to assess whether our 250 

estimates of metal concentrations from a model trained with local bio-monitoring data could be 251 

related to more standard measurements of air pollution beyond our focal area. We selected all air 252 

quality monitoring sites in the conterminous U.S. with at least 200 measurements of Zinc PM2.5 253 

(μg/m3) from 2014 to 2019 and extracted the Zn concentration estimated by our model (Znpred) 254 

for each of these sites. As spatial and temporal variations in air pollution are strongly influenced 255 

by local climatic and meteorological factors, we also computed 37 variables identified as key 256 

drivers of PM2.5 through 50th percentile quantile regressions by Porter and colleagues 59. To 257 
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assess the adequacy of Znpred for predicting Zn PM2.5 records, we compared two partial least-258 

square regression (PLSR) model of Zn PM2.5 (after logarithmic transformation): the first only 259 

included meteorological variables as predictors whereas the second included those 37 variables 260 

together with Znpred.  261 

 262 

3. Results and Discussion 263 

3.1. Observed distribution and drivers of metal pollution in the study area 264 

 265 

XRF assays of epiphytic moss revealed that numerous metals were prevalent throughout 266 

the Puget Sound watershed. Their concentrations covaried with urban land use and motor vehicle 267 

traffic, often ranging in concentration by an order of magnitude above background levels 268 

(Appendix 2). Metals detected by our sampling included Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Ti, 269 

Zn, and Zr. Notably, Zn concentration in the most polluted site was 23 times higher than in the 270 

most isolated area, whereas Cu varied by a factor of 10 throughout the area. The concentrations 271 

of metals measured by XRF sampling also covaried among elements (Appendix 3, Fig. S1). This 272 

further justified our focus on a reduced set of elements (Cu, Zn, and Pb) that could serve as 273 

indicators for a broader suite of metal pollutants. Clusters of elements revealed common 274 

physicochemical properties, patterns of spatial dispersion, and potential sources. High 275 

concentrations of Zn, Co, Fe, Zr, Cr, and Ti tended to co-occur (0.6 < Pearson’s r < 0.9), Cu 276 

exhibiting slightly different distributional patterns, whereas Pb was clustered with As. The 277 

observed correlations among metals can be attributed to their co-occurrence in automotive parts 278 

and in crustal dust, as traffic leads to non-exhaust emissions through both abrasion (i.e. of brake 279 

pads and tires) and dust resuspension18,60.   280 
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Applying our rapid and low-cost biomonitoring protocol across a dense array of sites, and 281 

combining these measurements with widely available spatial data on potential pollution sources, 282 

allowed us to shed light on the traffic and land use characteristics most responsible for the 283 

occurrence of different metals in urban environments. This analysis showed for example that Zn 284 

and Cu concentrations are both strongly correlated with traffic speed (r > 0.5). Zn also strongly 285 

covaries with traffic volume and congestion (0.6 < r < 0.7) whereas Cu is correlated with bus 286 

transit volume (r > 0.6, Appendix 3, Fig. S2). The distance-decay functions used to produce the 287 

density maps of pollutant predictors that were most correlated to metal concentrations further 288 

hinted at the relative distances to which different metals disperse away from their source of 289 

emission. For instance, Zn is slightly more correlated to traffic speed and volume density maps 290 

generated with 100 m kernels compared to those based on 200 m kernels or larger. On the other 291 

hand, Cu is most correlated to density maps produced with the largest kernels of dispersion for 292 

every pollution predictor. Closely associated with tire wear, Zn in dry deposition is usually 293 

associated with larger particle size (> 10 µm) whereas Pb, Cd, Ni and Cu are mostly present in 294 

smaller particle sizes (< 10 µm) 37. As particles < 10 µm behave more like gases, diffusing along 295 

concentration gradients to deposit on surfaces, they tend to travel further than coarser particles 296 

whose deposition rates are more gravity-driven, explaining the differences in spread patterns we 297 

observed between Cu and Zn 61.  298 

 299 

3.2. Model training and validation results in the Puget Sound watershed 300 

 301 

The models of pollution developed here — for Zn, Cu, and a pollution index — relied on 302 

only two to three predictors each, and all yielded estimates with average percentage errors from 303 

20 to 30% (Fig. 2). These three models explained 65%, 64% (78%) and 57% (72%) of the 304 
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variability in Zn, Cu, and pollution index across sampled sites, respectively, based on pseudo-R2 305 

computed with (and without) outliers (Fig. 2). For a full list of candidate models, performance 306 

and diagnostic tests, refer to Appendix 4. To achieve normality and homoscedasticity of 307 

residuals, the regression models of Cu and pollution index were trained without outliers (grey 308 

points in Fig. 2 scatterplots). Sampling season did not have a significant effect (p > 0.05) in the 309 

models. Regression coefficients from autoregressive error models with inverse distance spatial 310 

weight matrices based on one nearest neighbor were used for model predictions in all three cases, 311 

as Lagrange Multiplier robust diagnostic tests revealed spatial error dependence in the initial 312 

simple linear regression models. The metal pollutant concentrations were thus estimated 313 

according to the following regression models (based on Zn and Cu values maximum-314 

standardized to 100): 315 

Zn = exp(2.042 + 0.417∙volumelog100
1/4 + 0.012∙imperviousnesssmooth) (Equation 2), 316 

Cu = 17.522 + 5.808∙transitlog200
1/2 + 0.142∙imperviousnesssmooth (Equation 3), 317 

Pollution index = 1.783 + 0.048∙volumelog100 +  1.690∙transitlinear100
1/3 + 0.031∙imperviousnesssmooth (Equation 4), 318 

where volumelog100 is the value from the density map of average annual daily traffic created with 319 

a 100 m-log kernel, transitlog200 and transitlinear100 are produced with bus transit density maps 320 

with 200 m-log and 100 m-linear kernels, respectively, and imperviousnesssmooth is based on a 321 

3x3 median filter of imperviousness.  322 
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 323 

Figure 2. Prediction maps and scatterplots of observed vs. predicted metal pollution for (A, D) 324 

Zinc, (B, E) Pollution index, and (C, F) Copper (respectively). Map values for Zn and Cu are 325 



17 

 

minimum-maximum standardized to describe the spatial distribution of metal concentrations 326 

across the area, 0 reflecting “background” metal concentrations presumably due to local crustal 327 

deposits at the least impacted site, and 100 corresponding to the highest predicted value across 328 

the Puget Sound watershed. For all models, Mean Absolute Percentage Error (MAPE) and 329 

Mean Absolute Error (MAE, of the standardized indices) were below 30% and 10, respectively. 330 

Residuals show percentage error of predictions at sampled sites based on XRF-measured metal 331 

pollution. Insets show the heavily trafficked downtown area of Seattle adjacent to a section of the 332 

Interstate Highway 5 where a dense array of measurements were conducted. 333 

[2 column-fitting image] 334 

 335 

Our results echo previous studies relating motor vehicle traffic characteristics with 336 

measured air, soil, and stormwater pollution. Horstmeyer and colleagues 32, for instance, 337 

document the greatest Pb, Zn, and Cu concentrations in the topsoil of vegetated infiltration 338 

swales at sites with high traffic volume or with frequent braking and acceleration, at crossings, 339 

roundabouts and in stop-and-go traffic. Cu and Zn concentrations in mosses along transects of 340 

nine roads also increased with traffic density and the incline of the roads in Austria 31. While 341 

additional predictors could have been added to increase the performance of our model, we 342 

instead focused on using widely available, free-to-access data to maximize the scalability of our 343 

model and its transferability to varied geographical contexts. The fact that our models including 344 

bus transit best predicted Cu was a surprising finding, but we conjecture that bus transit routes 345 

reflect major transportation axes also used by heavy commercial motor vehicles (i.e. trucks) and 346 

thus buses do not solely account for the pollution patterns. Pb was not as well predicted by traffic 347 

and land use as Zn and Cu. This lower predictive ability goes against our expectations as Pb, 348 
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despite having been phased out of gasoline for several decade, remains a prevalent component of 349 

motor vehicle parts 18,62. Point-source pollution spreading over large distances and the age of 350 

surrounding buildings may be more strongly driving the spatial distribution of this pollutant 63. 351 

For the development of more local models, we therefore posit that additional sources of metal 352 

pollution to account for, when available, should include: heavy-duty motor vehicle traffic 32, 353 

building density and age 63, parcel-level land use (e.g. parking lots 32), road surface material 64, 354 

commercial railways 65, and locations of point-source pollution 28. 355 

 356 

3.3. Model transferability: comparison to nationwide monitoring data 357 

 358 

Although our models were trained with metal concentrations in epiphytic moss from across 359 

the Puget Sound watershed, they could also predict air metal pollution at the continental scale 360 

with relative accuracy. Together with long-term meteorological and climatic predictors, our 361 

estimates of Zn pollution explained 59% of the variability in long-term average Zinc PM2.5 362 

(μg/m3) across all 195 air quality stations with at least 200 daily observations (2014-2019) across 363 

the U.S. (Fig. 3). Here we focused on assessing the ability of our models to predict Zn in fine 364 

particulate matter (PM2.5). However, Zn, Cu and Pb emissions are associated with a range of 365 

particle sizes that might be better predicted by our model (e.g. PM10 and coarser 18,66). In 366 

addition, although the goal of our US-wide analysis was to assess the relevance of our model 367 

estimates regarding long-term air metal pollution, more complex models accounting for temporal 368 

(weekly and seasonal) and spatial autocorrelation could achieve greater predictive ability. 369 

 370 
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 371 

Figure 3. Predictive performance of (A) a meteorology-only partial least-square regression 372 

(PLSR) and (B) a PLSR combining meteorological variables and the Zn index estimated by the 373 

model developed in this study as predictor variables for (C) long-term average Zn PM2.5 (color, 374 

mg/m3) recorded at 195 air quality stations across the United States from 2014 to 2019. The 375 

black diagonal lines (A and B) are 1:1 lines. The points in the map (C) are sized according to the 376 

absolute percentage error of the [meteorology + modeled Zn] PLSR relative to measured Zn 377 

PM2.5 at the stations. [2 column-fitting image] 378 
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The biomonitoring method and modelling framework demonstrated here provide a unique 379 

combination of scale and resolution. They can be leveraged for fine-scale decision-making to 380 

control a family of pollutants that is rarely modeled yet whose threat to the environment is 381 

increasingly recognized 10. A large portion of urban metal pollution is initially emitted, or 382 

resuspended, to the atmosphere before settling on the road surface and being washed off by 383 

stormwater35,67,68. Therefore, moss biomonitoring and the associated predictive models can 384 

inform stormwater management in identifying hot spots of metal emission by these sources 385 

located upstream from waterbodies of interest. Although moss has been used across Europe to 386 

map large scale patterns of pollution 69, only a handful of studies have demonstrated the use of 387 

bryophytes for assessing fine scale patterns of pollution 31. Using portable XRF, we were able to 388 

assess the concentration of 12 metals across 87 sites in about five minutes at each location, 389 

allowing for fine-scale assessment of the spatial distribution of pollution. By contrast, there are 390 

only two stations with long-term Zn PM2.5 data in the Puget Sound watershed. The models can 391 

also be further adapted with moss measurements from other locations of interest. Because we 392 

trained our models based on widely and freely available datasets of pollution predictors, this 393 

framework can be leveraged to estimate metal pollution at high resolution (here ~ 5 m) in other 394 

contexts and across large areas. Outside of the United States for example, the road network from 395 

the Open Street Map dataset, a global crowd-sourced collaborative mapping project, is nearly 396 

complete 70, and our novel tool for assessing the degree of traffic congestion using Bing TM could 397 

be applied in > 70 countries at the time of this study 71. Traffic congestion data could also be 398 

more easily obtained through the establishment of custom user agreements with companies 399 

specializing in the collection of traffic data (e.g. INRIX®). Lastly, sub-models and variable 400 
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substitution can be used to accommodate cases where predictor variables may be unavailable 401 

(e.g. traffic volume) as multiple variables performed well in predicting pollution (Appendix 4).  402 

 403 

3.4. Sources of errors and uncertainty 404 

Multiple sources of uncertainty are associated with the framework introduced here, stemming 405 

from the use of moss biomonitoring, XRF measurements, as well as in the predictor variable 406 

data. The main source of uncertainty in moss-based biomonitoring is that metal levels in moss 407 

pseudo-tissue do not reflect a passive and steady accumulation over time but a dynamic 408 

equilibrium between concentrations in the environment, moss growth, and meteorology 53. We 409 

review sources of uncertainty in moss measurements in Appendix 5, including precipitation, 410 

proximity to saltwater, pseudo-tissue age and growth rate. Field sampling was conducted across 411 

two different seasons due to maintenance requirements for the XRF instrument — while we did 412 

not find a significant effect of season in our models, we recommend that future studies conduct 413 

all sampling within a single season or re-sample the same sites across different periods of the 414 

year to better capture seasonal variability 44. Due to these uncertainties, moss biomonitoring is 415 

best suited for assessing the spatial distribution of pollution in relative terms rather than 416 

determining absolute levels for the evaluation of pollution criteria compliance. Regarding field 417 

XRF measurements, the main uncertainty resides in the heterogeneity of moss samples growing 418 

on trees, resulting in unequal densities of pseudo-tissue and depth of measurements. Nonetheless, 419 

the low level of tissue differentiation and the lack of a cuticle greatly reduces variability in XRF 420 

measurements of moss compared to vascular plants 51. One additional limitation of XRF is that 421 

the prevalence of some commonly used tracers of non-exhaust traffic pollution (e.g. Sb, 422 

Ba60,72,73) cannot be accurately determined at the same time as those discussed in this study; 423 
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these elements’ characteristic energy lines occur outside of the region that the instrument was set 424 

to measure (through the use of a yellow filter, see Appendix 1 for details on protocol). Owing to 425 

its affordability and speed, the resulting ability to compute averages over replicated 426 

measurements, and the minimal disruption of samples involved compared to conventional 427 

methods (e.g. sample extraction, transport, processing, digestion), we believe that this protocol is 428 

a significant advance towards high resolution monitoring of urban metal pollution. 429 

 430 

3.5. Predicted metal pollution across the Puget Sound watershed 431 

With the assurance that our models satisfactorily described the spatial patterns of the 432 

three metal pollution indicators, we made predictions of metal pollution across the entire 433 

~40,000 km2 of the Puget Sound watershed. These estimates show that the pollutant footprint of 434 

human development spans across the entire landscape, with 27% of the watershed’s land area 435 

(excluding all 30x30 m pixels identified as water by the National Land Cover Dataset) exhibiting 436 

metal concentrations above background levels for at least one of the indicators. Cu affects the 437 

greatest area in the region, as expected from the larger size of the distance-decay function for bus 438 

transit (Equation 3) in its computation. Our work also reveals that metal pollution is very 439 

localized: 50% of the total pollution deposited on land across the Puget Sound watershed is 440 

deposited over only 3.3% of the land area for both Cu and Zn (Fig. 2 and 3).  441 

 442 

3.6. Conclusion 443 

Effectively and efficiently combating pollution generated from motor vehicles is a major 444 

challenge facing natural resource managers and urban planners.  In this study, we demonstrate 445 

the utility of new biomonitoring techniques that can provide unique insight into the spatial 446 
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distribution of pollution sources at a fraction of the cost of usual approaches. Intensive sampling 447 

of epiphytic moss with pXRF revealed the existence of Zn and Cu emission hotspots in densely 448 

urbanized areas of the Puget Sound watershed with metal concentrations exceeding background 449 

levels by an order of magnitude. Combined with open access datasets to train predictive models, 450 

our inexpensive, rapid, and rigorous approach allows managers to identify and mitigate toxic 451 

metals at fine spatial scales over large geographic regions. Here we applied these models to 452 

predict the concentration of metals at ~5 m resolution across the Puget Sound watershed and 453 

around every air quality monitoring station in the contiguous U.S. With increasingly limited 454 

resources, this new approach holds the potential for cities to target toxic hotspots, thus 455 

maximizing environmental returns on mitigation investments.   456 

 457 

 458 

 459 

  460 
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Data availability 461 

 462 

All scripts used in this study are available for reuse (https://github.com/messamat/traffic for 463 

Bing™ traffic flow analysis, https://github.com/messamat/stormwater_samplingPy for GIS 464 

analysis and mapping, and https://github.com/messamat/stormwater_samplingR for sampling, 465 

XRF data post-processing, and statistical analysis). All data are also available at [figshare URL]. 466 
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