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As the global toll on human lives and ecosystems exacted by urban pollution grows, planning tools still lack the resolution to identify priority sites where toxic pollution can be most efficiently averted at a spatial scale that matches funding and management. Here we tackle this gap by demonstrating novel scalable methods to monitor and predict urban metal pollution at high resolution (< 5 meter) across large areas (10,000-100,000 km 2 ) to guide pollution reduction and stormwater management. We showcase and calibrate predictive models of Zn, Cu, and a synthetic index of pollution for the Puget Sound region of Washington State, U.S., a densely urbanized yet important ecosystem of conservation interest, and exemplify their transferability across the entire United States. We leveraged widely and freely available datasets of car traffic characteristics and land use as predictor variables and trained the models with biological monitoring data of metal concentrations in epiphytic moss from > 100 trees based on new rapid and low-cost protocols introduced in this study. Our model predictions, showing that 50% of the total Cu and Zn pollution across the Puget Sound watershed is deposited over only 3.3% of the land area, will allow cities to effectively and efficiently target toxic hotspots.

Introduction

The global expansion of urban areas over the past century has led to widespread pollution, yielding a cascade of impacts on ecosystems and human health [1][START_REF] Dargay | Vehicle Ownership and Income Growth[END_REF][START_REF] Jiang | Global Urbanization Projections for the Shared Socioeconomic Pathways[END_REF][START_REF] Walsh | The Urban Stream Syndrome: Current Knowledge and the Search for a Cure[END_REF] . Car ownership underlies much of this impact as the world's fleet continues growing, exceeding one billion vehicles in 2015 [START_REF] Davis | Transportation Energy Data Book: Edition 38[END_REF] . Ambient air pollution is now considered one of the leading causes of premature death [START_REF] Forouzanfar | [END_REF][START_REF] Lelieveld | The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale[END_REF][START_REF] Burnett | Global Estimates of Mortality Associated with Longterm Exposure to Outdoor Fine Particulate Matter[END_REF] . Additionally, precipitation flowing over impervious surfaces transfers a complex mixture of contaminants to streams and waterbodiesmetals, polycyclic aromatic hydrocarbons (PAH), pesticides and other pollutants emitted by urban activities are washed off from streets and parking lots or leached from roofs and other construction material by stormwater runoff and subsequently carried into nearby ecosystems [START_REF] Müller | The Pollution Conveyed by Urban Runoff: A Review of Sources[END_REF] . This stormwater runoff is the fastest growing source of water pollution in many areas [START_REF] Levin | Impacts of Stormwater on Coastal Ecosystems: The Need to Match the Scales of Management Objectives and Solutions[END_REF] . With nearly 80% of the population of the world projected to live in cities by the end of the 21 st century [START_REF] Jiang | Global Urbanization Projections for the Shared Socioeconomic Pathways[END_REF] , and the number of vehicles expected to double or triple by 2050 [START_REF] Yeh | Detailed Assessment of Global Transport-Energy Models' Structures and Projections[END_REF] , it is imperative to tackle the negative effects of urban dwelling.

Metals are among the pollutants of highest concern in urban areas due to their persistence, bioavailability and toxicity [START_REF] Jayarathne | Assessment of Ecological and Human Health Risks of Metals in Urban Road Dust Based on Geochemical Fractionation and Potential Bioavailability[END_REF][START_REF] Chen | Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health[END_REF][START_REF] Caussy | Lessons from Case Studies of Metals: Investigating Exposure, Bioavailability, and Risk[END_REF] . High concentrations of metals threaten aquatic ecosystem functioning and biodiversity, as well as human health [START_REF] Levin | Impacts of Stormwater on Coastal Ecosystems: The Need to Match the Scales of Management Objectives and Solutions[END_REF][START_REF] Ma | Catchment Scale Assessment of Risk Posed by Traffic Generated Heavy Metals and Polycyclic Aromatic Hydrocarbons[END_REF] . In cities, metals are commonly reported pollutants, reaching waterways directly through atmospheric deposition and indirectly through rain runoff by being leached or picked up as dust after depositing and building up on impervious surfaces [START_REF] Liu | Heavy Metals Transport Pathways: The Importance of Atmospheric Pollution Contributing to Stormwater Pollution[END_REF] . Road dust naturally contains metals from eroded soil but anthropogenic sources like building and road materials, vehicle brake, tire wear, and tailpipe emissions are the main non-point sources of metal pollution in urban areas [START_REF] Mckenzie | Metals Associated with Stormwater-Relevant Brake and Tire Samples[END_REF][START_REF] Thorpe | Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review[END_REF][START_REF] Davis | Loading Estimates of Lead, Copper, Cadmium, and Zinc in Urban Runoff from Specific Sources[END_REF] .

High-resolution estimates of pollutant sources are required to mitigate exposure to toxic compounds by identifying the specific locations and associated site characteristics where the deposition of metals is greatest [START_REF] Zhang | A Comprehensive Review of Spatial Allocation of LID-BMP-GI Practices: Strategies and Optimization Tools[END_REF] . Pollution predictions must also be available for large geographic areas to match the spatial scale of funding, management, and some environmental issues [START_REF] Burnett | Global Estimates of Mortality Associated with Longterm Exposure to Outdoor Fine Particulate Matter[END_REF] . Low-resolution (coarse) models cannot identify emission hot spots, as pollution sources are averaged over large spatial units of analysis, and models developed for small spatial extents may not match the ecological scale relevant to species targeted by management [START_REF] Levin | Impacts of Stormwater on Coastal Ecosystems: The Need to Match the Scales of Management Objectives and Solutions[END_REF] . However, the few models that focus on metals usually lack the combination of resolution and scale for this purpose (but see [START_REF] Barzyk | A Near-Road Modeling System for Community-Scale Assessments Oftraffic-Related Air Pollution in the United States[END_REF][START_REF] Zivkovich | Predicting Nonpoint Stormwater Runoff Quality from Land Use[END_REF][START_REF] Mitchell | Mapping Hazard from Urban Non-Point Pollution: A Screening Model to Support Sustainable Urban Drainage Planning[END_REF] ). Therefore, high-resolution, scalable models that describe the relative magnitude of metal pollution sources across space are needed to guide investments across large areas.

Further complicating the training and validation of high-resolution models of urban metal pollution is the dearth of monitoring data at the appropriate temporal and spatial scales. For stormwater management, infrastructure siting requires long-term average metal emission measures in flowing and standing water bodies, yet common monitoring data usually represent snapshots in time subject to high sub-daily, daily, and seasonal variability [START_REF] Ma | Sampling Issues in Urban Runoff Monitoring Programs: Composite versus Grab[END_REF] . Air quality monitoring networks, on the other hand, measure the concentration of metals in Nfine (< 2.5 μm diameter -PM2.5) and coarse (2.5-10 μm diameter -PM10) particulate matter [START_REF] Hennigan | Trends in PM 2.5 Transition Metals in Urban Areas across the United States[END_REF][START_REF] Dabek-Zlotorzynska | Canadian National Air Pollution Surveillance (NAPS) PM2.5 Speciation Program: Methodology and PM2.5 Chemical Composition for the Years 2003-2008[END_REF][START_REF] Philip | Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment[END_REF] through costly protocols. Consequently, the geographic density and temporal grain of metal pollution monitoring is currently insufficient to train fine scale models of pollution, and most developing countries lack the resources to install such monitoring infrastructure. Affordable approaches to assess metal pollutant emissions integrated over long time periods thus hold the potential to greatly facilitate air pollution and stormwater management across large spatial scales and in areas with limited resources [START_REF] Gatziolis | Elemental Atmospheric Pollution Assessment Via Moss-Based Measurements in[END_REF][START_REF] Jiang | Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas[END_REF] .

The aim of this study was to develop scalable methods to monitor and predict urban metal pollution at high resolution to guide pollution reduction and stormwater management.

Here, we showcase and calibrate these methods for the Puget Sound region of Washington State, U.S., a densely urbanized yet important ecosystem of conservation interest [START_REF] Ruckelshaus | Ecosystembased Management for the Oceans[END_REF] . We modeled longterm average pollution levels for two metals of concern, Zn and Cu, as well as a pollution index combining the pollution levels of these two metals with Pb. The model was trained with an extensive set of passive biological monitoring data. We measured metal concentrations in epiphytic moss collected by in-situ portable X-Ray Fluorescence (XRF) spectroscopy for > 100 trees based on new protocols introduced in this study. Lastly, we exemplify the utility of the models by assessing its ability to predict metal air pollution across the U.S.

Materials and Methods

Overview

We first compiled spatial data for six of the main variables that have been reported to drive the spatial distribution of urban metal pollution [START_REF] Zechmeister | Estimation of Element Deposition Derived from Road Traffic Sources by Using Mosses[END_REF][START_REF] Horstmeyer | Evaluation of Site-Specific Factors Influencing Heavy Metal Contents in the Topsoil of Vegetated Infiltration Swales[END_REF][START_REF] Apeagyei | Distribution of Heavy Metals in Road Dust along an Urban-Rural Gradient in Massachusetts[END_REF][START_REF] Pasquier | Considering Criteria Related to Spatial Variabilities for the Assessment of Air Pollution from Traffic[END_REF][START_REF] Gunawardena | Primary Traffic Related Pollutants and Urban Stormwater Quality[END_REF] : land use; motor vehicle traffic volume, speed, and congestion; road gradient; and over-ground public transit frequency (TOC.1).

Second, we generated pollution source "density maps" that simulate the cumulative and diffuse emissions from each road-based source of pollution (TOC.2). In these source maps, each location is assigned the distance-weighted sum of the value of the variable (e.g. traffic volume) across the entire area within a buffer around that location. This allowed us to account for the cumulative effect of the variable from multiple roads around every location while accounting for pollution concentrations decay away from each road. Third, we measured the concentrations of metals in epiphytic moss at 87 sites across the greater Seattle area (WA, U.S.) using portable XRF (TOC.3). Fourth, a set of multiple regression models were developed using the density maps values and land use at the sampling sites as candidate predictor variables and the XRF measurements as response variables (i.e. training data, TOC.5). Three models were developed separately for Zn, Cu, and the synthetic pollution index (PI). Zn, Cu, and Pb were selected as our pollutants of study as these elements are among the most commonly studied and reported metal pollutants in urban environments [START_REF] Deforest | Critical Review: Toxicity of Dietborne Metals to Aquatic Organisms[END_REF][START_REF] Gunawardena | Atmospheric Deposition as a Source of Heavy Metals in Urban Stormwater[END_REF][START_REF] Duong | Determining Contamination Level of Heavy Metals in Road Dust from Busy Traffic Areas with Different Characteristics[END_REF] . Zn and Cu, in particular, are closely associated with automobile traffic volume and congestion through the emission of rubber tire dust and brake wear dust, respectively [START_REF] Thorpe | Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review[END_REF][START_REF] Gunawardena | Atmospheric Deposition as a Source of Heavy Metals in Urban Stormwater[END_REF] . The three trained models were subsequently used to make spatially continuous predictions of the relative concentrations of each pollutant across the entire study area (TOC.6). Lastly, we predicted Zn pollution around every air quality monitoring station from the United States Environmental Protection Agency (EPA) that recorded ambient air concentrations of Zn in the form of fine particulate matter (TOC.7). This allowed us to assess how well our predictions fit standard measurements of long-term average air pollution. See Appendix 1 for a detailed description of the methodology and data sources.

Study area

The Puget Sound region encompasses 41,500 km 2 of upland, freshwater, estuarine and marine habitats, and currently supports a large and increasingly urban population from Vancouver, British Columbia (Canada) to Olympia, Washington (U.S., Fig. 1). Population projections suggest that human numbers in the greater Puget Sound region will increase by two million in the next 30 years, and Seattle, Washington, the largest city in the region, is one of the fastest growing in the country [START_REF]Forecast of People and Jobs[END_REF] . With over 40 species of birds, mammals, fishes, plants and invertebrates currently listed as threatened, endangered, or as candidates for state and federal endangered species lists, Puget Sound is considered a "hot-spot" of extinction risk [START_REF] Ruckelshaus | Ecosystembased Management for the Oceans[END_REF] .

Importantly, some of these imperiled species, such as Chinook salmon (Onchorhynchus tshawytscha) and killer whales (Orcinus orca), are regional icons that have been commemorated in art, culture and tradition for millennia (e.g. [START_REF] Mathews | Conservation for the Antropocene Ocean: Interdisciplinary science in support of nature and people[END_REF] ).

Candidate predictor variables: data sources and pre-processing

We used the Percent Developed Imperviousness dataset from the 2016 Multi-Resolution Land Characteristics Consortium's National Land Cover Data (NLCD, spatial resolution of 30 m) [START_REF] Yang | A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies[END_REF] as a continuous measure of land use intensity. Because the effects of urban land-use on air and water pollution are diffuse, two spatially smoothed imperviousness layers were also generated from this dataset with 3x3 pixel mean and median filters.

A single spatial road network dataset with traffic volume (Annual Average Daily Traffic)

and speed was compiled from the U.S. Department of Transportation (DOT) and the U.S. Census Bureau (Table S1). The slope of each road segment in the network was calculated from the 3D Elevation Program Digital Elevation Models (Table S1) at the highest resolution available for every location by first smoothing the elevation dataset and then computing the ratio of each road segment's elevation range and length. To quantify traffic congestion, we computed the average traffic flow across the area of interest based on data from the Bing™ Maps REST Services Application Programming Interface (API). To do so, we built a custom tool similar to Tostes and colleagues' [START_REF] Tostes | From Data to Knowledge: City-Wide Traffic Flows Analysis and Prediction Using Bing Maps[END_REF] . We applied our tool to obtain traffic conditions throughout the Puget Sound watershed area from November 28 th , 2018 at 08:00 am to December 5 th , 2018 at 08:00. For Air Quality Monitoring Stations, the tool was run from April 9 th at 18:00 2019 to April 16 th at 18:00 2019, resulting in 169 hourly snapshots.

Maps of over-ground public transit frequency were generated for the Puget Sound watershed and within the vicinity of Air Quality Monitoring Stations based on static General

Transit Feed Specification (GTFS) data from the National Transit Map (Table S1)the largest seamless compilation of GTFS data in the U.S. at the time of this study. The result provided us with a single seamless layer of the average weekly number of times that a public transit vehicle went through every location across the landscape, thus integrating across all agencies, modes of transport, routes, and schedules.

Pollution spread models

To simulate the spread of pollutants away from roads and thus the cumulative pollution from multiple roads, we generated pollution source density maps of public transit frequency, road gradient, and traffic volume, speed and congestion. For each density map, the value at each location was calculated as the distance-weighted sum of all pixel values within a maximum distance from that location, whereby the weight attributed to each pixel was determined by a distance-decay function. To encompass various possible rates and functional forms of metal particle deposition, we generated 24 candidate density maps for each of these five road-based variables based on a set of 24 different distance-decay functions, each function illustrating a different hypothesized pattern and distance of pollution spread (see Appendix 1). The resulting 120 continuous maps of pollution sources were subsequently used as candidate predictor variables to select and train the models of metal pollution across the Greater Seattle area.

Data collection and model training

We used the elemental composition of epiphytic moss on trees from 87 sites determined by portable XRF to train and validate our predictive models of pollution (Fig. 1, see Appendix 1 and [Messager et al. companion paper] for more information on sampling design and protocols).

Mosses have been widely used in Europe as biological monitors of metal pollution for decades, because they readily accumulate pollutants over time, reflecting long term pollution levels [START_REF] Little | Biological Monitoring of Heavy Metal Pollution[END_REF][START_REF] Fernández | A Critical Review of Protocols for Moss Biomonitoring of Atmospheric Deposition: Sampling and Sample Preparation[END_REF] .

Unlike plants, they lack roots and a cuticle, so they absorb nutrients from the atmosphere over their entire surface and all cells are directly exposed to wet deposition [START_REF] Bates | Mineral Nutrient Acquisition and Retention by Bryophytes[END_REF] . Pollutants in dust also accumulate on their surface through dry deposition [START_REF] Aboal | Should Moss Samples Used as Biomonitors of Atmospheric Contamination Be Washed?[END_REF] . Their high cation exchange capacity results in moss cells passively trapping pollutants, including metals [START_REF] Bates | Mineral Nutrient Acquisition and Retention by Bryophytes[END_REF] . As a result, mosses more readily accumulate atmospheric metals than vascular plants, and metal concentrations in moss pseudo-tissues are not as influenced by local variations in soil metal levels [START_REF] Jiang | Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas[END_REF][START_REF] Salemaa | Element Accumulation in Boreal Bryophytes, Lichens and Vascular Plants Exposed to Heavy Metal and Sulfur Deposition in Finland[END_REF] . In addition, mosses are ubiquitous in the study region, in both rural and urban settings, and persist even in the most polluted urban sites. Leveraging these characteristics, multiple studies have successfully used elemental analysis of mosses to assess the spatial distribution and sources of urban and motor vehicle traffic-related metal pollution with high specificity [START_REF] Gatziolis | Elemental Atmospheric Pollution Assessment Via Moss-Based Measurements in[END_REF][START_REF] Zechmeister | Estimation of Element Deposition Derived from Road Traffic Sources by Using Mosses[END_REF][START_REF] Pearson | Traffic Exposure Increases Natural 15N and Heavy Metal Concentrations in Mosses[END_REF] .

For this study, a new protocol of rapid in-situ elemental analysis by portable XRF was developed. With this method, photons are emitted from an X-ray tube in a portable instrument whose measuring window is directly applied against moss mats growing on tree bark. The emitted photons interact with the atoms within the moss sample, which in turn emit photons at energy levels that are specific to each element. Photons from the moss atoms are then received, counted, and converted by the instrument into a spectrum of energy with clearly identifiable peaks whose size reflects the relative quantity of each element in the sample [START_REF] Kalnicky | Field Portable XRF Analysis of Environmental Samples[END_REF] . Portable XRF is now a common tool whose performance is comparable to more conventional methods like benchtop XRF and inductively-coupled plasma-optical emission spectrometry (ICP-OES) for the analysis of hazardous metal concentrations in soils and plants [START_REF]Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment[END_REF][51][START_REF] Bueno Guerra | Comparison of Analytical Performance of Benchtop and Handheld Energy Dispersive X-Ray Fluorescence Systems for the Direct Analysis of Plant Materials[END_REF] . We show in [Messager et al.

companion paper] that, compared to quantitation by ICP-OES, pXRF enables quantitative screening of Cu (pseudo-R 2 = 0.75) and Zn (pseudo-R 2 = 0.81), and qualitative screening of Pb (R 2 = 0.63), with high measurement replicability. While epiphytic moss has previously been used for urban metal pollution mapping [START_REF] Gatziolis | Elemental Atmospheric Pollution Assessment Via Moss-Based Measurements in[END_REF] , this is, to the authors' knowledge, the first time that portable XRF was used for biological monitoring of fine-scale spatial patterns in ambient metal pollution.

Although 87 different sites were selected for sampling, measurements were separately taken from two closely adjacent trees in a quarter of the sites to assess small-scale variations in metal concentration. Moss mats were thus sampled on a total of 109 trees (measurements from single trees, rather than sites, are hereon used as our unit of analysis [
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We developed three separate models for Cu, Zn, and a pollution index. These multiple regression models were developed through model selection [START_REF] Kuhn | Applied Predictive Modeling[END_REF] , all using the density map values and imperviousness at the sampling sites as candidate predictor variables and the element concentrations as response variables (see Appendix 1 for a detailed description).

The pollution index was computed with the following equation for each sampled tree i:

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖 = ( [𝐶𝑢] 𝑖 [𝐶𝑢] 𝑟𝑒𝑓 × [𝑃𝑏] 𝑖 [𝑃𝑏] 𝑟𝑒𝑓 × [𝑍𝑛] 𝑖 [𝑍𝑛] 𝑟𝑒𝑓 ) 1/3
(Equation 1)

Where [Element]i is the element's normalized net count rate averaged over the three XRF assays at that site and [Element]ref is the background normalized net count rate (after within-site averaging) for that element recorded at a reference site away from pollutant sources.

After selecting a reduced set of predictor variables through preliminary selection, a systematic model selection was conducted to develop a multiple regression model for each response variable [START_REF] Kuhn | Applied Predictive Modeling[END_REF] . We then assessed whether including sampling season (summer 2018 or spring 2019) as a fixed effect improved the model, to take in account the potential influence of temperature and precipitation on moss pollution retention [START_REF] Markert | Use of Polytrichum Formosum (Moss) as a Passive Biomonitor for Heavy Metal Pollution (Cadmium, Copper, Lead and Zinc)[END_REF][START_REF] Real | Detection of Pulses of Atmospheric Mercury Deposition with Extensive Surveys and Frequently Sampled Stations: A Comparison[END_REF][START_REF] Boquete | Analysis of Temporal Variability in the Concentrations of Some Elements in the Terrestrial Moss Pseudoscleropodium Purum[END_REF] . The model residuals were also evaluated for spatially collinearity; we built spatial simultaneous autoregressive error models (linear regression models accounting for spatial error structure) when appropriate [START_REF] Bivand | The Spdep Package -Spatial Dependence: Weighting Schemes[END_REF] .

2.6.Model predictions and fit to air pollution measurements

Using the trained models described above, we made spatially continuous predictions of pollution for the Puget Sound region and around every air quality monitoring station operated by the EPA across all states of the contiguous U.S. The latter allowed us to assess whether our estimates of metal concentrations from a model trained with local bio-monitoring data could be related to more standard measurements of air pollution beyond our focal area. We selected all air quality monitoring sites in the conterminous U.S. with at least 200 measurements of Zinc PM2.5

(μg/m 3 ) from 2014 to 2019 and extracted the Zn concentration estimated by our model (Znpred)

for each of these sites. As spatial and temporal variations in air pollution are strongly influenced by local climatic and meteorological factors, we also computed 37 variables identified as key drivers of PM2.5 through 50th percentile quantile regressions by Porter and colleagues [START_REF] Porter | Investigating the Observed Sensitivities of Air-Quality Extremes to Meteorological Drivers via Quantile Regression[END_REF] . To assess the adequacy of Znpred for predicting Zn PM2.5 records, we compared two partial leastsquare regression (PLSR) model of Zn PM2.5 (after logarithmic transformation): the first only included meteorological variables as predictors whereas the second included those 37 variables together with Znpred.

Results and Discussion

Observed distribution and drivers of metal pollution in the study area

XRF assays of epiphytic moss revealed that numerous metals were prevalent throughout the Puget Sound watershed. Their concentrations covaried with urban land use and motor vehicle traffic, often ranging in concentration by an order of magnitude above background levels (Appendix 2). Metals detected by our sampling included Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Ti, Zn, and Zr. Notably, Zn concentration in the most polluted site was 23 times higher than in the most isolated area, whereas Cu varied by a factor of 10 throughout the area. The concentrations of metals measured by XRF sampling also covaried among elements (Appendix 3, Fig. S1). This further justified our focus on a reduced set of elements (Cu, Zn, and Pb) that could serve as indicators for a broader suite of metal pollutants. Clusters of elements revealed common physicochemical properties, patterns of spatial dispersion, and potential sources. High concentrations of Zn, Co, Fe, Zr, Cr, and Ti tended to co-occur (0.6 < Pearson's r < 0.9), Cu exhibiting slightly different distributional patterns, whereas Pb was clustered with As. The observed correlations among metals can be attributed to their co-occurrence in automotive parts and in crustal dust, as traffic leads to non-exhaust emissions through both abrasion (i.e. of brake pads and tires) and dust resuspension [START_REF] Thorpe | Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review[END_REF][START_REF] Pant | Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review[END_REF] .

Applying our rapid and low-cost biomonitoring protocol across a dense array of sites, and combining these measurements with widely available spatial data on potential pollution sources, allowed us to shed light on the traffic and land use characteristics most responsible for the occurrence of different metals in urban environments. This analysis showed for example that Zn and Cu concentrations are both strongly correlated with traffic speed (r > 0.5). Zn also strongly covaries with traffic volume and congestion (0.6 < r < 0.7) whereas Cu is correlated with bus transit volume (r > 0.6, Appendix 3, Fig. S2). The distance-decay functions used to produce the density maps of pollutant predictors that were most correlated to metal concentrations further hinted at the relative distances to which different metals disperse away from their source of emission. For instance, Zn is slightly more correlated to traffic speed and volume density maps generated with 100 m kernels compared to those based on 200 m kernels or larger. On the other hand, Cu is most correlated to density maps produced with the largest kernels of dispersion for every pollution predictor. Closely associated with tire wear, Zn in dry deposition is usually associated with larger particle size (> 10 µm) whereas Pb, Cd, Ni and Cu are mostly present in smaller particle sizes (< 10 µm) [START_REF] Gunawardena | Atmospheric Deposition as a Source of Heavy Metals in Urban Stormwater[END_REF] . As particles < 10 µm behave more like gases, diffusing along concentration gradients to deposit on surfaces, they tend to travel further than coarser particles whose deposition rates are more gravity-driven, explaining the differences in spread patterns we observed between Cu and Zn 61 .

Model training and validation results in the Puget Sound watershed

The models of pollution developed herefor Zn, Cu, and a pollution indexrelied on only two to three predictors each, and all yielded estimates with average percentage errors from 20 to 30% (Fig. 2). These three models explained 65%, 64% (78%) and 57% (72%) of the variability in Zn, Cu, and pollution index across sampled sites, respectively, based on pseudo-R 2 computed with (and without) outliers (Fig. 2). For a full list of candidate models, performance and diagnostic tests, refer to Appendix 4. To achieve normality and homoscedasticity of residuals, the regression models of Cu and pollution index were trained without outliers (grey points in Fig. 2 2), Cu = 17.522 + 5.808•transitlog200 1/2 + 0.142•imperviousnesssmooth (Equation 3), Pollution index = 1.783 + 0.048•volumelog100 + 1.690•transitlinear100 1/3 + 0.031•imperviousnesssmooth (Equation 4),

where volumelog100 is the value from the density map of average annual daily traffic created with a 100 m-log kernel, transitlog200 and transitlinear100 are produced with bus transit density maps with 200 m-log and 100 m-linear kernels, respectively, and imperviousnesssmooth is based on a 3x3 median filter of imperviousness.

Figure 2. Prediction maps and scatterplots of observed vs. predicted metal pollution for (A, D) Zinc, (B, E) Pollution index, and (C, F) Copper (respectively). Map values for Zn and Cu are minimum-maximum standardized to describe the spatial distribution of metal concentrations

across the area, 0 reflecting "background" metal concentrations presumably due to local crustal deposits at the least impacted site, and 100 corresponding to the highest predicted value across the Puget Sound watershed. For all models, Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE, of the standardized indices) were below 30% and 10, respectively.

Residuals show percentage error of predictions at sampled sites based on XRF-measured metal pollution. Insets show the heavily trafficked downtown area of Seattle adjacent to a section of the

Interstate Highway 5 where a dense array of measurements were conducted.
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Our results echo previous studies relating motor vehicle traffic characteristics with measured air, soil, and stormwater pollution. Horstmeyer and colleagues [START_REF] Horstmeyer | Evaluation of Site-Specific Factors Influencing Heavy Metal Contents in the Topsoil of Vegetated Infiltration Swales[END_REF] , for instance, document the greatest Pb, Zn, and Cu concentrations in the topsoil of vegetated infiltration swales at sites with high traffic volume or with frequent braking and acceleration, at crossings, roundabouts and in stop-and-go traffic. Cu and Zn concentrations in mosses along transects of nine roads also increased with traffic density and the incline of the roads in Austria [START_REF] Zechmeister | Estimation of Element Deposition Derived from Road Traffic Sources by Using Mosses[END_REF] . While additional predictors could have been added to increase the performance of our model, we instead focused on using widely available, free-to-access data to maximize the scalability of our model and its transferability to varied geographical contexts. The fact that our models including bus transit best predicted Cu was a surprising finding, but we conjecture that bus transit routes reflect major transportation axes also used by heavy commercial motor vehicles (i.e. trucks) and thus buses do not solely account for the pollution patterns. Pb was not as well predicted by traffic and land use as Zn and Cu. This lower predictive ability goes against our expectations as Pb, despite having been phased out of gasoline for several decade, remains a prevalent component of motor vehicle parts [START_REF] Thorpe | Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review[END_REF][START_REF] De Miguel | Origin and Patterns of Distribution of Trace Elements in Street Dust: Unleaded Petrol and Urban Lead[END_REF] . Point-source pollution spreading over large distances and the age of surrounding buildings may be more strongly driving the spatial distribution of this pollutant [START_REF] Schwarz | The Effects of the Urban Built Environment on the Spatial Distribution of Lead in Residential Soils[END_REF] .

For the development of more local models, we therefore posit that additional sources of metal pollution to account for, when available, should include: heavy-duty motor vehicle traffic [START_REF] Horstmeyer | Evaluation of Site-Specific Factors Influencing Heavy Metal Contents in the Topsoil of Vegetated Infiltration Swales[END_REF] , building density and age [START_REF] Schwarz | The Effects of the Urban Built Environment on the Spatial Distribution of Lead in Residential Soils[END_REF] , parcel-level land use (e.g. parking lots [START_REF] Horstmeyer | Evaluation of Site-Specific Factors Influencing Heavy Metal Contents in the Topsoil of Vegetated Infiltration Swales[END_REF] ), road surface material [START_REF] Wijesiri | Influence of Urbanisation Characteristics on the Variability of Particle-Bound Heavy Metals Build-up: A Comparative Study between China and Australia[END_REF] , commercial railways [START_REF] Rouillon | The Nature and Distribution of Cu, Zn, Hg, and Pb in Urban Soils of a Regional City: Lithgow, Australia[END_REF] , and locations of point-source pollution [START_REF] Gatziolis | Elemental Atmospheric Pollution Assessment Via Moss-Based Measurements in[END_REF] .

Model transferability: comparison to nationwide monitoring data

Although our models were trained with metal concentrations in epiphytic moss from across the Puget Sound watershed, they could also predict air metal pollution at the continental scale with relative accuracy. Together with long-term meteorological and climatic predictors, our estimates of Zn pollution explained 59% of the variability in long-term average Zinc PM2.5

(μg/m 3 ) across all 195 air quality stations with at least 200 daily observations (2014-2019) across the U.S. (Fig. 3). Here we focused on assessing the ability of our models to predict Zn in fine particulate matter (PM2.5). However, Zn, Cu and Pb emissions are associated with a range of particle sizes that might be better predicted by our model (e.g. PM10 and coarser [START_REF] Thorpe | Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review[END_REF][START_REF] Li | Particle Size Distribution and Characteristics of Heavy Metals in Road-Deposited Sediments from Beijing Olympic Park[END_REF] ). In addition, although the goal of our US-wide analysis was to assess the relevance of our model estimates regarding long-term air metal pollution, more complex models accounting for temporal (weekly and seasonal) and spatial autocorrelation could achieve greater predictive ability. The biomonitoring method and modelling framework demonstrated here provide a unique combination of scale and resolution. They can be leveraged for fine-scale decision-making to control a family of pollutants that is rarely modeled yet whose threat to the environment is increasingly recognized [START_REF] Levin | Impacts of Stormwater on Coastal Ecosystems: The Need to Match the Scales of Management Objectives and Solutions[END_REF] . A large portion of urban metal pollution is initially emitted, or resuspended, to the atmosphere before settling on the road surface and being washed off by stormwater [START_REF] Gunawardena | Primary Traffic Related Pollutants and Urban Stormwater Quality[END_REF][START_REF] Hou | Integrated GIS and Multivariate Statistical Analysis for Regional Scale Assessment of Heavy Metal Soil Contamination: A Critical Review[END_REF][START_REF] Gunawardena | Sources and Transport Pathways of Common Heavy Metals to Urban Road Surfaces[END_REF] [START_REF] Barrington-Leigh | The World's User-Generated Road Map Is More than 80% Complete[END_REF] , and our novel tool for assessing the degree of traffic congestion using Bing TM could be applied in > 70 countries at the time of this study [START_REF]Bing Maps Traffic Coverage[END_REF] . Traffic congestion data could also be more easily obtained through the establishment of custom user agreements with companies specializing in the collection of traffic data (e.g. INRIX ® ). Lastly, sub-models and variable substitution can be used to accommodate cases where predictor variables may be unavailable (e.g. traffic volume) as multiple variables performed well in predicting pollution (Appendix 4).

Sources of errors and uncertainty

Multiple sources of uncertainty are associated with the framework introduced here, stemming from the use of moss biomonitoring, XRF measurements, as well as in the predictor variable data. The main source of uncertainty in moss-based biomonitoring is that metal levels in moss pseudo-tissue do not reflect a passive and steady accumulation over time but a dynamic equilibrium between concentrations in the environment, moss growth, and meteorology [START_REF] Aboal | Is It Possible to Estimate Atmospheric Deposition of Heavy Metals by Analysis of Terrestrial Mosses[END_REF] . We review sources of uncertainty in moss measurements in Appendix 5, including precipitation, proximity to saltwater, pseudo-tissue age and growth rate. Field sampling was conducted across two different seasons due to maintenance requirements for the XRF instrumentwhile we did not find a significant effect of season in our models, we recommend that future studies conduct all sampling within a single season or re-sample the same sites across different periods of the year to better capture seasonal variability [START_REF] Fernández | A Critical Review of Protocols for Moss Biomonitoring of Atmospheric Deposition: Sampling and Sample Preparation[END_REF] . Due to these uncertainties, moss biomonitoring is best suited for assessing the spatial distribution of pollution in relative terms rather than determining absolute levels for the evaluation of pollution criteria compliance. Regarding field XRF measurements, the main uncertainty resides in the heterogeneity of moss samples growing on trees, resulting in unequal densities of pseudo-tissue and depth of measurements. Nonetheless, the low level of tissue differentiation and the lack of a cuticle greatly reduces variability in XRF measurements of moss compared to vascular plants 51 . One additional limitation of XRF is that the prevalence of some commonly used tracers of non-exhaust traffic pollution (e.g. Sb, Ba [START_REF] Pant | Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review[END_REF][START_REF] Winkler | Magnetic Emissions from Brake Wear Are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy)[END_REF][START_REF] Bukowiecki | Real-World Emission Factors for Antimony and Other Brake Wear Related Trace Elements: Size-Segregated Values for Light and Heavy Duty Vehicles[END_REF] ) cannot be accurately determined at the same time as those discussed in this study; these elements' characteristic energy lines occur outside of the region that the instrument was set to measure (through the use of a yellow filter, see Appendix 1 for details on protocol). Owing to its affordability and speed, the resulting ability to compute averages over replicated measurements, and the minimal disruption of samples involved compared to conventional methods (e.g. sample extraction, transport, processing, digestion), we believe that this protocol is a significant advance towards high resolution monitoring of urban metal pollution.

Predicted metal pollution across the Puget Sound watershed

With the assurance that our models satisfactorily described the spatial patterns of the three metal pollution indicators, we made predictions of metal pollution across the entire ~40,000 km 2 of the Puget Sound watershed. These estimates show that the pollutant footprint of human development spans across the entire landscape, with 27% of the watershed's land area (excluding all 30x30 m pixels identified as water by the National Land Cover Dataset) exhibiting metal concentrations above background levels for at least one of the indicators. Cu affects the greatest area in the region, as expected from the larger size of the distance-decay function for bus transit (Equation 3) in its computation. Our work also reveals that metal pollution is very localized: 50% of the total pollution deposited on land across the Puget Sound watershed is deposited over only 3.3% of the land area for both Cu and Zn (Fig. 2 and3).

Conclusion

Effectively and efficiently combating pollution generated from motor vehicles is a major challenge facing natural resource managers and urban planners. In this study, we demonstrate the utility of new biomonitoring techniques that can provide unique insight into the spatial distribution of pollution sources at a fraction of the cost of usual approaches. Intensive sampling of epiphytic moss with pXRF revealed the existence of Zn and Cu emission hotspots in densely urbanized areas of the Puget Sound watershed with metal concentrations exceeding background levels by an order of magnitude. Combined with open access datasets to train predictive models, our inexpensive, rapid, and rigorous approach allows managers to identify and mitigate toxic metals at fine spatial scales over large geographic regions. Here we applied these models to predict the concentration of metals at ~5 m resolution across the Puget Sound watershed and around every air quality monitoring station in the contiguous U.S. With increasingly limited resources, this new approach holds the potential for cities to target toxic hotspots, thus maximizing environmental returns on mitigation investments.

Associated content

See the accompanying Supporting Information for the full methodology (Appendix 1), a table of 

Figure 1 .

 1 Figure 1. Spatial distribution of sampled trees used in model development (black points, after

Figure 3 .

 3 Figure 3. Predictive performance of (A) a meteorology-only partial least-square regression

  the selected measured elemental concentrations and land use characteristics at sites sampled by XRF (Appendix 2), cluster and correlation analysis results depicting the relationships among selected elemental concentrations measured in epiphytic moss by XRF and land use and vehicle traffic pollution predictors (Appendix 3), model development tables (Appendix 4), and a literature review of the sources of uncertainty related to moss biomonitoring of ambient metal pollution (Appendix 5).

  Orthotrichum lyelli Hook. & Taylor growing on hardwood tree species. Portable XRF assays were obtained from three different moss mats on each tree using a Bruker Tracer III-SD

	(T3S2606, Bruker Elemental, Kennewick, WA, U.S.). Spectral data were processed and
	normalized to yield a comparable 'concentration' index across samples using standard analysis

). Sampling took place in July-August 2018 and March-April 2019. As various studies have shown that air-moss metal concentration relationships vary among species 53 , measurements were taken from a single moss species, protocols (See Appendix 1 and [Messager et al. companion paper] for details on the protocol) 51 .

  scatterplots). Sampling season did not have a significant effect (p > 0.05) in the models. Regression coefficients from autoregressive error models with inverse distance spatial weight matrices based on one nearest neighbor were used for model predictions in all three cases, as Lagrange Multiplier robust diagnostic tests revealed spatial error dependence in the initial simple linear regression models. The metal pollutant concentrations were thus estimated according to the following regression models (based on Zn and Cu values maximum-

	standardized to 100):

Zn = exp(2.042 + 0.417•volumelog100 1/4 + 0.012•imperviousnesssmooth) (Equation

  . Therefore, moss biomonitoring and the associated predictive models can inform stormwater management in identifying hot spots of metal emission by these sources located upstream from waterbodies of interest. Although moss has been used across Europe to map large scale patterns of pollution[START_REF] Schröder | Are Cadmium, Lead and Mercury Concentrations in Mosses across Europe Primarily Determined by Atmospheric Deposition of These Metals?[END_REF] , only a handful of studies have demonstrated the use of bryophytes for assessing fine scale patterns of pollution[START_REF] Zechmeister | Estimation of Element Deposition Derived from Road Traffic Sources by Using Mosses[END_REF] . Using portable XRF, we were able to assess the concentration of 12 metals across 87 sites in about five minutes at each location, allowing for fine-scale assessment of the spatial distribution of pollution. By contrast, there are only two stations with long-term Zn PM2.5 data in the Puget Sound watershed. The models can also be further adapted with moss measurements from other locations of interest. Because we trained our models based on widely and freely available datasets of pollution predictors, this framework can be leveraged to estimate metal pollution at high resolution (here ~ 5 m) in other contexts and across large areas. Outside of the United States for example, the road network from the Open Street Map dataset, a global crowd-sourced collaborative mapping project, is nearly complete
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