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Abstract

The paper introduces Diff-Filter, a multichannel speech en-
hancement approach based on the diffusion probabilistic model,
for improving speaker verification performance under noisy and
reverberant conditions. It also presents a new two-step train-
ing procedure that takes the benefit of self-supervised learning.
In the first stage, the Diff-Filter is trained by conducting time-
domain speech filtering using a scoring-based diffusion model.
In the second stage, the Dift-Filter is jointly optimized with a
pre-trained ECAPA-TDNN speaker verification model under a
self-supervised learning framework. We present a novel loss
based on equal error rate. This loss is used to conduct self-
supervised learning on a dataset that is not labelled in terms of
speakers. The proposed approach is evaluated on MultiSV, a
multichannel speaker verification dataset, and shows significant
improvements in performance under noisy multichannel condi-
tions.

Index Terms: multichannel speech enhancement, diffu-
sion probabilistic models, speaker verification, self-supervised
learning

1. Introduction

Speaker verification (SV) aims to confirm the identity of a per-
son based on his/her voice characteristics. SV has achieved sig-
nificant performance gain in controlled or close-talk scenarios.
However, it suffers from unsatisfactory performance in multi-
channel far-field scenarios. This is due to complex environmen-
tal settings as speech signals propagating in the long-range are
subject to fading, absorption, room reverberation and complex
environmental noises, which change the pressure level at dif-
ferent frequencies and degrade the signal quality. Speech en-
hancement (SE) can be used as a pre-processing to SV in noisy
reverberant scenarios. Speech enhancement aims to enhance the
quality and intelligibility of speech signals that are corrupted
by noise and/or reverberation by estimating the original clean
speech signal using various signal processing techniques. Mul-
tichannel speech enhancement aims to enhance distorted speech
using multiple microphones and improve performance by tak-
ing advantage of the additional spatial information provided by
these microphones compared to single-channel.

Generative models aim to learn the fundamental character-
istics of speech, such as its spectral and temporal structure and
can use this prior knowledge to identify clean speech from noisy
or reverberant input signals that fall outside the learned distri-
bution. [1,2] used the raw waveform, or magnitude spectrum,
as input for generative model-based speech enhancement. Gen-
erative adversarial networks (GAN) [3, 4], variational autoen-
coders (VAE) [5-7], and flow-based models [8] have been used
to estimate the distribution of clean speech signals. Recently,

diffusion-based models have also been studied for speech en-
hancement [9-11]. All these approaches share the concept of
gradually converting input data into noise and training a neural
network to invert this process for various noise scales based on
the Markov chain.

DiffuSE [9] was proposed to recover the clean speech sig-
nal from the noisy signal based on Markov chains; it provides
a framework for denoising diffusion probabilistic models. Lu
et al. formulated the CDiffSE model using a generalized con-
ditional diffusion probabilistic model that incorporates the ob-
served noisy data into the model [10]. While CDiffSE and
DiffSE employ U-net as their diffusion decoder network, our
proposed work takes a different approach and uses Conv-TasNet
as the diffusion decoder instead. Specifically, our method con-
ducts speech enhancement on the time-domain representation of
the signal. Zhang et al. extend the Diff-Wave vocoder [11] us-
ing a convolutional conditioner for denoising, and it is trained
separately using a L1 loss for matching latent representations
[12].0ur proposed approach incorporates a conditioning net-
work based on Conv-TasNet in addition to the diffusion de-
coder. This conditioning network provides an estimate of the
clean and noisy signals, which are combined with the multi-
channel noisy signal and fed into the diffusion decoder. By do-
ing so, the diffusion process is made easier as it can learn to
remove the noise while taking into account the clean speech es-
timate provided by the conditioning network. Recently, some
studies [13—-15] have explored scoring-based diffusion models
with stochastic differential equations (SDE) instead of Markov
chains. SDE enables the controlling of selecting the reverse dif-
fusion steps for enhancement [16]. The aforementioned works
use only single-channel and have not been studied for SV.

Self-supervised learning is a powerful machine learning
technique that enables models to learn from unlabeled data by
leveraging the inherent structure or patterns in the data itself
without the need for explicit supervision from labelled data.
In the context of speaker verification tasks, few approaches
have conducted contrastive learning for self-supervised learn-
ing [17-20]. The loss function design for SV mainly focuses on
speaker classification loss function, and verification loss [21].
Furthermore, the contrastive learning framework enables the
online creation of verification labels. In order to exploit the
multichannel speech data without explicit speaker labels, we
propose to use the equal error rate (EER) evaluation metric as a
loss function to optimize the speaker embedding representation
on the verification task.

In this paper, we present a diffusion probabilistic model
(DPM)-based two-stage multichannel speech enhancement ap-
proach as a pre-processing to SV. We named our approach
Diff-Filter as it mimics the behaviour of Rank-1 multichannel
Wiener filter (MWEF). In the first stage, we train the Diff-Filter



by conducting time-domain speech filtering using a scoring-
based diffusion model. In the second stage of training, we
jointly optimize the Diff-Filter with a pre-trained ECAPA-
TDNN SV model under a self-supervised learning framework.
We evaluate our results on MultiSV, a multichannel SV dataset,
and show that our proposed approach significantly improves SV
performance under multichannel noisy conditions.

2. Proposed Approach

In this section, we present the proposed approach for developing
a robust multichannel SV system in a noisy environment. In the
first phase, we trained the ECAPA-TDNN [22] based SV system
and a multichannel speech enhancement system separately. We
used this pre-training of speech enhancement and SV for train-
ing the jointly optimized system using self-supervised learning.
We jointly optimized Diff-Filter and ECAPA-TDNN with the
proposed EER loss as a verification loss to optimize the binary
classification with speaker embedding representations. Dift-
Filter is a scoring-based diffusion probabilistic model where
Conv-TasNet architecture is utilized for conducting the diffu-
sion process. Diff-Filter is trained to provide Rank-1 MWF
clean speech signal for a given multichannel noisy input sig-
nal. We used a conditioning network to provide the estimates
of clean and noise signals as additional input to the diffusion
decoder, thus conditioning the sampling process from terminal
distribution aware of noise to be removed from the noisy multi-
channel signal.

2.1. Diff-Filter

This section presents a novel way to train a multichannel speech
enhancement system as a DPM-based filtering method named
Diff-Filter. We termed the proposed system Diff-Filter, as it
replicates the functionality of the Rank-1 MWEF filter to pro-
vide a clean speech signal. The proposed Diff-Filter comprises
a diffusion-based decoder network and a conditioning network,
as shown in Figure 1. We used Conv-TasNet [23] as an exter-
nal conditioning network. The conditioning network is used to
compute the estimates of the clean speech signal, s, and noise in
time-domain representation, N. We provide conditioning net-
work output estimates along with the multichannel noisy speech
signal as input to the Diff-Filter system. In the forward and re-
verse diffusion process, terminal noise distribution is defined
as N'(u, I), where the mean is u, and I is unit variance. We
parameterized the mean p of terminal noise distribution of the
diffusion process using noisy multichannel input, y.

Similar to [13], we incorporated scoring-based diffusion
probabilistic model, in which the diffusion decoder learns the
trajectories of forward diffusion in reverse time order. In the
training phase, the forward diffusion process is conducted by
iteratively deconstructing Rank-1 MWF clean speech estimate
signal to the terminal distribution defined by noisy multichan-
nel signal. Furthermore, terminal distribution is also condi-
tioned with estimates of the clean speech signal and noise sig-
nal provided by the conditioning network. The usage of clean
speech estimate and noise estimate in the diffusion process as-
sists in conducting noise-aware speech enhancement. We used
stochastic differential equations (SDE) to learn the gradients
of the forward diffusion process as shown in Figure 1, where
s9(X¢, , s, N, t)) denotes the diffusion decoder network with
t as the diffusion time step and 3 as noise scheduler. During
the inference phase solving the SDE describing dynamics of
the reverse diffusion with a simple first-order Euler-Maruyama
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Figure 1: Architecture of Diff-Filter consists of a diffusion
decoder and a conditioning network. The clean speech sig-
nal and noise signal estimated from the conditioning network
are channel-wise concentrated with noisy multichannel signal
along with Rank-1 MWF clean speech signal in the diffusion
decoder.

scheme [16,24].

We trained the Diff-Filter using a two-stage training pro-
cess. First, we conditioned the diffusion encoder with a target
clean speech signal, a target noise signal, and a noisy multi-
channel signal. The main purpose of pre-training the diffusion
decoder is to ensure that diffusion model parameters converge in
optimal minima direction using target clean speech and noise.
In the second stage of training, we used the clean speech and
noise estimated by the conditioning network.

In the inference phase, multichannel noisy signals and esti-
mates of speech and noise signals obtained from the condition-
ing network are provided to the diffusion decoder to estimate the
reverse trajectories of forward diffusion. The reverse diffusion
process iteratively reconstructs the Rank-1 MWF filter output
of clean speech by sampling latent variables from conditional
terminal distribution.

2.2. Self-supervised learning for multichannel SV

We jointly optimized the Diff-Filter and ECAPA-TDNN as a
multichannel SV. In joint optimization, the multichannel noisy
signal is first given to Diff-Filter, which provides a single-
channel Rank-1-MWEF filtered clean speech signal. The error
gradient passes through ECAPA-TDNN and Diff-Filter as a sin-
gle unit because we back-propagate through both models that
we are jointly training. To conduct the self-supervised learning
with the unlabelled dataset, we created an RIR simulated dataset
and applied it to clean speech from the LibriSpeech dataset [25]
detailed in section 3.

As shown in Figure 2, utterances 1 and 2 are given to the
jointly optimized network composed of Diff-Filter and ECAPA-
TDNN. The utterances 1 and 2 are multichannel noisy signals,
where utterance 2 is either the data-augmented multichannel
noisy signal from utterance 1 or a randomly selected multichan-
nel noisy signal from a different speaker. During the training,
we used the self-supervised contrastive learning framework,
where both utterances, utterances 1 and 2, are given to the same
jointly optimized network. Verification labels are generated as
0 or 1 if utterance 2 is data-augmented from utterance 2 or not,
where 1 represents that utterances 1 and 2 are from the same
speaker, 0 otherwise. For data augmentation in self-supervised
learning, we used speed perturbation by 0.9, 1.1 factor only and
masking the 1 sec part of the noisy multichannel signal.

We propose to use an EER as a loss function to train the
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Figure 2: Framework of self-supervised learning, where
utterance, and utterances are noisy multichannel signals
given to the jointly optimized network of ECAPA-TDNN to ob-
tain the speaker embeddings.

jointly optimized network. The EER is the location on a re-
ceiver operating characteristic curve where the false accep-
tance rate and false rejection rate are equal. First, we com-
puted the cosine similarity distance between embedding; and
embeddings for a given batch. Then, false acceptance rate
(FAR) and false rejection rate (FRR) are estimated based on
cosine scores and verification labels using torchmetrics'. We
estimated EER for the given batch size from FAR and FRR as
stated in Equation 1, where Lggr ranges from value O to 1.

Lerr = FAR [argmm|FRR — FAR|] (1)

We also estimated cosine similarity loss between embed-
dings: embedding: and embeddings [26] as shown below in
Equation 2.

o 1 — cos(emb1, embz) label =1
cosime max (0, cos(embi, emby) — M) else
2
where emb; and emba refers to embeddings extracted on utt;
and utts, respectively, M refers to the regularizer of value 0.2,
and cos refers to the cosine angle between emb; and embs.

3. Dataset Preparation

We used various datasets at different stages while developing
the proposed approach for multichannel SV in noisy condi-
tions. We used the MultiSV dataset [27] for training the Dift-
Filter, which consists of 4 channel speech utterances room sim-
ulated impulse response with background noises from Music,
MUSAN, and freesound.org®. The training dataset of Mul-
tiSV is simulated using the VoxCeleb2 dataset [28]. Consis-
tent with the Diff-Filter training data source, we utilized the
VoxCeleb2 dataset with standard Kaldi-based data augmenta-
tion techniques for training ECAPA-TDNN single-channel SV.
We opted for the VoxCeleb2 dataset for joint training as Mul-
tiSV is a labelled dataset, and the core of self-supervised learn-
ing is to explore the unlabelled dataset.

To jointly optimized the network, we first simulated a room
impulse dataset and applied it to the clean speech from the Lib-
riSpeech dataset without taking into account the speaker infor-
mation, thus creating an unlabelled multichannel SV dataset.
The pyroomacoustics toolbox® is used for room simulation
with 4 channels. The room length was drawn randomly be-
tween [3, 8] m, the width was chosen between [3, 5] m, and the
height was chosen between [2, 3] m. The absorption coefficient

Thttps://torchmetrics.readthedocs.io
Zhttps://freesound.org/
3https://github.com/LCAV/pyroomacoustics

was drawn randomly such that the room’s RT60 was between
[200,600] ms. The minimum distance between a source and
the wall is 1.5 m and 1 m between the wall and the micro-
phones. We generated a total of 50000 training samples for
self-supervised learning.

To evaluate the proposed work, we used two multichan-
nel trial protocols from the MultiSV dataset, namely MRE and
MRE hard trial protocols. The evaluation set of MultiSV is re-
transmitted development set derived from the VOiCES dataset.
In addition to MultiSV evaluation data, we also created an in-
ternal evaluation set using Fabiole corpus [29], a French speech
corpus consisting of around 6882 audio files from 130 native
French speakers. The speech data of Fabiole has been collected
from different French radio and TV shows. For creating each
evaluation set, we have used 1200 speech files from Fabiole rep-
resenting 2 hrs of evaluation material. We used the same config-
uration for room impulse response simulation as used for cre-
ating the training dataset for the self-supervised learning phase.
We designed the evaluation set with various RIR scenarios to be
used for both speech enhancement and SV.

4. Experimentation set-up
4.1. Multichannel speech enhancement

The model is trained using two loss functions, diffusion loss
and scale invariant signal to distortion (SI-SDR) loss [30]. The
diffusion loss is defined by Fisher divergence as a way to com-
pute the scoring function, which is the gradient of change in
log probability density in each diffusion step [31]. The second
loss function, SI-SDR loss, is applied to the output of the condi-
tioning network to ensure that the diffusion model ingrains the
intrinsic information about clean speech estimate and noise es-
timate in time-domain representation. In training, we provided
speech segments of a fixed length of 4 seconds of duration.

We set the initial weight of 0.001 on SI-SDR loss. Then,
we increased the initial weight by 0.0001 after every 5 epoch
till it reached 1. For the two-stage training approach, first, we
trained the network for 100 epochs with a learning rate of le-2
and reduced the learning rate over the epochs with a factor of
0.85 after every 5 epoch. We used Adam optimizer for two-
stage training with a batch size of 2. In the second stage of
training, the system is trained with a learning rate of 1le — 4 for
500 epochs.

We used Conv-TasNet architecture to develop both diffu-
sion decoder and conditioning network, with modification of re-
placing PReL.U activation function with GeLU [32]. The imple-
mentation of networks using Conv-TasNet includes 512 filters
in the convolutional block and transpose convolutional block
(N), 20 lengths of filters (L), 256 channels in a bottleneck, and
the residual paths 1 X 1 convolutional blocks. Each convolu-
tional block’s kernel size (P) is set to 3, and the number of con-
volutional blocks in each repeat is 8. Also, we adopted global
layer normalization with a non-causal strategy for Dift-Filter
implementation. To ensure a stable learning process, we used
gradient clipping with a maximum L2-norm of 5.

We conducted self-supervised training on the proposed ap-
proach in a contrastive learning framework for 50k iterations
with a batch size of 4. In each batch of self-supervised training,
we kept equal distribution of verification labels as 0 and 1. We
used Adam optimizer with a learning rate of 1le — 3 with weight
decay of 1e — 4 for every 1000 iteration.



Table 1: Evaluation of proposed approach on MultiSV dataset
for MRE and MRE hard as multichannel trial protocol, where
J. op. refers to a jointly optimized system, and SSL refers to the
system trained using self-supervised learning.

SE SV MRE | MRE hard

Mask [27] Resnet 3.91 5.37
ConvTasNet [27] Resnet 3.71 4.61
Unprocessed ECAPA-TDNN 5.84 10.27
Oracle Rank1-MWF ECAPA-TDNN 1.64 3.12
ConvTasNet ECAPA-TDNN 3.73 4.52
Diff-Filter ECAPA-TDNN 3.57 4.36

= Diff-Filter ECAPA-TDNN 3.24 ‘ 4.26 ‘
— Diff-Filter ECAPA-TDNN (SSL) | 3.07 3.19

4.2. Speaker verification

We used ECAPA-TDNN as a single-channel SV system from
[22]. We used the VoxCeleb2 dev dataset for training ECAPA-
TDNN. As SV systems often benefit from data augmentation,
we used a combination of different data-augmentation tech-
niques, such as Kaldi recipes of data-augmentation (using MU-
SAN [33] and room impulse response dataset*) and speed per-
turbation by changing the tempo of speech.

Besides squeeze and excitation block, the attention mod-
ule of ECAPA-TDNN is set to 128. The scale dimension in
Res2Block is set to 8. We extracted 256 dimension speaker em-
bedding from the ECAPA-TDNN network. Initially, we trained
the ECAPA-TDNN network with a cyclic learning rate varying
between 1e—8 and 1e—3 using the triangular policy with Adam
optimizer. The ECAPA-TDNN network is trained with angular
margin softmax with a margin of 0.3 and softmax pre-scaling
of 30, 100k iterations. We provided the Mel spectrogram as
an input to ECAPA-TDNN. We extracted 40-dimensional Mel
spectrogram features using the torchaudio library with a win-
dow length of 400 samples, hop size of 160, and 512 FFT
length/ Mel spectrogram features of 40 dimensions as input to
the ECAPA-TDNN network. We used a cosine scoring system
for verification purposes from extracted embedding.

5. Results and Discussion

We compared the performance of the proposed approach with
Conv-TasNet as baseline multichannel speech enhancement
used as a front end to the ECAPA-TDNN system. For estab-
lishing baseline Conv-TasNet, we trained under the same train-
ing data used by the Diff-Filter system. Also, we used the same
network configuration for Conv-TasNet as for the conditioning
network of Diff-Filter. In addition to this, we also computed
performance with oracle Rank-1 MWF in order to analyze the
filtering approach based on the diffusion probabilistic model.
We used EER as an evaluation metric to evaluate the multichan-
nel SV systems on MRE and MRE hard trials from the MultiSV
dataset. We compute signal-to-inference ratio (SIR), signal-to-
distortion ratio (SDR), and EER on a Fabiole-based multichan-
nel evaluation set. We used MIR eval tool® to compute the SIR
and SDR metrics. The usage of SIR and SDR metrics pro-
vides insight into the performance of the multichannel speech
enhancement system as a front end to the SV system.

In Table 1, the Diff-Filter front-end outperforms the Conv-
TasNet without additional post-training using joint optimiza-
tion or self-supervised learning. We observed that the proposed
approach showed better results on both trials MRE and MRE

“https://www.openslr.org/28/
Shttps://craffel.github.io/mir_eval/

Table 2: Evaluation of proposed approach on room impulse sim-
ulated data on Fabiole dataset, where we used ECAPA-TDNN
as SV system and J. op. refer to the jointly optimized system, and
SSL refers to the system trained using self-supervised learning.

SE System EER | SIR | SDR
Unprocessed 9.23 | 15.11 | 2.01

Oracle Rank-1 MWF | 591 | 24.73 | 7.24
ConvTasnet 7.87 | 2321 | 6.12
Diff-Filter 7.83 | 23.78 | 6.69

8’. Diff-Filter 7.54 | 24.11 | 6.93
— Diff-Filter (SSL) 6.27 | 2437 | 7.02

hard compared to baseline results presented in [27], where the
Resnet-based SV system was used. We obtained the best re-
sults on the proposed approach trained under a self-supervised
learning framework, which shows an efficient generalization of
speaker representation under noisy conditions using an unla-
belled speaker dataset. In the case of the MRE hard protocol, it
has performance close to the multichannel speech enhancement
baseline using Oracle Rank-1-MWE. On the other hand, the per-
formance of the proposed approach had a significant margin in
performance difference with oracle Rank-1 MWF. Table 2 il-
lustrates consistent performance improvement by the proposed
approach on both trials sets on the Fabiole-based evaluation set.
SDR and SIR seem to be closely co-related with EER. With
a SIR of 24.37, the proposed joint optimized approach with
self-supervised learning achieves the best performance among
all the speech enhancement systems. Similarly, with an SDR
of 7.02, the proposed joint optimization approach with self-
supervised learning achieves the best performance among all
the systems evaluated. SIR and SDR

The proposed approach shows consistent performance on
both SV and multichannel speech enhancement tasks. The us-
age of self-supervised learning eases the network optimization
for generalization from the unlabelled distribution. As one of
the primary evaluation metrics for the SV task is EER, the adap-
tation of EER loss without speaker labels in self-supervised
training elevates the intraclass speaker representation while in-
creasing the interclass speaker representation. The usage of a
conditioning network allowed the diffusion process allowed to
perform a noise-aware reverse diffusion process. The usage of
Conv-TasNet as a diffusion decoder enabled to perform the step-
wise noise removal on time-domain signal representation, thus
inherently considering the phase information.

6. Conclusion

In this work, we proposed Diff-Filter, a multichannel speech
enhancement approach as a front end to SV. We improved the
performance of the proposed Diff-Filter by jointly optimizing it
with ECAPA-TDNN-based SV and further training under self-
supervised contrastive learning. We presented EER loss in self-
supervised learning to exploit the unlabelled speaker dataset.
The obtained results have shown significant improvement in
performance on the MultiSV dataset compared to state-of-the-
art systems. In order to measure speech enhancement perfor-
mance, we used SIR and SDR evaluation metrics. The results
computed on the simulated evaluation set (derived from Fabi-
ole) showed results in-line with performance on the MultiSV
evaluation set. In future, we will conduct further experimenta-
tion with Diff-Filter to observe the efficiency of different tasks
such as source separation, speaker diarization etc.
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