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Abstract. SPARQL property path queries provide a succinct way to
write complex navigational queries over RDF knowledge graphs. How-
ever, their evaluation remains difficult as they may involve the execution
of transitive closures. As a result, many property path queries just time-
out when executed on public online RDF knowledge graphs. One solu-
tion to speed up their execution is to find optimal join orders. Although
the join ordering problem has been extensively studied for traditional
SPARQL queries, the presence of property path patterns biases exist-
ing approaches. In this paper we focus on C2RPQUF queries (conjunc-
tive SPARQL property path queries with UNION and FILTER), and we
present a query optimizer that is able to capture the cost of C2RPQUF

queries using an appropriate cost model and a sampling-based cardinal-
ity estimator. On the latest Wikidata Query Benchmark, we empirically
demonstrate that our approach finds significantly better join orders than
Virtuoso and BlazeGraph.

Keywords: Join Order · SPARQL Property Path · Random Walks ·
Sampling.

1 Introduction

Context and motivation: SPARQL 1.1 [30] introduced property paths to add
extensive navigational capabilities to the SPARQL query language. Property
path queries (PPQs) are intensively used on Wikidata; they account for 38% of
the entire query log [5]. Transitive closures are a crucial part of property paths
as they allow to match paths of arbitrary length. According to the log of Wiki-
data, transitive closures are used by 66% of the property path queries. However,
transitive closures make the evaluation of property path queries challenging [33],
and many of them cannot terminate in less than 60s. For example, the query
presented in Figure 1a searches for road bicycle races in Central America and
time-out on Wikidata.
Related works: Speeding up the processing of PPQs received much attention
from the semantic web community [2]. One approach relies on a dedicated in-
dex [28] that improves PPQs execution time, but requires the construction and



SELECT ? x1 ? x3 WHERE {
? x3 wdt : P361 wd : Q27611 . # tp1 (9)
? x1 wdt : P17 ? x3 . # tp2 (13M)
? x1 wdt : P641∗ wd : Q3609 . # tp3 (47K)

}

(a) QJ1
1 : BlazeGraph’s join order

SELECT ? x1 ? x3 WHERE {
h i n t : Query h i n t : o p t im i z e r "None" .
? x1 wdt : P641∗ wd : Q3609 . # tp3
h i n t : P r i o r h i n t : g e a r i n g " r e v e r s e " .
? x1 wdt : P17 ? x3 . # tp2
? x3 wdt : P361 wd : Q27611 . # tp1

}

(b) QJ2
1 : Hand-crafted join order

Fig. 1: Query Q1 comes from the Wikidata Query Benchmark [3] and returns
road bicycle races located in Central America. QJ1

1 is the join order decided by
BlazeGraph while QJ2

1 is a hand-crafted join order. The “hint:Query” triple pat-
tern in QJ2

1 is used to force the join order in BlazeGraph. Commented numbers
are triple patterns cardinality. On the Wikidata Query Service QJ1

1 time-out
(>60s) while QJ2

1 terminates in less than 3 seconds.

maintenance of the index. Other works propose new dedicated operators to pro-
cess transitive closures [33, 27, 4, 32, 1]. Such approaches are very effective but
focus on evaluating property path patterns (PPPs) alone, while most of the
time PPPs are just part of a PPQ. For instance, tp3 is just a pattern among
others in the query Q1 in Figure 1. In this paper, we propose to improve PPQs
execution time by finding better join orders. Compared to previous works, find-
ing better join orders allows us to improve PPQs execution time on existing
engines, without new indexes and new operators. To illustrate the impact of
finding good join orders, Q1 has been executed on the Wikidata query service
using two different join orders: (1) a join order J1 = ((tp1 ▷◁ tp2) ▷◁ tp3) that
has been decided by BlazeGraph, the SPARQL engine behind Wikidata (2) a
join order J2 = ((tp3 ▷◁ tp2) ▷◁ tp1) that has been hand-crafted. Following J1
the query QJ1

1 time-out on Wikidata, i.e. QJ1
1 requires more than 60 seconds to

complete, while QJ2
1 terminates in less than 3 seconds. Although the join order-

ing problem has been extensively studied in the context of conjunctive queries
with filters [17, 13, 12], it has been poorly explored when considering property
path queries [11, 10]. It is currently unclear how current engines consider path
patterns, i.e. how the cost of a join order that contains PPPs is computed, and
why it should be computed like that.
Approach and contributions: This paper focuses on the class of conjunctive
two-way regular path queries with UNION and FILTER, denoted C2RPQUF

in [5]. For C2RPQUF queries, we propose a query optimizer that can find effi-
cient join orders without changing existing SPARQL engines. Finding such join
orders is challenging; depending on the join order, a path pattern may behave
as a transitive closure or a reachability pattern. The changing nature of path
patterns is biasing traditional cost models that fail to find efficient join orders.
The contributions of this paper are the following:

1. This paper proposes a cost model along with a dynamic programming (DP)
algorithm able to capture the cost of evaluating PPQs using traditional PPP



operators. Compared to state-of-the-art, the proposed DP algorithm can
rewrite PPPs such that their cost remain observable to existing cost functions
as the one defined in [18].

2. Any cost model requires accurate cardinality estimates. However, there is
currently no cardinality estimator able to handle property path patterns.
Consequently, this paper proposes a cardinality estimator for PPQs based
on random walks. Random walks can be computed for cheap thanks to B-
Tree indexes, widely used to index RDF data. Compared to state-of-the-art,
the proposed cardinality estimator extends the WanderJoin approach [18] to
handle property path patterns.

3. The approach is evaluated on BlazeGraph and Virtuoso using the newly
proposed Wikidata Query Benchmark [3]. Experimental results demonstrate
that our approach significantly improves SPARQL property path queries
performance in terms of execution time. Compared to BlazeGraph, the exe-
cution time is divided by at least 14.

The rest of the paper is organized as follows: Section 2 presents our approach,
preliminaries, and the problem of ordering joins in the presence of property path
patterns. Section 3 introduces a cost model for property path queries. Section 4
presents our cardinality estimator for property path queries. Section 5 details
our experimental results. Finally, after discussing related works in Section 6, we
present our conclusions and future work in Section 7.

2 Query Optimization of Property Path Queries

This paper follows the traditional query optimizer architecture of the system
R [26]. The optimizer takes a property path query as input and returns a physical
plan that minimizes a cost function. For each property path pattern, the opti-
mizer also decides in which direction it should be evaluated, i.e. from subjects to
objects (forward navigation) or from objects to subjects (backward navigation).
The query optimizer enumerates valid join orders using a dynamic programming
algorithm. Based on cardinality estimates, the cost model chooses the cheapest
alternative among the valid join orders. The goal of this paper is to target main-
stream SPARQL engines, consequently two hypotheses are assumed: (1) There
are no indexes dedicated to transitive closures, such as the FERRARI index [28]
(2) Property path patterns are evaluated using the traditional ALP procedure
(a BFS-style algorithm) defined in the SPARQL specification [30] as it is done
in JENA or BlazeGraph, or using transitive closure operators as in Virtuoso.

2.1 Preliminaries

SPARQL Query: This paper follows the notations from [24, 25] and considers
three disjoint sets I (IRIs), L (literals) and B (blank nodes). Let T = I ∪L∪B
be the set of RDF terms, an RDF triple (s, p, o) ∈ (I ∪ B) × I × T connects a
subject s through a predicate p to an object o. An RDF graph G is a finite set



of RDF triples. Let V be an infinite set of variables, disjoint from the previous
sets. A graph pattern P is defined recursively as follows:
1. A tuple from (I ∪B ∪ V )× (I ∪ V )× (T ∪ V ) is a triple graph pattern.
2. If P1 and P2 are graph patterns, then (P1 AND P2) and (P1 UNION P2) are

respectively a conjunctive graph pattern and an union graph pattern.
3. If P is a graph pattern and R is a SPARQL built-in condition, then (P

FILTER R) is a filter graph pattern.
Given P a graph pattern, var(P ) is the set of variables found in P . The semantics
of SPARQL queries is defined in terms of mappings. A mapping µ is a partial
function µ : V → T . The domain of µ, denoted dom(µ), is the subset of V on
which µ is defined. Given a triple pattern tp, µ(tp) is the image of tp under µ,
i.e. the triple obtained by replacing the variables in tp according to µ. Letting
µ(P ) denote the image of P under µ, with respect to the latter definition, the
evaluation of a graph pattern P over an RDF graph G is defined as JP KG =
{ µ | dom(µ) = var(P ) ∧ µ(P ) ⊆ G }. To simplify explanations around random
walks, this paper assumes that the evaluation of a triple pattern tp over an RDF
graph G returns a set of triples, i.e. JtpKG = { µ(tp) | dom(µ) = var(tp)∧µ(tp) ⊆
G }.

SPARQL Property Path Query (PPQ): A property path query is a SPARQL
query with at least one property path pattern (PPP). A PPP is a tuple in
(I ∪ B ∪ V ) × E × (T ∪ V ) where E is the set of property path expressions.
Based on [16], property path expressions are defined by the grammar: e :=
a | e− | e1 ·e2 | e1+e2 | e+ | e∗ | e? | !a1, . . . , ak | !a−1 , . . . , a

−
k where a, a1, ..., ak ∈ I.

This paper assumes non-transitive property path expressions to be evaluated us-
ing traditional SPARQL algebra operators [30]. Thus, the paper focuses only on
the evaluation of transitive property path expressions, i.e. e+ and e∗. Nested
stars, e.g. (a+)+, are not considered and will be the subject of future work.

2.2 The join ordering problem with property paths

Cmm(P,G) =


|JP KG| if P = tp ∨ P = σ(tp)

Cmm(P1) + if P = P1
NLJ
▷◁ P2,

|JP1KG| ×max( |JP1▷◁tpKG|
|JP1KG| , 1) (P2 = tp ∨ P2 = σ(tp))

Let us consider the Cmm cost function defined above, which is a simplified
version of the one presented in [17]. For simplicity, only index-nested-loop joins
and left-deep trees are considered, but our proposal holds in the general case.
Most cost functions rely on cardinality estimates. For instance, the Cmm function
defines the cost of evaluating a triple pattern as its cardinality [17]. Indeed, con-
sidering traditional indexes SPO, POS, OSP as available, any triple pattern tp
can be evaluated over an RDF graph G in O(|JtpKG|log(|G|)). Thus, for conjunc-
tive queries with filters, minimizing a cardinality-based cost function such as the
Cmm effectively leads to good join orders [7, 17]. While the cost of evaluating a
triple pattern is correlated with its cardinality, it is not always true for property



SELECT ? x1 ? x3 WHERE {
? x3 wdt : P361 wd : Q27611 . # tp1 (9)
? x1 wdt : P17 ? x3 . # tp2 (13M)
? x1 wdt : P641∗ ? r e l a x .
FILTER (? r e l a x = wd : Q3609 ) . # tp3 (47K)

}

(a) Q
JF
1

1 : Forward relaxation of J1.

SELECT ? x1 ? x3 WHERE {
? x3 wdt : P361 wd : Q27611 . # tp1 (9)
? x1 wdt : P17 ? x3 . # tp2 (13M)
? r e l a x wdt : P641∗ wd : Q3609 . # tp3 (47K)
FILTER (? r e l a x = ?x1 ) .

}

(b) Q
JB
1

1 : Backward relaxation of J1.

Fig. 2: Forward and Backward relaxations of tp3 in J1 of query Q1.

path patterns (PPPs). Assuming PPPs are evaluated using ALP, a BFS-style
algorithm defined by the standard [30], two cases can be distinguished:

Case 1, Transitive-pattern Let tp = (s, p, o) be a PPP such that at least
the subject or the object is a variable, i.e. s ∈ V ∨ o ∈ V . Let o be in V
and N be the set of nodes reachable from s. Using the ALP algorithm, the
evaluation of tp returns N that can be computed in O(|N |log(|G|)) over an
RDF graph G. As |JtpKG| = |N |, the cost of evaluating tp is correlated with
its cardinality.

Case 2, Reachability-pattern Let tp = (s, p, o) be a PPP such that both
the subject and the object are bounded, i.e. s, o ̸∈ V . According to [30],
the cardinality of a fully bounded PPP is 1 if o can be reached from s, 0
otherwise. However, to check the reachability between s and o, the ALP
algorithm first computes the set of nodes N reachable from s, then checks
if o ∈ N . Consequently, the cost of evaluating a fully bounded PPP is not
correlated with its cardinality.

To illustrate the problem on a concrete example, let us compute the cost of
QJ1

1 and QJ2
1 depicted in Figure 1. Using the true cardinalities 1, we calculate

Cmm(QJ1
1 ) ≈ 91K and Cmm(QJ2

1 ) ≈ 168K. Despite QJ1
1 being estimated less

costly than QJ2
1 , QJ1

1 time-out on Wikidata while QJ2
1 completes in less than 3

seconds. Focusing on property path patterns, tp3 appears as a transitive-pattern
in QJ2

1 , while it appears as a reachability-pattern in QJ1
1 . Because the cost of

computing N is not captured by the cardinality of a reachability-pattern, the
cost of QJ1

1 is largely underestimated. Thus, a cost function purely based on
cardinalities, such as the Cmm, cannot correctly estimate the cost of a PPQ.
The scientific challenge is to define a cost model that, given any join order,
can capture the cost of a PPP whether it appears as a transitive-pattern or a
reachability-pattern.

3 Cost-model for Property Path Queries

Given a join order J , the key idea is to relax fully bounded property path patterns
(PPPs) such that J no longer contains reachability-patterns. If all PPPs behave
1 True cardinalities were computed using SPARQL COUNT queries on the Wikidata

SPARQL endpoint as of December 5, 2022



as transitive-patterns, then cardinality-based cost functions are able to correctly
estimate the cost of J . Whether a PPP behaves as a transitive-pattern or a
reachability-pattern depends on the join order. Therefore, the general approach
is to detect reachability-patterns during enumeration of join orders, and relax
them before ordering them.

Definition 1 (Reachability-pattern relaxation). Let Q be a SPARQL prop-
erty path query, J a join order, and tp = (s, p, o) ̸∈ J a fully bounded property
path pattern with respect to J , i.e. var(tp) ⊆ var(J). A forward relaxation of
tp generates a filter graph pattern of the form ((s, p, v) FILTER (v = o)) such
that v ̸∈ var(Q). A backward relaxation of tp generates a filter graph pattern of
the form ((v, p, o) FILTER (v = s)) such that v ̸∈ var(Q).

Using a BFS-style algorithm, a reachability-pattern can be evaluated follow-
ing two strategies. One can decide to navigate from the subject to the object
(forward strategy), another can decide to go from the object to the subject (back-
ward strategy). In this context, the forward and backward relaxations allow to
estimate which strategy is the cheapest one. According to [33], the cost of go-
ing forward or backward can be drastically different. Selecting the best strategy
is therefore important to expect good performance. For instance, BlazeGraph
evaluates tp3 in QJ1

1 starting from the object. Using the forward and backward
relaxations, we can rewrite QJ1

1 as Q
JF
1

1 and Q
JB
1

1 as depicted in Figure 2. If
we use the true cardinalities to compute the cost of both strategies, we get
Cmm(Q

JF
1

1 ) = 95K and Cmm(Q
JB
1

1 ) = 2.6B. Thus, QJ1
1 time-out on Wikidata

because BlazeGraph chose the wrong strategy to evaluate tp3.

Algorithm 1: Dynamic Programming with Relaxation
Require: Q: SPARQL Property Path Query, G: RDF Graph
Data: dpTable: keeps the best join order for a set S of triple/property path patterns

1 for ∀tp ∈ Q do dpTable[{tp}] = tp
2 for ∀n ∈ 1..|Q| − 1 do
3 for ∀S ∈ dpTable : |S| = n do
4 for ∀tp ∈ Q : tp ̸∈ S do
5 if var(tp) ∩ var(dpTable[S]) = ∅ then continue
6 S′ = S ∪ {tp} ; C = ∅
7 if tp is a PPP ∧ var(tp) ⊆ var(dpTable[S]) then
8 C = C ∪ {dpTable[S] ▷◁ ForwardRelaxation(Q, tp)}
9 C = C ∪ {dpTable[S] ▷◁ BackwardRelaxation(Q, tp)}

10 else
11 C = C ∪ {dpTable[S] ▷◁ tp}
12 for ∀P ∈ C do
13 if S′ ̸∈ dpTable ∨ Cmm(P,G) < Cmm(dpTable[S′], G) then
14 dpTable[S′] = P

15 return UndoRelaxation(dpTable[Q])

Algorithm 1 is a custom dynamic programming algorithm that integrates
relaxation. When the algorithm detects a reachability-pattern tp with respect



SELECT DISTINCT ? x1 ? x3 WHERE {
? x1 wdt : P641 wd : Q3609 . # tp3
? x1 wdt : P17 ? x3 . # tp2
? x3 wdt : P361 wd : Q27611 . # tp1

}

(a) (QJ2
1 )1..1

SELECT DISTINCT ? x1 ? x3 WHERE {{
? x1 wdt : P641 wd : Q3609 . # tp3
? x1 wdt : P17 ? x3 . # tp2
? x3 wdt : P361 wd : Q27611 . # tp1

} UNION {
? v1 wdt : P641 wd : Q3609 . # tp3 . 1
? x1 wdt : P641 ? v1 # tp3 . 2
? x1 wdt : P17 ? x3 . # tp2
? x3 wdt : P361 wd : Q27611 . # tp1

}}

(b) (QJ2
1 )1..2

(c) RDF graph G1

Fig. 3: RDF graph G1 and rewrites of the query QJ2
1 used to estimate the cost

of J2 with random walks.

to a join order J = dpTable[S] (Line 7), it uses relaxation so that the cost
function is able to correctly estimate the cost of tp in J . Moreover, to select the
best strategy to evaluate tp both relaxations are used, generating two candidates
that are stored in C (Line 8-9). One of them will evaluate tp using the forward
strategy, while the other will use the backward strategy. Next, the cost function
is used to keep the cheapest alternative (Line 12-14). At the end, the algorithm
returns the cheapest join order, with relaxed property path patterns in their
original form.

4 Cardinality Estimation of Property Path Queries

This section introduces a new cardinality estimator for property path queries
based on random walks. Random walks [19] offer several advantages: (1) They
proved to be the best approach for estimating the cardinality of conjunctive
SPARQL queries [23] (2) They do not require maintaining statistics [10] (3) They
can be efficiently implemented just by relying on traditional SPO, POS, and OSP
indexes that are widely available on existing triple stores [18]. Before moving to
the contribution, we first recall how to estimate the cardinality of conjunctive
SPARQL queries using random walks. Next, we address the case of SPARQL
property path queries. For the sake of simplicity, we assume that property path
queries are conjunctive queries with a single property path pattern. However,
the approach can be generalized to C2RPQUF queries that contain multiple
property path patterns.



4.1 Cardinality estimates of Conjunctive Queries

Let Q be a conjunctive SPARQL query, and J = ⟨tp1, ..., tpn⟩ be the join order
used to perform random walks. Based on [19] a random walk γ = ⟨t1, ..., tn⟩ is
computed over an RDF graph G by randomly picking t1 in Jtp1KG, and each sub-
sequent ti (i > 1) in Jti−1 ▷◁ tpiKG. Thus, the probability of sampling γ is P (γ) =
|Jtp1KG|−1

∏n
i=2 |Jti−1 ▷◁ tpiKG|−1. Let Γ = ⟨γ1, ..., γk⟩ be a multiset of k random

walks, the cardinality of Q is estimated as card(Γ ) = |Γ |−1
∑|Γ |

i=1 P (γi)
−1. For

instance, let us estimate the cardinality of (QJ2
2 )1..1 on the RDF graph G1 with

a budget of 2 random walks. Both (QJ2
2 )1..1 and G1 are depicted in Figure 3. Let

γ1 and γ2 be the two random walks we picked following J2:
tp3 picking t1 = (A, P641, Q3609) in J(?x1, P641, Q3609)KG1

γ1 tp2 picking t2 = (A,P17,D) in J(A, P17, ?x3)KG1

tp1 picking t3 = (D,P361, Q27611) in J(D, P361, Q27611)KG1

γ2 tp3 picking t1 = (B, P641, Q3609) in J(?x1, P641, Q3609)KG1

In this example, P (γ1) = 1
2 × 1

1 × 1
1 = 1

2 , while P (γ2) = 0. Indeed, when it
becomes impossible for a random walk γ to sample ti for some i ≤ n, e.g. t2 in
γ2 because J(B,P17, ?x3)KG1

= ∅, γ is classified as invalid, and its probability of
being sampled is 0. Thus, the estimated cardinality of (QJ2

2 )1..1 is 1
2×(P (γ1)

−1+
P (γ2)

−1) = 2+0
2 = 1.

4.2 Cardinality estimates of Property Path Queries

Definition 2. Let Q be a conjunctive SPARQL property path query. Let tpi ∈
Q be a property path pattern. We denote Qd the conjunctive SPARQL query
obtained by rewriting tpi into a chain tp1i , ..., tp

d
i of triple patterns. If J =

⟨tp1, ..., tpi, ..., tp|Q|⟩ is a join order associated to Q, we denote Jd = ⟨tp1, ..., tp1i ,
..., tpdi , ..., tp|Q|⟩ the equivalent join order associated to Qd.

To estimate the cardinality of a SPARQL property path query Q, the key idea
is to rewrite Q into an equivalent query Q′ that does not contain property paths.
For instance, let us consider the query QJ2

1 depicted in Figure 1b. Assuming that
the diameter d of the relation P641 is known, and let d = 2, QJ2

1 is equivalent
to the query (QJ2

1 )1..2 described in Figure 3b, i.e. both return the same result.
Knowing d, any PPP can be rewritten as an UNION graph pattern with d clauses,
each clause matching paths of different lengths from 1 to d. Thus, assuming a
budget of k random walks, the cardinality of Q′ can be estimated by uniformly
distributing random walks over the d clauses of the UNION, ending up with d
multisets of random walks Γ1, ..., Γd. The cardinality of Q′ is then estimated as∑d

i=1 card(Γi). In other words, we consider clauses of the UNION as individual
queries Q1, ..., Qd, for which we estimate the cardinality, and the cardinality of
Q is the sum of the estimated cardinalities of Q1, ..., Qd.

According to the SPARQL semantics, PPPs are evaluated following a set-
semantics [30]. For instance, no matter how many paths they are between wd:Q3609
and A, evaluating tp3 over G1 must return A only once. Thus, for the rewriting to
be correct, a DISTINCT modifier must be introduced in the rewriting of Q into Q′.



However, to the best of our knowledge, estimating the cardinality of DISTINCT
queries using random walks has not been studied. To cope with this issue, the
DISTINCT modifier is just ignored, aware that the estimator will overestimate
cardinalities. On dense graphs, cardinalities can be significantly overestimated,
preventing the optimizer from finding good join orders. Nevertheless, we assume
that in practice, removing the DISTINCT modifier will not prevent the optimizer
from finding good join orders.

Algorithm 2: Cardinality Estimation with Property Paths
Require: Q: SPARQL query where tpi is a property path pattern, J: Join order, G: RDF

graph, k: Number of random walks, dMax: Depth exploration limit
Data: d: Length of the longest path explored, Γ : Multisets of random walks

1 d = 1
2 while

∑
j |Γj | < k do

3 d′ ∼ U{1, d} ; γ = ⟨t1, ..., tn⟩ = randomWalk(Qd′ , Jd′ , G)

4 if P (γ) > 0 ∧ t1i , ..., t
d′
i ∈ γ are pairwise distinct then

5 Γd′ = Γd′ ∪ {γ}
6 else
7 Γd′ = Γd′ ∪ {γ′} with P (γ′) = 0
8 end
9 if |γ| ≥ i + d − 1 ∧ t1i , ..., t

d
i ∈ γ are pairwise distinct then

10 d = min(d + 1, dMax)
11 end
12 end
13 return

∑d
j=1 card(Γj)

Rewriting a property path pattern tp requires to know the diameter d of the
subgraph recognized by tp. To avoid relying on statistics, Algorithm 2 computes d
while performing random walks. Given a SPARQL property path query Q where
tpi is a PPP, and a budget k, Algorithm 2 starts with d = 1. At each iteration,
the algorithm computes a random walk γ = ⟨t1, ..., tn⟩ from Qd′

, following the
join order Jd′

, where d′ is drawn uniformly at random between 1 and d. Each
time d′ = d, the algorithm checks if γ has found a path of length d matching
tpi. Given Jd = ⟨tp1, ..., tp1i , ..., tpdi , ..., tp|Q|⟩, a path of length d has been found
if γ matches at least ⟨tp1, ..., tp1i , ..., tpdi ⟩, i.e. if |γ| ≥ |⟨tp1, ..., tp1i , ..., tpdi ⟩| or
|γ| ≥ i + d − 1. In this case, it may exist a path of length d + 1 matching tpi,
and d is increased by 1.

Algorithm 2 increases d each time a random walk finds a path of length d
matching tpi. However, in the presence of cycles, d may increase forever, signif-
icantly impacting the accuracy of estimates. To address this issue, Algorithm 2
enforces a simple path semantics. Under a simple path semantics [20], a random
walk can go through a node only once when matching PPPs. In other words, let
γ = ⟨t1, ..., t1i , ..., td

′

i , ..., t|Q|⟩ be a random walk sampled from Qd′
, with t1i , ..., t

d′

i

matching tpd
′

i , γ is valid if and only if t1i , ..., t
d′

i are pairwise distinct. Thus,
considering an infinite number of random walks, Algorithm 2 ensures that d
converges to the size of the longest simple path in the subgraph recognized by
tpi, which is equal to or larger than the diameter of the subgraph.



Table 1: Characteristics of the workload used in the experiments
#queries #joins #triples #path patterns #constants #join variables

213 1 - 8 2 - 9 1 - 2 1 - 5 1 - 6

Even without cycles, d can quickly reach large values. Because the budget
k is distributed between queries Q1, ..., Qd to sample paths of length 1 to d,
with a small budget, the algorithm may end up with too few random walks in
each multiset Γj to compute accurate estimates. To address this issue, d can be
clipped to a maximum value dMax. As the computation time of a random walk
is proportional to its size, clipping d can also improve optimization times.

5 Experimental study

The goal of this experimental study is to empirically answer the following ques-
tions: (1) Does our approach improve total workload execution time compared
to baselines? (2) What is the impact of our approach on each query? (3) How
do the budget k and the depth exploration limit dMax impact performance?

5.1 Experimental Setup

Datasets and Queries. Our experiments use the newly proposed Wikidata
Graph Query Benchmark (WDBench) [3], which extracts real-world SPARQL
queries from the public query logs of the Wikidata SPARQL endpoint. The WD-
Bench provides a RDF dataset of 1,257,169,959 triples built from the dump of
Wikidata. To create our workload, all non-property path queries have been fil-
tered out, as well as queries with cross-products. The resulting workload contains
213 queries and is described in Table 1. To ensure that queries return the same
result for all engines, we added the DISTINCT modifier to all queries.

Compared Approaches. To demonstrate that random walks have the potential
to be used to improve the join order of SPARQL property path queries, we
compare our approach with Virtuoso v.OS-7.2.7 [8] (one of the most deployed
engine in practice [6], as well as the SPARQL endpoint behind DBpedia), and
BlazeGraph v.2.1.4 [31] (used by the Wikidata Query Service [21]). BlazeGraph
comes with two different optimizers; a first optimizer based on simple statistics
such as the cardinality of triple patterns, and another one, named RTO, that
relies on sampling to estimate the cost of join orders. Because RTO supports
property paths and is adapted from ROX [15], which is related to our proposal,
our approach is compared to both optimizers.

Implementation and Experimental Protocol. We implemented our query
optimizer as a standalone Python 3.9 program. Random walks are performed
over the WDBench dataset stored in HDT [9]. The generated plans of our query



Table 2: TET=Total Execution Time, T=Timeouts, E=Errors.
Engine Optimizer TET [Seconds] T E

Default 20270 15 9
RTO 35107 36 64BlazeGraph
Proposal (k=1000, d=5) 1429 ± 130 0 0
Default 419 0 0Virtuoso Proposal (k=1000, d=5) 362 ± 11 0 0

optimizer are translated into SPARQL queries using BlazeGraph and Virtuoso
query hints. Query hints allow us to force the join order and the direction in
which property path patterns are evaluated by the engine2 3 4. Virtuoso and
BlazeGraph have been tuned for a system with 64GB, following engine recom-
mendations. Code and configurations can be found online for reproducibility
purposes5. As random walks are not deterministic, the workload is optimized 5
times for each tested configuration, and each query is executed 3 times after a
warmup execution. All queries are executed with a timeout of 900 seconds.

Evaluation Metrics. In our experiments, the following metrics are used:
(1) The Total Execution Time is the time spent by Virtuoso or BlazeGraph
executing a SPARQL query with the Optimization Time. (2) The Execution
Time is the time spent by Virtuoso or BlazeGraph executing a SPARQL query
without the Optimization Time. (3) The Optimization Time is the time spent
by our query optimizer to optimize a SPARQL query. Each query is executed
three times and the metrics are computed on the average of these 3 executions.

Hardware. All experiments ran on a single machine with Ubuntu 20.04.4 LTS,
AMD EPYC 7513 32-Core Processor, 64GB of RAM, and a logical volume of
2TB on a remote SSD accessible through the LAN.

5.2 Experimental Results

Does our approach improve total workload execution time compared to
baselines? Table 2 presents the total execution time of the workload for all en-
gines. Our proposal is configured with a budget of 1000 random walks (k=1000),
and the depth limit for property paths is set to 5 (d=5). As our proposal relies on
random walks, the workload has been optimized 5 times. Averages and standard
deviations are reported in Table 2.

First, Virtuoso is much faster than BlazeGraph on this workload. While
BlazeGraph requires more than 20270 seconds, Virtuoso only needs 419 sec-
onds. Moreover, BlazeGraph is not able to execute 24 queries. For the first 15
2 https://docs.openlinksw.com/virtuoso/rdfsparqlimplementatiotrans
3 https://docs.openlinksw.com/virtuoso/rdfperfcost
4 https://github.com/blazegraph/database/wiki/QueryHints
5 https://github.com/JulienDavat/Join-Ordering-of-SPARQL-Property-Path-Queries



Fig. 4: Average execution time on BlazeGraph (top) and Virtuoso (bottom) with
a budget of 1000 random walks and an exploration depth limited to 5.

queries, BlazeGraph reaches the time-out set to 900 seconds in our experiments.
An Out-Of-Memory exception occurs for the nine remaining queries. Note that
queries that time-out account for 900 seconds in the total execution time, while
queries that result in an error account for 0. On its side, Virtuoso processes all
213 queries. Despite being recommended when there are join ordering issues, the
RTO optimizer delivers the worst results. Given a SPARQL query Q, to estimate
the cost of a join order J , RTO samples the first triple pattern in J and executes
QJ on this sample. Unfortunately, evaluating QJ , even on a small sample, can
take a very long time. As a result, many queries time-out or crash because of the
optimization step. In the end, our proposal outperforms both BlazeGraph and
Virtuoso. The workload total execution time is divided by at least 14 on Blaze-
Graph. It can be much more depending on the queries that time-out. Compared
to Virtuoso, we observe a 14% improvement on the execution time.

What is the impact of our approach on each query? Figure 4 presents
a per-query view of the results summarized in Table 2. Queries are ordered on



Table 3: Global results of our experiments. For each configuration, queries
have been optimized 5 times and executed 3 times after a warmup execution.
DL=Depth Limit, TET=Total Execution Time (secs), ET=Execution Time
(secs), OT=Optimization Time (secs), T=Timeouts, E=Errors.

Walks DL TET ET OT T E
Default 20270 15 9
RTO 35107 36 64

10 1635 (± 195) 1577 (± 195) 58 (± 2) 0 0
5 1429 (± 130) 1383 (± 128) 37 (± 14) 0 0
3 1629 (± 207) 1583 (± 206) 46 (± 4) 0 01000

1 2046 (± 219) 2006 (± 222) 40 (± 13) 0 0
10 1890 (± 286) 1530 (± 288) 361 (± 4) 0 0
5 1545 (± 134) 1226 (± 127) 319 (± 14) 0 0
3 1583 (± 206) 1290 (± 206) 293 (± 8) 0 0

Blaze
Graph Proposal

10000

1 2087 (± 15) 1847 (± 11) 241 (± 6) 0 0
Default 419 415 4 0 0

10 365 (± 18) 317 (± 18) 48 (± 0) 0 0
5 362 (± 11) 319 (± 11) 43 (± 0) 0 0
3 356 (± 29) 317 (± 29) 39 (± 0) 0 01000

1 346 (± 5) 315 (± 5) 31 (± 0) 0 0
10 613 (± 17) 300 (± 12) 314 (± 9) 0 0
5 594 (± 15) 303 (± 15) 291 (± 1) 0 0
3 570 (± 16) 301 (± 35) 269 (± 1) 0 0

Virtuoso Proposal

10000

1 528 (± 3) 308 (± 3) 220 (± 0) 0 0

the x-axis according to the total execution time of the baseline. Focusing first
on BlazeGraph, the 15 queries that exceed the time limit are depicted in dark
gray, while the nine queries that result in an error are in red. As depicted by
the blue curve in Figure 4, our optimizer makes the difference on the long-
running queries by finding better join orders. When looking at the optimization
time, i.e. the ratio between the blue and green curves, they are irregularities.
It comes from the HDT storage that cannot draw a random triple in constant
time using the POS index. We can draw the same conclusion on Virtuoso. For
short-running queries, the generated join orders are close to Virtuoso. However,
long-running queries can benefit from significant improvements. For instance,
the longest query on Virtuoso takes 63 seconds to complete. Using our optimizer
we are able to find a join order that reduces the execution time to 110ms.

How do the budget k and the depth exploration limit dMax impact per-
formance? In our approach, two parameters impact performance; the budget
k, i.e. the number of random walks used to estimate the cardinality of joins,
and the limit dMax on the exploration depth for property paths. To measure
the impact of these two parameters, we tested different configurations that are
summarized in Table 3.

First, let us focus on the execution time. As expected, given dMax, increasing
k systematically leads to better performance. Moreover, increasing the budget



tends to decrease the variance between measurements, i.e. estimates become
more reliable. However, despite multiplying the number of random walks by ten,
the gain in terms of execution time is not that large, especially on Virtuoso.
When using a bottom-up approach (as a DP algorithm), the quality of join
orders mainly depends on the quality of the first joins, as highlighted in [18].
Thus, accuracy on 1-way, 2-way, or 3-way joins is often enough to get good join
orders and does not require a large budget.

If increasing the budget always leads to better performance, increasing dMax
may negatively impact the execution time. Random walks are uniformly dis-
tributed over the interval 1..dMax. The larger the interval is, the fewer walks
remain to estimate each part, i.e. the more inaccurate the estimator is. Conse-
quently, with a small budget, it is better to reduce dMax to have more accurate
cardinalities. Even if property path patterns may be underestimated (because
they are not fully explored), estimates will be more reliable. However, with a
larger budget, it is worth looking for a larger dMax to better capture the real
cost of property path patterns. The budget k being the most impacting factor in
optimization time, a good strategy to define k and dMax is to define a budget
first, and then select dMax by testing different values until the quality of join
orders deteriorates. For instance, with a budget of 1000 random walks on Blaze-
Graph, setting dMax = 5 results in good performance, but increasing dMax to
10 starts deteriorating the execution time.

6 Related Works

Different approaches have been proposed to speed up the evaluation of SPARQL
property path queries [2]. Some approaches rely on indexes to improve the eval-
uation of property path patterns. For instance, [28] proposes an index named
FERRARI that encodes transitive closures into a compact representation. This
index is then used in RDF-3X [11] to evaluate property path queries efficiently.
In [4], authors combine a novel index to represent sets of triples with a new algo-
rithm based on the Glushkov automaton. Although using indexes can drastically
improve property path patterns execution, maintaining them on large and dy-
namic knowledge graphs is costly [27]. This paper requires no additional indexes,
only those currently used in SPARQL engines.

Other approaches rely on innovative property path pattern operators [33, 27,
4, 32, 1]. For instance, to find the best strategy to evaluate a property pattern,
Waveguide [33] introduces a new operator that mixes idea from relational and
graph databases. To improve the execution time of property path queries, [27]
relies on an approximate operator to compute, with a fixed error rate, the reach-
ability between two nodes. All these approaches are really exciting but focus only
on evaluating property path patterns alone. This paper focuses on optimizing
property path queries, where a property path pattern is just one part of a query.
By choosing the proper join orders, queries execution time can be significantly
improved without changing the underlying engines.



Closer to our approach, [14] focuses on the optimization of conjunctive regular
path queries, i.e. not just property path patterns. In [14], the authors propose a
new algebra, with a set of rewriting rules, allowing optimizers to explore query
plans that could not be considered before. While their approach consists in
enriching the search space of query plans, we propose a solution to accuratly
compare the different plans in order to choose the best one. Thus both approaches
can be used together.

The importance of finding good join orders for property path queries has al-
ready been pointed out in RDF-3X [11, 10]. However, to estimate the cardinality
of property path patterns, the FERRARI index is used. Other approaches based
on synopses or statistics can also be used to estimate cardinalities, such as char-
acteristic sets [22] or SumRDF [29]. However, they suffer from the same problem
as index-based approaches; synopses and statistics need to be maintained. A well-
known alternative is sampling. Sampling allows gathering information when no
indexes or statistics are available. For instance, the RTO engine of BlazeGraph
relies on sampling, while Virtuoso commonly uses sampling to estimate the se-
lectivity of filters. One drawback of using sampling to estimate cardinalities is its
cost. However, [18] demonstrates that sampling can be both accurate and cheap
when using traditional index structures such as existing B-Tree indexes. Follow-
ing the same basic principles, WanderJoin [19] uses random walks to evaluate
aggregate queries, and can be used as a cardinality estimator. As demonstrated
in [23], WanderJoin outperforms other cardinality estimators. Compared to [18]
and [19], our cardinality estimator handles property path queries.

7 Conclusions and Future work

This paper introduces a new query optimizer that relies on the relaxation of
reachability-patterns and a sampling-based cardinality estimator to find efficient
join orders for C2RPQUF queries. The experimental study demonstrates that
our proposal outperforms existing engines. On the newly proposed Wikidata
Query Benchmark, the workload execution time is divided by 14 compared to
BlazeGraph. This work opens several perspectives. First, optimization times can
be significantly improved using a better budget model such as the one defined
in [18]. Moreover, computing the confidence interval of estimators [19] may allow
us to adapt the budget to each join order, rather than systematically comput-
ing k random walks. Generalizing our approach to nested stars is also part of
our research agenda. Finally, this paper relies on random walks to estimate the
cardinality of C2RPQUF queries. Another exciting line of research would be to
study how random walks can be used to estimate the cardinality of SPARQL
queries in the presence of the MINUS, OPTIONAL and FILTER NOT EXISTS
operators.

Acknowledgments This work is supported by the ANR project DeKaloG (De-
centralized Knowledge Graphs), ANR-19-CE23-0014, CE23 - Intelligence artifi-
cielle, and the CominLabs project MikroLog (The Microdata Knowledge Graph).



References

1. Aimonier-Davat, J., Skaf-Molli, H., Molli, P.: Processing sparql property path
queries online with web preemption. In: European Semantic Web Conference. pp.
57–72. Springer (2021)

2. Ali, W., Saleem, M., Yao, B., Hogan, A., Ngomo, A.C.N.: A survey of rdf stores &
sparql engines for querying knowledge graphs. The VLDB Journal pp. 1–26 (2021)

3. Angles, R., Aranda, C.B., Hogan, A., Rojas, C., Vrgoč, D.: Wdbench: A wikidata
graph query benchmark. In: International Semantic Web Conference. pp. 714–731.
Springer (2022)

4. Arroyuelo, D., Hogan, A., Navarro, G., Rojas-Ledesma, J.: Time-and space-efficient
regular path queries. In: 38th International Conference on Data Engineering
(ICDE). pp. 3091–3105. IEEE (2022)

5. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of wikidata query logs.
In: The World Wide Web Conference. pp. 127–138 (2019)

6. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: Sparql web-
querying infrastructure: ready for action? In: International Semantic Web Con-
ference. pp. 277–293. Springer (2013)

7. Cluet, S., Moerkotte, G.: On the complexity of generating optimal left-deep pro-
cessing trees with cross products. In: International Conference on Database Theory.
pp. 54–67. Springer (1995)

8. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: Networked
Knowledge-Networked Media, pp. 7–24. Springer (2009)

9. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary rdf representation for publication and exchange (hdt). Journal of Web Se-
mantics 19, 22–41 (2013)

10. Gubichev, A.: Query processing and optimization in graph databases. Ph.D. thesis,
Technische Universität München (2015)

11. Gubichev, A., Bedathur, S.J., Seufert, S.: Sparqling kleene: fast property paths in
rdf-3x. In: First International Workshop on Graph Data Management Experiences
and Systems. pp. 1–7 (2013)

12. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join order-
ing in SPARQL queries. In: 17th International Conference on Extending Database
Technology, EDBT (2014)

13. Hertzschuch, A., Hartmann, C., Habich, D., Lehner, W.: Simplicity done right for
join ordering. In: CIDR (2021)

14. Jachiet, L., Genevès, P., Gesbert, N., Layaïda, N.: On the optimization of recursive
relational queries: Application to graph queries. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. pp. 681–697 (2020)

15. Kader, R.A., Boncz, P.A., Manegold, S., van Keulen, M.: ROX: run-time optimiza-
tion of xqueries. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.)
International Conference on Management of Data, SIGMOD. ACM (2009)

16. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: Sparql with property paths.
In: International Semantic Web Conference. pp. 3–18. Springer (2015)

17. Leis, V., Gubichev, A., Mirchev, A., Boncz, P.A., Kemper, A., Neumann, T.: How
good are query optimizers, really? VLDB Endow. 9(3), 204–215 (2015)

18. Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Cardinality estima-
tion done right: Index-based join sampling. In: Cidr (2017)

19. Li, F., Wu, B., Yi, K., Zhao, Z.: Wander join and XDB: online aggrega-
tion via random walks. ACM Trans. Database Syst. 44(1), 2:1–2:41 (2019).
https://doi.org/10.1145/3284551, https://doi.org/10.1145/3284551



20. Losemann, K., Martens, W.: The complexity of regular expressions and property
paths in sparql. ACM Transactions on Database Systems (TODS) 38(4), 1–39
(2013)

21. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of wikidata: semantic technology usage in wikipedia’s knowledge graph.
In: International Semantic Web Conference. pp. 376–394. Springer (2018)

22. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation
for rdf queries with multiple joins. In: 27th International Conference on Data En-
gineering. IEEE (2011)

23. Park, Y., Ko, S., Bhowmick, S.S., Kim, K., Hong, K., Han, W.S.: G-care: A frame-
work for performance benchmarking of cardinality estimation techniques for sub-
graph matching. In: International Conference on Management of Data (SIGMOD)
(2020)

24. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Transations on Database Systems 34(3), 16:1–16:45 (2009)

25. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Database Theory - ICDT 2010. pp. 4–33 (2010)

26. Selingerl, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access path se-
lection in a relational database management system. In: ACM SIGMOD (1979)

27. Sengupta, N., Bagchi, A., Ramanath, M., Bedathur, S.: Arrow: Approximating
reachability using random walks over web-scale graphs. In: International Confer-
ence on Data Engineering (ICDE). pp. 470–481. IEEE (2019)

28. Seufert, S., Anand, A., Bedathur, S., Weikum, G.: Ferrari: Flexible and efficient
reachability range assignment for graph indexing. In: 29th International Conference
on Data Engineering (ICDE). pp. 1009–1020. IEEE (2013)

29. Stefanoni, G., Motik, B., Kostylev, E.V.: Estimating the cardinality of conjunc-
tive queries over rdf data using graph summarisation. In: The World Wide Web
Conference. pp. 1043–1052 (2018)

30. Steve, H., Andy, S.: SPARQL 1.1 query language. In: Recommendation W3C (2013)
31. Thompson, B., Personick, M., Cutcher, M.: The bigdata® rdf graph database. In:

Linked Data Management, pp. 221–266. Chapman and Hall/CRC (2016)
32. Wadhwa, S., Prasad, A., Ranu, S., Bagchi, A., Bedathur, S.: Efficiently answering

regular simple path queries on large labeled networks. In: International Conference
on Management of Data. pp. 1463–1480 (2019)

33. Yakovets, N., Godfrey, P., Gryz, J.: Query planning for evaluating sparql property
paths. In: International Conference on Management of Data. pp. 1875–1889 (2016)


