Julien Aimonier-Davat 
  
Hala Skaf-Molli 
  
Pascal Molli 
  
Minh-Hoang Dang 
  
Brice Nédelec 
  
Join Ordering of SPARQL Property Path Queries

Keywords: Join Order, SPARQL Property Path, Random Walks, Sampling. SELECT ? x1 ? x3 WHERE { ? x3 wdt : P361 wd : Q27611 . # t p 1 ( 9 ) ? x1 wdt : P17 ? x3

SPARQL property path queries provide a succinct way to write complex navigational queries over RDF knowledge graphs. However, their evaluation remains difficult as they may involve the execution of transitive closures. As a result, many property path queries just timeout when executed on public online RDF knowledge graphs. One solution to speed up their execution is to find optimal join orders. Although the join ordering problem has been extensively studied for traditional SPARQL queries, the presence of property path patterns biases existing approaches. In this paper we focus on C2RP QUF queries (conjunctive SPARQL property path queries with UNION and FILTER), and we present a query optimizer that is able to capture the cost of C2RP QUF queries using an appropriate cost model and a sampling-based cardinality estimator. On the latest Wikidata Query Benchmark, we empirically demonstrate that our approach finds significantly better join orders than Virtuoso and BlazeGraph.

Introduction

Context and motivation: SPARQL 1.1 [START_REF] Steve | SPARQL 1.1 query language[END_REF] introduced property paths to add extensive navigational capabilities to the SPARQL query language. Property path queries (PPQs) are intensively used on Wikidata; they account for 38% of the entire query log [START_REF] Bonifati | Navigating the maze of wikidata query logs[END_REF]. Transitive closures are a crucial part of property paths as they allow to match paths of arbitrary length. According to the log of Wikidata, transitive closures are used by 66% of the property path queries. However, transitive closures make the evaluation of property path queries challenging [START_REF] Yakovets | Query planning for evaluating sparql property paths[END_REF], and many of them cannot terminate in less than 60s. For example, the query presented in Figure 1a searches for road bicycle races in Central America and time-out on Wikidata. Related works: Speeding up the processing of PPQs received much attention from the semantic web community [START_REF] Ali | A survey of rdf stores & sparql engines for querying knowledge graphs[END_REF]. One approach relies on a dedicated index [START_REF] Seufert | Ferrari: Flexible and efficient reachability range assignment for graph indexing[END_REF] that improves PPQs execution time, but requires the construction and Fig. 1: Query Q 1 comes from the Wikidata Query Benchmark [START_REF] Angles | Wdbench: A wikidata graph query benchmark[END_REF] and returns road bicycle races located in Central America. Q J1 1 is the join order decided by BlazeGraph while Q J2

1 is a hand-crafted join order. The "hint:Query" triple pattern in Q J2 1 is used to force the join order in BlazeGraph. Commented numbers are triple patterns cardinality. On the Wikidata Query Service Q J1

1 time-out (>60s) while Q J2

1 terminates in less than 3 seconds.

maintenance of the index. Other works propose new dedicated operators to process transitive closures [START_REF] Yakovets | Query planning for evaluating sparql property paths[END_REF][START_REF] Sengupta | Arrow: Approximating reachability using random walks over web-scale graphs[END_REF][START_REF] Arroyuelo | Time-and space-efficient regular path queries[END_REF][START_REF] Wadhwa | Efficiently answering regular simple path queries on large labeled networks[END_REF][START_REF] Aimonier-Davat | Processing sparql property path queries online with web preemption[END_REF]. Such approaches are very effective but focus on evaluating property path patterns (PPPs) alone, while most of the time PPPs are just part of a PPQ. For instance, tp 3 is just a pattern among others in the query Q 1 in Figure 1. In this paper, we propose to improve PPQs execution time by finding better join orders. Compared to previous works, finding better join orders allows us to improve PPQs execution time on existing engines, without new indexes and new operators. To illustrate the impact of finding good join orders, Q 1 has been executed on the Wikidata query service using two different join orders: (1) a join order J 1 = ((tp1 ▷◁ tp2) ▷◁ tp 3 ) that has been decided by BlazeGraph, the SPARQL engine behind Wikidata (2) a join order J 2 = ((tp 3 ▷◁ tp2) ▷◁ tp1) that has been hand-crafted. Following J 1 the query Q J1 1 time-out on Wikidata, i.e. Q J1 1 requires more than 60 seconds to complete, while Q J2

1 terminates in less than 3 seconds. Although the join ordering problem has been extensively studied in the context of conjunctive queries with filters [START_REF] Leis | How good are query optimizers, really?[END_REF][START_REF] Hertzschuch | Simplicity done right for join ordering[END_REF][START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF], it has been poorly explored when considering property path queries [START_REF] Gubichev | Sparqling kleene: fast property paths in rdf-3x[END_REF][START_REF] Gubichev | Query processing and optimization in graph databases[END_REF]. It is currently unclear how current engines consider path patterns, i.e. how the cost of a join order that contains PPPs is computed, and why it should be computed like that. Approach and contributions: This paper focuses on the class of conjunctive two-way regular path queries with UNION and FILTER, denoted C2RP Q U F in [START_REF] Bonifati | Navigating the maze of wikidata query logs[END_REF]. For C2RP Q U F queries, we propose a query optimizer that can find efficient join orders without changing existing SPARQL engines. Finding such join orders is challenging; depending on the join order, a path pattern may behave as a transitive closure or a reachability pattern. The changing nature of path patterns is biasing traditional cost models that fail to find efficient join orders. The contributions of this paper are the following:

1. This paper proposes a cost model along with a dynamic programming (DP) algorithm able to capture the cost of evaluating PPQs using traditional PPP operators. Compared to state-of-the-art, the proposed DP algorithm can rewrite PPPs such that their cost remain observable to existing cost functions as the one defined in [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF]. 2. Any cost model requires accurate cardinality estimates. However, there is currently no cardinality estimator able to handle property path patterns. Consequently, this paper proposes a cardinality estimator for PPQs based on random walks. Random walks can be computed for cheap thanks to B-Tree indexes, widely used to index RDF data. Compared to state-of-the-art, the proposed cardinality estimator extends the WanderJoin approach [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF] to handle property path patterns. 3. The approach is evaluated on BlazeGraph and Virtuoso using the newly proposed Wikidata Query Benchmark [START_REF] Angles | Wdbench: A wikidata graph query benchmark[END_REF]. Experimental results demonstrate that our approach significantly improves SPARQL property path queries performance in terms of execution time. Compared to BlazeGraph, the execution time is divided by at least 14.

The rest of the paper is organized as follows: Section 2 presents our approach, preliminaries, and the problem of ordering joins in the presence of property path patterns. Section 3 introduces a cost model for property path queries. Section 4 presents our cardinality estimator for property path queries. Section 5 details our experimental results. Finally, after discussing related works in Section 6, we present our conclusions and future work in Section 7.

Query Optimization of Property Path Queries

This paper follows the traditional query optimizer architecture of the system R [START_REF] Selingerl | Access path selection in a relational database management system[END_REF]. The optimizer takes a property path query as input and returns a physical plan that minimizes a cost function. For each property path pattern, the optimizer also decides in which direction it should be evaluated, i.e. from subjects to objects (forward navigation) or from objects to subjects (backward navigation). The query optimizer enumerates valid join orders using a dynamic programming algorithm. Based on cardinality estimates, the cost model chooses the cheapest alternative among the valid join orders. The goal of this paper is to target mainstream SPARQL engines, consequently two hypotheses are assumed: (1) There are no indexes dedicated to transitive closures, such as the FERRARI index [START_REF] Seufert | Ferrari: Flexible and efficient reachability range assignment for graph indexing[END_REF] (2) Property path patterns are evaluated using the traditional ALP procedure (a BFS-style algorithm) defined in the SPARQL specification [START_REF] Steve | SPARQL 1.1 query language[END_REF] as it is done in JENA or BlazeGraph, or using transitive closure operators as in Virtuoso.

Preliminaries

SPARQL Query: This paper follows the notations from [START_REF] Pérez | Semantics and complexity of SPARQL[END_REF][START_REF] Schmidt | Foundations of SPARQL query optimization[END_REF] and considers three disjoint sets I (IRIs), L (literals) and B (blank nodes). Let T = I ∪ L ∪ B be the set of RDF terms, an RDF triple (s, p, o) ∈ (I ∪ B) × I × T connects a subject s through a predicate p to an object o. An RDF graph G is a finite set of RDF triples. Let V be an infinite set of variables, disjoint from the previous sets. A graph pattern P is defined recursively as follows:

1. A tuple from

(I ∪ B ∪ V ) × (I ∪ V ) × (T ∪ V ) is a triple graph pattern.
2. If P 1 and P 2 are graph patterns, then (P 1 AND P 2 ) and (P 1 UNION P 2 ) are respectively a conjunctive graph pattern and an union graph pattern. 3. If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R) is a filter graph pattern. Given P a graph pattern, var(P ) is the set of variables found in P . The semantics of SPARQL queries is defined in terms of mappings. A mapping µ is a partial function µ : V → T . The domain of µ, denoted dom(µ), is the subset of V on which µ is defined. Given a triple pattern tp, µ(tp) is the image of tp under µ, i.e. the triple obtained by replacing the variables in tp according to µ. Letting µ(P ) denote the image of P under µ, with respect to the latter definition, the evaluation of a graph pattern P over an RDF graph G is defined as

P G = { µ | dom(µ) = var(P ) ∧ µ(P ) ⊆ G }.
To simplify explanations around random walks, this paper assumes that the evaluation of a triple pattern tp over an RDF graph G returns a set of triples, i.e.

tp G = { µ(tp) | dom(µ) = var(tp)∧µ(tp) ⊆ G }.
SPARQL Property Path Query (PPQ): A property path query is a SPARQL query with at least one property path pattern (PPP). A PPP is a tuple in

(I ∪ B ∪ V ) × E × (T ∪ V
) where E is the set of property path expressions. Based on [START_REF] Kostylev | Sparql with property paths[END_REF], property path expressions are defined by the grammar:

e := a | e -| e 1 •e 2 | e 1 +e 2 | e + | e * | e? | !a 1 , . . . , a k | !a - 1 , .
. . , a - k where a, a 1 , ..., a k ∈ I. This paper assumes non-transitive property path expressions to be evaluated using traditional SPARQL algebra operators [START_REF] Steve | SPARQL 1.1 query language[END_REF]. Thus, the paper focuses only on the evaluation of transitive property path expressions, i.e. e + and e * . Nested stars, e.g. (a+)+, are not considered and will be the subject of future work.

The join ordering problem with property paths

C mm (P, G) =      | P G | if P = tp ∨ P = σ(tp) C mm (P 1 ) + if P = P 1 N LJ ▷◁ P 2 , | P 1 G | × max( | P1▷◁tp G | | P1 G | , 1) (P 2 = tp ∨ P 2 = σ(tp))
Let us consider the C mm cost function defined above, which is a simplified version of the one presented in [START_REF] Leis | How good are query optimizers, really?[END_REF]. For simplicity, only index-nested-loop joins and left-deep trees are considered, but our proposal holds in the general case. Most cost functions rely on cardinality estimates. For instance, the C mm function defines the cost of evaluating a triple pattern as its cardinality [START_REF] Leis | How good are query optimizers, really?[END_REF]. Indeed, considering traditional indexes SPO, POS, OSP as available, any triple pattern tp can be evaluated over an RDF graph G in O(| tp G |log(|G|)). Thus, for conjunctive queries with filters, minimizing a cardinality-based cost function such as the C mm effectively leads to good join orders [START_REF] Cluet | On the complexity of generating optimal left-deep processing trees with cross products[END_REF][START_REF] Leis | How good are query optimizers, really?[END_REF]. While the cost of evaluating a triple pattern is correlated with its cardinality, it is not always true for property path patterns (PPPs). Assuming PPPs are evaluated using ALP, a BFS-style algorithm defined by the standard [START_REF] Steve | SPARQL 1.1 query language[END_REF], two cases can be distinguished:

Case 1, Transitive-pattern Let tp = (s, p, o) be a PPP such that at least the subject or the object is a variable, i.e. s ∈ V ∨ o ∈ V . Let o be in V and N be the set of nodes reachable from s. Using the ALP algorithm, the evaluation of tp returns N that can be computed in

O(|N |log(|G|)) over an RDF graph G. As | tp G | = |N |
, the cost of evaluating tp is correlated with its cardinality. Case 2, Reachability-pattern Let tp = (s, p, o) be a PPP such that both the subject and the object are bounded, i.e. s, o ̸ ∈ V . According to [START_REF] Steve | SPARQL 1.1 query language[END_REF], the cardinality of a fully bounded PPP is 1 if o can be reached from s, 0 otherwise. However, to check the reachability between s and o, the ALP algorithm first computes the set of nodes N reachable from s, then checks if o ∈ N . Consequently, the cost of evaluating a fully bounded PPP is not correlated with its cardinality.

To illustrate the problem on a concrete example, let us compute the cost of Q J1

1 and Q J2 1 depicted in Figure 1. Using the true cardinalities1 , we calculate

C mm (Q J1 1 ) ≈ 91K and C mm (Q J2 1 ) ≈ 168K. Despite Q J1 1 being estimated less costly than Q J2 1 , Q J1 1 time-out on Wikidata while Q J2
1 completes in less than 3 seconds. Focusing on property path patterns, tp 3 appears as a transitive-pattern in Q J2 1 , while it appears as a reachability-pattern in Q J1 1 . Because the cost of computing N is not captured by the cardinality of a reachability-pattern, the cost of Q J1

1 is largely underestimated. Thus, a cost function purely based on cardinalities, such as the C mm , cannot correctly estimate the cost of a PPQ. The scientific challenge is to define a cost model that, given any join order, can capture the cost of a PPP whether it appears as a transitive-pattern or a reachability-pattern.

Cost-model for Property Path Queries

Given a join order J, the key idea is to relax fully bounded property path patterns (PPPs) such that J no longer contains reachability-patterns. If all PPPs behave as transitive-patterns, then cardinality-based cost functions are able to correctly estimate the cost of J. Whether a PPP behaves as a transitive-pattern or a reachability-pattern depends on the join order. Therefore, the general approach is to detect reachability-patterns during enumeration of join orders, and relax them before ordering them.

Definition 1 (Reachability-pattern relaxation). Let Q be a SPARQL property path query, J a join order, and tp = (s, p, o) ̸ ∈ J a fully bounded property path pattern with respect to J, i.e. var(tp) ⊆ var(J). A forward relaxation of tp generates a filter graph pattern of the form

((s, p, v) F ILT ER (v = o)) such that v ̸ ∈ var(Q). A backward relaxation of tp generates a filter graph pattern of the form ((v, p, o) F ILT ER (v = s)) such that v ̸ ∈ var(Q).
Using a BFS-style algorithm, a reachability-pattern can be evaluated following two strategies. One can decide to navigate from the subject to the object (forward strategy), another can decide to go from the object to the subject (backward strategy). In this context, the forward and backward relaxations allow to estimate which strategy is the cheapest one. According to [START_REF] Yakovets | Query planning for evaluating sparql property paths[END_REF], the cost of going forward or backward can be drastically different. Selecting the best strategy is therefore important to expect good performance. For instance, BlazeGraph evaluates tp 3 in Q J1

1 starting from the object. Using the forward and backward relaxations, we can rewrite

Q J1 1 as Q J F 1 1 and Q J B 1 1
as depicted in Figure 2. If we use the true cardinalities to compute the cost of both strategies, we get C mm (Q

J F 1 1 ) = 95K and C mm (Q J B 1 1 ) = 2.6B. Thus, Q J1
1 time-out on Wikidata because BlazeGraph chose the wrong strategy to evaluate tp 3 .

Algorithm 1: Dynamic Programming with Relaxation

Require: Q: SPARQL Property Path Query, G: RDF Graph Data: dpT able: keeps the best join order for a set S of triple/property path patterns

1 for ∀tp ∈ Q do dpT able[{tp}] = tp 2 for ∀n ∈ 1..|Q| -1 do 3 for ∀S ∈ dpT able : |S| = n do 4 for ∀tp ∈ Q : tp ̸ ∈ S do 5 if var(tp) ∩ var(dpT able[S]) = ∅ then continue 6 S ′ = S ∪ {tp} ; C = ∅ 7 if tp is a PPP ∧ var(tp) ⊆ var(dpT able[S]) then 8 C = C ∪ {dpT able[S] ▷◁ F orwardRelaxation(Q, tp)} 9 C = C ∪ {dpT able[S] ▷◁ BackwardRelaxation(Q, tp)} 10 else 11 C = C ∪ {dpT able[S] ▷◁ tp} 12 for ∀P ∈ C do 13 if S ′ ̸ ∈ dpT able ∨ Cmm(P, G) < Cmm(dpT able[S ′ ], G) then 14 dpT able[S ′ ] = P 15 return U ndoRelaxation(dpT able[Q])
Algorithm 1 is a custom dynamic programming algorithm that integrates relaxation. When the algorithm detects a reachability-pattern tp with respect 

(b) (Q J 2 1 ) 1..2 (c) RDF graph G1
Fig. 3: RDF graph G 1 and rewrites of the query Q J2 1 used to estimate the cost of J 2 with random walks. to a join order J = dpT able[S] (Line 7), it uses relaxation so that the cost function is able to correctly estimate the cost of tp in J. Moreover, to select the best strategy to evaluate tp both relaxations are used, generating two candidates that are stored in C (Line 8-9). One of them will evaluate tp using the forward strategy, while the other will use the backward strategy. Next, the cost function is used to keep the cheapest alternative (Line 12-14). At the end, the algorithm returns the cheapest join order, with relaxed property path patterns in their original form.

Cardinality Estimation of Property Path Queries

This section introduces a new cardinality estimator for property path queries based on random walks. Random walks [START_REF] Li | Wander join and XDB: online aggregation via random walks[END_REF] offer several advantages: (1) They proved to be the best approach for estimating the cardinality of conjunctive SPARQL queries [START_REF] Park | G-care: A framework for performance benchmarking of cardinality estimation techniques for subgraph matching[END_REF] (2) They do not require maintaining statistics [START_REF] Gubichev | Query processing and optimization in graph databases[END_REF] (3) They can be efficiently implemented just by relying on traditional SPO, POS, and OSP indexes that are widely available on existing triple stores [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF]. Before moving to the contribution, we first recall how to estimate the cardinality of conjunctive SPARQL queries using random walks. Next, we address the case of SPARQL property path queries. For the sake of simplicity, we assume that property path queries are conjunctive queries with a single property path pattern. However, the approach can be generalized to C2RP Q U F queries that contain multiple property path patterns.

Cardinality estimates of Conjunctive Queries

Let Q be a conjunctive SPARQL query, and J = ⟨tp 1 , ..., tp n ⟩ be the join order used to perform random walks. Based on [START_REF] Li | Wander join and XDB: online aggregation via random walks[END_REF] a random walk γ = ⟨t 1 , ..., t n ⟩ is computed over an RDF graph G by randomly picking t 1 in tp 1 G , and each subsequent t i (i > 1) in t i-1 ▷◁ tp i G . Thus, the probability of sampling γ is

P (γ) = | tp 1 G | -1 n i=2 | t i-1 ▷◁ tp i G | -1 . Let Γ = ⟨γ 1 , ..., γ k ⟩ be a multiset of k random walks, the cardinality of Q is estimated as card(Γ ) = |Γ | -1 |Γ | i=1 P (γ i ) -1 .
For instance, let us estimate the cardinality of (Q J2

2 ) 1..1 on the RDF graph G 1 with a budget of 2 random walks. Both (Q J2

2 ) 1..1 and G 1 are depicted in Figure 3. Let γ 1 and γ 2 be the two random walks we picked following J 2 : tp 3 picking t 1 = (A, P 641, Q3609) in (?x1, P 641, Q3609) G1 γ 1 tp 2 picking t 2 = (A, P 17, D)

in (A, P 17, ?x3) G1 tp 1 picking t 3 = (D, P 361, Q27611) in (D, P 361, Q27611) G1 γ 2 tp 3 picking t 1 = (B, P 641, Q3609) in (?x1, P 641, Q3609) G1 In this example, P (γ 1 ) = 1 2 × 1 1 × 1 1 = 1 2 , while P (γ 2 ) = 0. Indeed, when it becomes impossible for a random walk γ to sample t i for some i ≤ n, e.g. t 2 in γ 2 because (B, P 17, ?x3) G1 = ∅, γ is classified as invalid, and its probability of being sampled is 0. Thus, the estimated cardinality of (Q

J2 2 ) 1..1 is 1 2 ×(P (γ 1 ) -1 + P (γ 2 ) -1 ) = 2+0 2 = 1.

Cardinality estimates of Property Path Queries

Definition 2. Let Q be a conjunctive SPARQL property path query. Let tp i ∈ Q be a property path pattern. We denote Q d the conjunctive SPARQL query obtained by rewriting tp i into a chain tp 1 i , ..., tp d i of triple patterns. If J = ⟨tp 1 , ..., tp i , ..., tp |Q| ⟩ is a join order associated to Q, we denote J d = ⟨tp 1 , ..., tp 1 i , ..., tp d i , ..., tp |Q| ⟩ the equivalent join order associated to Q d .

To estimate the cardinality of a SPARQL property path query Q, the key idea is to rewrite Q into an equivalent query Q ′ that does not contain property paths. For instance, let us consider the query Q J2 1 depicted in Figure 1b. Assuming that the diameter d of the relation P 641 is known, and let d = 2, Q J2

1 is equivalent to the query (Q J2 1 ) 1..2 described in Figure 3b, i.e. both return the same result. Knowing d, any PPP can be rewritten as an UNION graph pattern with d clauses, each clause matching paths of different lengths from 1 to d. Thus, assuming a budget of k random walks, the cardinality of Q ′ can be estimated by uniformly distributing random walks over the d clauses of the UNION, ending up with d multisets of random walks Γ 1 , ..., Γ d . The cardinality of Q ′ is then estimated as d i=1 card(Γ i ). In other words, we consider clauses of the UNION as individual queries Q 1 , ..., Q d , for which we estimate the cardinality, and the cardinality of Q is the sum of the estimated cardinalities of Q 1 , ..., Q d .

According to the SPARQL semantics, PPPs are evaluated following a setsemantics [START_REF] Steve | SPARQL 1.1 query language[END_REF]. For instance, no matter how many paths they are between wd:Q3609 and A, evaluating tp 3 over G 1 must return A only once. Thus, for the rewriting to be correct, a DISTINCT modifier must be introduced in the rewriting of Q into Q ′ . However, to the best of our knowledge, estimating the cardinality of DISTINCT queries using random walks has not been studied. To cope with this issue, the DISTINCT modifier is just ignored, aware that the estimator will overestimate cardinalities. On dense graphs, cardinalities can be significantly overestimated, preventing the optimizer from finding good join orders. Nevertheless, we assume that in practice, removing the DISTINCT modifier will not prevent the optimizer from finding good join orders.

Algorithm 2: Cardinality Estimation with Property Paths

Require: Q: SPARQL query where tpi is a property path pattern, J: Join order, G: RDF graph, k: Number of random walks, dM ax: Depth exploration limit Data: d: Length of the longest path explored, Γ : Multisets of random walks Rewriting a property path pattern tp requires to know the diameter d of the subgraph recognized by tp. To avoid relying on statistics, Algorithm 2 computes d while performing random walks. Given a SPARQL property path query Q where tp i is a PPP, and a budget k, Algorithm 2 starts with d = 1. At each iteration, the algorithm computes a random walk γ = ⟨t 1 , ..., t n ⟩ from Q d ′ , following the join order J d ′ , where d ′ is drawn uniformly at random between 1 and d. Each time d ′ = d, the algorithm checks if γ has found a path of length d matching tp i . Given J d = ⟨tp 1 , ..., tp Algorithm 2 increases d each time a random walk finds a path of length d matching tp i . However, in the presence of cycles, d may increase forever, significantly impacting the accuracy of estimates. To address this issue, Algorithm 2 enforces a simple path semantics. Under a simple path semantics [START_REF] Losemann | The complexity of regular expressions and property paths in sparql[END_REF], a random walk can go through a node only once when matching PPPs. In other words, let γ = ⟨t 1 , ..., t Even without cycles, d can quickly reach large values. Because the budget k is distributed between queries Q 1 , ..., Q d to sample paths of length 1 to d, with a small budget, the algorithm may end up with too few random walks in each multiset Γ j to compute accurate estimates. To address this issue, d can be clipped to a maximum value dM ax. As the computation time of a random walk is proportional to its size, clipping d can also improve optimization times.

1 d = 1 2 while j |Γj | < k do 3 d ′ ∼ U {1, d} ; γ = ⟨t1, ..., tn⟩ = randomW alk(Q d ′ , J d ′ , G) 4 if P (γ) > 0 ∧ t 1 i , ..., t d ′ i ∈ γ are pairwise distinct then 5 Γ d ′ = Γ d ′ ∪ {γ} 6 else 7 Γ d ′ = Γ d ′ ∪ {γ ′ } with P (γ ′ ) = 0 8 end 9 if |γ| ≥ i + d -1 ∧ t 1 i , ...,

Experimental study

The goal of this experimental study is to empirically answer the following questions: (1) Does our approach improve total workload execution time compared to baselines? (2) What is the impact of our approach on each query? (3) How do the budget k and the depth exploration limit dM ax impact performance?

Experimental Setup

Datasets and Queries. Our experiments use the newly proposed Wikidata Graph Query Benchmark (WDBench) [START_REF] Angles | Wdbench: A wikidata graph query benchmark[END_REF], which extracts real-world SPARQL queries from the public query logs of the Wikidata SPARQL endpoint. The WD-Bench provides a RDF dataset of 1,257,169,959 triples built from the dump of Wikidata. To create our workload, all non-property path queries have been filtered out, as well as queries with cross-products. The resulting workload contains 213 queries and is described in Table 1. To ensure that queries return the same result for all engines, we added the DISTINCT modifier to all queries.

Compared Approaches. To demonstrate that random walks have the potential to be used to improve the join order of SPARQL property path queries, we compare our approach with Virtuoso v.OS-7.2.7 [START_REF] Erling | Rdf support in the virtuoso dbms[END_REF] (one of the most deployed engine in practice [START_REF] Buil-Aranda | Sparql webquerying infrastructure: ready for action?[END_REF], as well as the SPARQL endpoint behind DBpedia), and BlazeGraph v.2.1.4 [START_REF] Thompson | The bigdata® rdf graph database[END_REF] (used by the Wikidata Query Service [START_REF] Malyshev | Getting the most out of wikidata: semantic technology usage in wikipedia's knowledge graph[END_REF]). BlazeGraph comes with two different optimizers; a first optimizer based on simple statistics such as the cardinality of triple patterns, and another one, named RTO, that relies on sampling to estimate the cost of join orders. Because RTO supports property paths and is adapted from ROX [START_REF] Kader | ROX: run-time optimization of xqueries[END_REF], which is related to our proposal, our approach is compared to both optimizers.

Implementation and Experimental Protocol. We implemented our query optimizer as a standalone Python 3.9 program. Random walks are performed over the WDBench dataset stored in HDT [START_REF] Fernández | Binary rdf representation for publication and exchange (hdt)[END_REF]. The generated plans of our query optimizer are translated into SPARQL queries using BlazeGraph and Virtuoso query hints. Query hints allow us to force the join order and the direction in which property path patterns are evaluated by engine 2 3 4 . Virtuoso and BlazeGraph have been tuned for a system with 64GB, following engine recommendations. Code and configurations can be found online for reproducibility purposes 5 . As random walks are not deterministic, the workload is optimized 5 times for each tested configuration, and each query is executed 3 times after a warmup execution. All queries are executed with a timeout of 900 seconds.

Evaluation Metrics. In our experiments, the following metrics are used:

(1) The Total Execution Time is the time spent by Virtuoso or BlazeGraph executing a SPARQL query with the Optimization Time.

(2) The Execution Time is the time spent by Virtuoso or BlazeGraph executing a SPARQL query without the Optimization Time.

(3) The Optimization Time is the time spent by our query optimizer to optimize a SPARQL query. Each query is executed three times and the metrics are computed on the average of these 3 executions.

Hardware. All experiments ran on a single machine with Ubuntu 20.04.4 LTS, AMD EPYC 7513 32-Core Processor, 64GB of RAM, and a logical volume of 2TB on a remote SSD accessible through the LAN.

Experimental Results

Does our approach improve total workload execution time compared to baselines? Table 2 presents the total execution time of the workload for all engines. Our proposal is configured with a budget of 1000 random walks (k=1000), and the depth limit for property paths is set to 5 (d=5). As our proposal relies on random walks, the workload has been optimized 5 times. Averages and standard deviations are reported in Table 2. First, Virtuoso is much faster than BlazeGraph on this workload. While BlazeGraph requires more than 20270 seconds, Virtuoso only needs 419 seconds. Moreover, BlazeGraph is not able to execute 24 queries. For the first 15 Fig. 4: Average execution time on BlazeGraph (top) and Virtuoso (bottom) with a budget of 1000 random walks and an exploration depth limited to 5. queries, BlazeGraph reaches the time-out set to 900 seconds in our experiments. An Out-Of-Memory exception occurs for the nine remaining queries. Note that queries that time-out account for 900 seconds in the total execution time, while queries that result in an error account for 0. On its side, Virtuoso processes all 213 queries. Despite being recommended when there are join ordering issues, the RTO optimizer delivers the worst results. Given a SPARQL query Q, to estimate the cost of a join order J, RTO samples the first triple pattern in J and Q J on this sample. Unfortunately, evaluating Q J , even on a small sample, can take a very long time. As a result, many queries time-out or crash because of the optimization step. In the end, our proposal outperforms both BlazeGraph and Virtuoso. The workload total execution time is divided by at least 14 on Blaze-Graph. It can be much more depending on the queries that time-out. Compared to Virtuoso, we observe a 14% improvement on the execution time.

What is the impact of our approach on each query? Figure 4 presents a per-query view of the results summarized in Table 2. Queries are ordered on Table 3: Global results of our experiments. For each configuration, queries have been optimized 5 times and executed 3 times after a warmup execution. DL=Depth Limit, TET=Total Execution Time (secs), ET=Execution Time (secs), OT=Optimization Time (secs), T=Timeouts, E=Errors. the x-axis according to the total execution time of the baseline. Focusing first on BlazeGraph, the 15 queries that exceed the time limit are depicted in dark gray, while the nine queries that result in an error are in red. As depicted by the blue curve in Figure 4, our optimizer makes the difference on the longrunning queries by finding better join orders. When looking at the optimization time, i.e. the ratio between the blue and green curves, they are irregularities. It comes from the HDT storage that cannot draw a random triple in constant time using the POS index. We can draw the same conclusion on Virtuoso. For short-running queries, the generated join orders are close to Virtuoso. However, long-running queries can benefit from significant improvements. For instance, the longest query on Virtuoso takes 63 seconds to complete. Using our optimizer we are able to find a join order that reduces the execution time to 110ms.

How do the budget k and the depth exploration limit dM ax impact performance? In our approach, two parameters impact performance; the budget k, i.e. the number of random walks used to estimate the cardinality of joins, and the limit dM ax on the exploration depth for property paths. To measure the impact of these two parameters, we tested different configurations that are summarized in Table 3.

First, let us focus on the execution time. As expected, given dM ax, increasing k systematically leads to better performance. Moreover, increasing the budget tends to decrease the variance between measurements, i.e. estimates become more reliable. However, despite multiplying the number of random walks by ten, the gain in terms of execution time is not that large, especially on Virtuoso. When using a bottom-up approach (as a DP algorithm), the quality of join orders mainly depends on the quality of the first joins, as highlighted in [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF]. Thus, accuracy on 1-way, 2-way, or 3-way joins is often enough to get good join orders and does not require a large budget.

If increasing the budget always leads to better performance, increasing dM ax may negatively impact the execution time. Random walks are uniformly distributed over the interval 1..dM ax. The larger the interval is, the fewer walks remain to estimate each part, i.e. the more inaccurate the estimator is. Consequently, with a small budget, it is better to reduce dM ax to have more accurate cardinalities. Even if property path patterns may be underestimated (because they are not fully explored), estimates will be more reliable. However, with a larger budget, it is worth looking for a larger dM ax to better capture the real cost of property path patterns. The budget k being the most impacting factor in optimization time, a good strategy to define k and dM ax is to define a budget first, and then select dM ax by testing different values until the quality of join orders deteriorates. For instance, with a budget of 1000 random walks on Blaze-Graph, setting dM ax = 5 results in good performance, but increasing dM ax to 10 starts deteriorating the execution time.

Related Works

Different approaches have been proposed to speed up the evaluation of SPARQL property path queries [START_REF] Ali | A survey of rdf stores & sparql engines for querying knowledge graphs[END_REF]. Some approaches rely on indexes to improve the evaluation of property path patterns. For instance, [START_REF] Seufert | Ferrari: Flexible and efficient reachability range assignment for graph indexing[END_REF] proposes an index named FERRARI that encodes transitive closures into a compact representation. This index is then used in RDF-3X [START_REF] Gubichev | Sparqling kleene: fast property paths in rdf-3x[END_REF] to evaluate property path queries efficiently. In [START_REF] Arroyuelo | Time-and space-efficient regular path queries[END_REF], authors combine a novel index to represent sets of triples with a new algorithm based on the Glushkov automaton. Although using indexes can drastically improve property path patterns execution, maintaining them on large and dynamic knowledge graphs is costly [START_REF] Sengupta | Arrow: Approximating reachability using random walks over web-scale graphs[END_REF]. This paper requires no additional indexes, only those currently used in SPARQL engines.

Other approaches rely on innovative property path pattern operators [START_REF] Yakovets | Query planning for evaluating sparql property paths[END_REF][START_REF] Sengupta | Arrow: Approximating reachability using random walks over web-scale graphs[END_REF][START_REF] Arroyuelo | Time-and space-efficient regular path queries[END_REF][START_REF] Wadhwa | Efficiently answering regular simple path queries on large labeled networks[END_REF][START_REF] Aimonier-Davat | Processing sparql property path queries online with web preemption[END_REF]. For instance, to find the best strategy to evaluate a property pattern, Waveguide [START_REF] Yakovets | Query planning for evaluating sparql property paths[END_REF] introduces a new operator that mixes idea from relational and graph databases. To improve the execution time of property path queries, [START_REF] Sengupta | Arrow: Approximating reachability using random walks over web-scale graphs[END_REF] relies on an approximate operator to compute, with a fixed error rate, the reachability between two nodes. All these approaches are really exciting but focus only on evaluating property path patterns alone. This paper focuses on optimizing property path queries, where a property path pattern is just one part of a query. By choosing the proper join orders, queries execution time can be significantly improved without changing the underlying engines.

Closer to our approach, [START_REF] Jachiet | On the optimization of recursive relational queries: Application to graph queries[END_REF] focuses on the optimization of conjunctive regular path queries, i.e. not just property path patterns. In [START_REF] Jachiet | On the optimization of recursive relational queries: Application to graph queries[END_REF], the authors propose a new algebra, with a set of rewriting rules, allowing optimizers to explore query plans that could not be considered before. While their approach consists in enriching the search space of query plans, we propose a solution to accuratly compare the different plans in order to choose the best one. Thus both approaches can be used together.

The importance of finding good join orders for property path queries has already been pointed out in RDF-3X [START_REF] Gubichev | Sparqling kleene: fast property paths in rdf-3x[END_REF][START_REF] Gubichev | Query processing and optimization in graph databases[END_REF]. However, to estimate the cardinality of property path patterns, the FERRARI index is used. Other approaches based on synopses or statistics can also be used to estimate cardinalities, such as characteristic sets [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF] or SumRDF [START_REF] Stefanoni | Estimating the cardinality of conjunctive queries over rdf data using graph summarisation[END_REF]. However, they suffer from the same problem as index-based approaches; synopses and statistics need to be maintained. A wellknown alternative is sampling. Sampling allows gathering information when no indexes or statistics are available. For instance, the RTO engine of BlazeGraph relies on sampling, while Virtuoso commonly uses sampling to estimate the selectivity of filters. One drawback of using sampling to estimate cardinalities is its cost. However, [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF] demonstrates that sampling can be both accurate and cheap when using traditional index structures such as existing B-Tree indexes. Following the same basic principles, WanderJoin [START_REF] Li | Wander join and XDB: online aggregation via random walks[END_REF] uses random walks to evaluate aggregate queries, and can be used as a cardinality estimator. As demonstrated in [START_REF] Park | G-care: A framework for performance benchmarking of cardinality estimation techniques for subgraph matching[END_REF], WanderJoin outperforms other cardinality estimators. Compared to [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF] and [START_REF] Li | Wander join and XDB: online aggregation via random walks[END_REF], our cardinality estimator handles property path queries.

Conclusions and Future work

This paper introduces a new query optimizer that relies on the relaxation of reachability-patterns and a sampling-based cardinality estimator to find efficient join orders for C2RP Q U F queries. The experimental study demonstrates that our proposal outperforms existing engines. On the newly proposed Wikidata Query Benchmark, the workload execution time is divided by 14 compared to BlazeGraph. This work opens several perspectives. First, optimization times can be significantly improved using a better budget model such as the one defined in [START_REF] Leis | Cardinality estimation done right: Index-based join sampling[END_REF]. Moreover, computing the confidence interval of estimators [START_REF] Li | Wander join and XDB: online aggregation via random walks[END_REF] may allow us to adapt the budget to each join order, rather than systematically computing k random walks. Generalizing our approach to nested stars is also part of our research agenda. Finally, this paper relies on random walks to estimate the cardinality of C2RP Q U F queries. Another exciting line of research would be to study how random walks can be used to estimate the cardinality of SPARQL queries in the presence of the MINUS, OPTIONAL and FILTER NOT EXISTS operators.
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 2 Fig. 2: Forward and Backward relaxations of tp 3 in J 1 of query Q 1 .
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  In this case, it may exist a path of length d + 1 matching tp i , and d is increased by 1.

1 i , ..., tp d i , ..., tp |Q| ⟩, a path of length d has been found if γ matches at least ⟨tp 1 , ..., tp 1 i , ..., tp d i ⟩, i.e. if |γ| ≥ |⟨tp 1 , ..., tp 1 i , ..., tp d i ⟩| or |γ| ≥ i + d -1.

Table 1 :

 1 1 i , ..., t d ′ i , ..., t |Q| ⟩ be a random walk sampled from Q d ′ , with t 1 i , ..., t d ′ i matching tp d ′ i , γ is valid if and only if t 1 i , ..., t d ′ i are pairwise distinct. Thus, considering an infinite number of random walks, Algorithm 2 ensures that d converges to the size of the longest simple path in the subgraph recognized by tp i , which is equal to or larger than the diameter of the subgraph. Characteristics of the workload used in the experiments

	#queries #joins #triples #path patterns #constants #join variables
	213	1 -8	2 -9	1 -2	1 -5	1 -6

Table 2 :

 2 TET=Total Execution Time, T=Timeouts, E=Errors.

	Engine	Optimizer	TET [Seconds] T E
		Default	20270	15 9
	BlazeGraph	RTO	35107	36 64
		Proposal (k=1000, d=5) 1429 ± 130	0 0
	Virtuoso	Default Proposal (k=1000, d=5) 362 ± 11 419	0 0 0 0

True cardinalities were computed using SPARQL COUNT queries on the Wikidata SPARQL endpoint as of December 5,

https://docs.openlinksw.com/virtuoso/rdfsparqlimplementatiotrans

https://docs.openlinksw.com/virtuoso/rdfperfcost

https://github.com/blazegraph/database/wiki/QueryHints

https://github.com/JulienDavat/Join-Ordering-of-SPARQL-Property-Path-Queries
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