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Abstract—Much work has been dedicated to estimating and
optimizing workloads in high-performance computing (HPC) and
deep learning. However, researchers have typically relied on few
metrics to assess the efficiency of those techniques. Most notably,
the accuracy, the loss of the prediction, and the computational
time with regard to GPUs or/and CPUs characteristics. It is
rare to see figures for power consumption, partly due to the
difficulty of obtaining accurate power readings. In this paper, we
introduce a composite score that aims to characterize the trade-
off between accuracy and power consumption measured during
the inference of neural networks. For this purpose, we present
a new open-source tool allowing researchers to consider more
metrics: granular power consumption, but also RAM/CPU/GPU
utilization, as well as storage, and network input/output (I/O). To
our best knowledge, it is the first fit test for neural architectures
on hardware architectures. This is made possible thanks to
reproducible power efficiency measurements. We applied this
procedure to state-of-the-art neural network architectures on
miscellaneous hardware. One of the main applications and
novelties is the measurement of algorithmic power efficiency.
The objective is to allow researchers to grasp their algorithms’
efficiencies better. This methodology was developed to explore
trade-offs between energy usage and accuracy in neural networks.
It is also useful when fitting hardware for a specific task or to
compare two architectures more accurately, with architecture
exploration in mind.

I. INTRODUCTION

Comparing the performance of different software and hard-
ware architecture in the field of deep neural networks is a
challenging endeavor. To establish a benchmark for comparison
between various architectures, one must identify relevant
metrics comparable across a wide variety of architectures and
systems. Those metrics must have an adequate level of precision.
However, the literature shows that benchmarks seldom comprise
metrics other than the time required for the execution, the
accuracy of algorithms, and the number of parameters and
necessary multiply-adds [1]–[4]. This approach is relevant in
a paradigm where algorithms need to run faster and more
accurately, with little regard to the marginal cost of increased
performance. However, this approach is not optimal if the
objective is to optimize the power consumption of the algorithm,
be it out of ecological concern or due to constraints on the
hardware available. Such purposes require specific metrics. We
advocate that comparing systems should be done using more
criteria. The aim is to balance out accuracy and efficiency,

specifically in power efficiency. This goal can be achieved
by using scores. One of the first scores in the literature,
characterizing the trade-off between accuracy and complexity,
was introduced in [5] as:

Score =
Accuracy

Number of parameters
(1)

With the idea of representing the amount of accuracy cap-
tured by a single parameter. However, the number of parameters
does not always correlate well with the complexity of a
network [6]. Especially, convolutional neural networks comprise
few parameters but are computationally expensive. Another
iteration in neural network scoring, NetScore, taking multiply-
accumulates (MACs) into account, was thus introduced in [7].
They propose Netscore, which they define as

Netscore = 20 log10

(
Accuracy2√

MACs × Parameters

)
(2)

Netscore offers a more comprehensive view of the accuracy-
efficiency trade-off of a neural network and seems especially
relevant for convolutional neural network scoring. To elaborate
upon this work, we want to introduce something that better
reflects efficiency - especially in terms of power efficiency and
adequation between hardware and software.

This paper presents a new score that uses measurements
rather than technical information on the network. We
believe introducing measurements in neural network scoring
is necessary to characterize a neural network’s behavior
accurately. To obtain the necessary metrics, we introduce
Tub.ai [8], a new open-source tool that provides researchers
with more diverse and granular metrics on their systems.
We believe this methodology can be used in many fields
- autonomous vehicles/drones, spaceborne applications,
high-performance computing - and not only in AI. Its use
is measuring both software and hardware performance. This
paper also presents a benchmark of our score computed
on various NN architectures during inference. Scoring was
realized on various hardware platforms.

This paper will first provide an overview of the motivation
behind our new score and the tools we use in section II. We
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will then take measurements during inference using Tub.ai in
section III, before presenting the scores obtained by several
state-of-the-art NN architectures in section IV.

II. PROPOSED SCORE AND TOOLING

As seen in section I, some methodologies for NN-scoring
already exist. However, they are solely computed using the
accuracy and parameters from the neural networks’ technical
sheets (MACs and parameters). When considering power effi-
ciency, the literature shows [6] that power consumption does not
scale linearly with either multiply-accumulates or parameters,
which are the more common estimators for complexity in deep
learning. Moreover, while these scores provide an estimation
of the trade-off between accuracy and complexity, they are not
measures.

Since our logic is not to maximize accuracy, the best neural
network for a specific application will depend on the hardware.
We aim to strike an optimum between accuracy and power
consumption. Only the inference phase is considered here.
What seemed the most important to us was (i) accuracy, (ii)
speed of inference, and (iii) power consumption per inference
(in mWh). After several tests, we chose the formula in equation
(3):

Composite Score =
Accuracy2

Power consumption per inference
(3)

This formulation, when developed as

Score =

(
Number of correct inferences

Number of inferences

)2
(

Total Power consumption
Number of inferences

)
Simplifies as

Score =
Accuracy

Average power consumed to obtain one correct inference
(4)

We found that the power consumption per inference was
sufficiently dependent on the speed of inference (the slower
the inference, the higher the power consumption per inference)
not to include the speed of inference as is. Using the rate of
inference seemed to favor fast neural networks too much. This
version of the score is easily comparable and has meaning from
a physics standpoint. As shown in equation (4), it represents the
accuracy captured by the average amount of energy consumed
to obtain a single correct inference.

As stated above, this score requires measurements made
during inference. Therefore, a way of obtaining reliable
measurements of energy consumption was needed.

One of the main problems encountered when attempting
to measure power consumption is how to measure metrics
on our systems precisely. To do this, we created a new tool,
Tub.ai. Using various software and protocols, Tub.ai allows us
to gather utilization metrics from our machines. Here, these
metrics were gathered directly from the CPU[9] and GPU[8]
drivers, via RAPL and Nvidia-DCGM measurements.

Once the data sources are set up, we need to aggregate them
to exploit said data efficiently. To do this, we use a time series

System MetricsCPU Consumption GPU Metrics

Timeseries Database

Display Engine

Custom Metrics

Figure 1: Flowchart of Tub.ai’s architecture

database that will store our data and allow us to query it at
will. Over this database, we add a display engine that runs in
the browser for easy visualization.

Once all the individual bricks have been aggregated, we
obtain the architecture displayed in figure 1. Tub.ai only uses
open-source applications and will be made open-source for the
community to use after publication. Tub.ai is highly modular
and can be used to gather an extensive range of data pertaining
to the usage of a computer, including custom metrics.

III. CURATING DATA ON DIFFERENT NN ARCHITECTURES

In this section, we extract data from our system while several
computer vision NN architectures infer on the ILSVRC2012
dataset [14]. This dataset was chosen due to its size and the
amount of research available on it. It comprises 1000 classes,
with a training dataset containing 1.28 million images, a test
dataset containing 100,000 images, and a validation dataset
containing 50,000 images. We chose to test several versions
of the Inception-ResnetV2 [10], NasNet [11], MobileNetV3
[12] and EfficientNetv2 [13] architectures. These architectures,
released between 2016 and 2021, have either achieved then
state of the art performance or approached it closely.

The experiment consists of inferences on ILSVRC2012.
All models were implemented using Tensorflow 2.10 with
Keras, Cuda 11.4, CudNN 8.3, and Python 3.10. We used
several different testing machines representing several grades
of computers.

• For HPC servers: A single A100 GPU with 40GB of
V-RAM, coupled with an AMD EPYC 7742 Processor
(128 cores) and 504GB of RAM

• For upper-grade workstations: A Bi-Xeon 5222 worksta-
tion with 64GB of RAM and a Quadro RTX 5000 GPU
with 16GB of V-RAM.

• For lower grade machines: A laptop comprising an i7-8565
CPU and 8GB of RAM

For the sake of readability, all runs will be given different
tags: "A100" for the A100 runs, "Quadro" for the RTX 5000
runs, "Bi-Xeon" for the dual Xeon 5222 runs, and "i7" for
the laptop runs. Each neural network’s implementation was
downloaded with pre-trained weights via the Tensorflow API.
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Table I: Comparison of NN architectures based on Tub.ai’s metrics, inference on ILSVRC2012 validation dataset, Nvidia A100

Model Name Year Validation Inference Average GPU power Total power Average Average GPU Average
accuracy time (s) consumption (W) used (Wh) GPU usage (%) memory usage (%) CPU usage (%)

Inception ResNet V2 [10] 2016 80.3% 76 211 4.5 92 99 4.3

NasNet Mobile [11] 2017 74.4% 39 144 1.6 57 99 5.3

NasNet Large [11] 2017 82.5% 204 264 15 95 99 2.7

MobileNetV3 Small [12] 2019 68.1% 15 107 0.5 40 99 10.7

MobileNetV3 Large [12] 2019 75.6% 16 162 0.7 62 99 9.9

EfficientNetV2 S[13] 2021 83.9% 89 253 6.3 88 99 4.7

EfficientNetV2 M[13] 2021 85.1% 212 259 15.3 93 99 3.4

EfficientNetV2 L[13] 2021 85.7% 365 262 26.5 96 99 3.2
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Figure 2: Nvidia A100 power consumption for 3 architectures

Figure 2 presents the instantaneous power consumption
measured by Tub.ai for the A100 GPU during several inferences
runs on the training dataset using three different architectures.
EfficientNet S and NasNet Mobile were run three times in
succession with no timeout. MobileNet Small was run ten
times with a 30 seconds timeout between each run to provide
a reference. It can be seen that the instantaneous power
consumption may exhibit significant variations over a single run.
It is interesting to observe that NasNet Mobile and MobileNet
Small yield a much lower power consumption than EfficientNet.
This suggests that the former architectures are bandwidth-bound
on this setup, while the computing capabilities of the GPU
bind the latter architecture.
In table I, we provide the data obtained on the Nvidia A100
tests. All key indicators were measured during three inferences
on the complete ImageNet validation dataset. Using three
inferences was deemed robust enough as the results proved
very consistent: even when chaining ten successive inferences
over 1 million images each, the average deviation to the mean
for each run settled below 2%. The most significant observed
outlier remained within 5% of the average across all runs. No
occurrences of thermal throttling or startup lag were observed.

CPU usage can be considered a good indicator of the model’s
throughput for GPU runs since the CPU handles the I/O.The
CPU performance overhead introduced by Tub.ai is negligible
compared to the CPU resources used by the inference during the
benchmark: we measured an average load of 0.05%. The GPU’s
constant 99% memory usage is due to TensorFlow’s inner
workings, systematically reserving as much V-RAM as possible.
When comparing the least and most consuming architectures,
we can remark that there is a more than two-fold factor between
instantaneously available metrics on this setup. We also observe
a fifty-fold total power consumption factor.

IV. SCORING NEURAL NETWORKS

This metric aims to be a tool to evaluate the efficiency
of different neural network architectures. It can be helpful
in constrained systems, where there are limitations on both
power consumption and computing power. It can also be used
to evaluate the main leverage of any advancement in neural
network architectures. The edge of an architecture may be
its capacity to leverage Moore’s Law and the algorithmic
advances made on the various frameworks [1], or it can be a
less quantifiable change made in the structure of the architecture
that makes it sparser, faster or lighter.

Finally, other researchers may want to employ different
coefficients or consider more factors for specific use cases.
We hope that our approach and the developed tooling will be
valuable for the community to introduce new scores. Using our
score, we obtain the ranking presented in table II-and table III.

Table II: Ranking of NN architectures using different scores

Model Score[5] Netscore A100 score Xeon score
ResNetV2 5 5 4 4

NasNet Mobile 3 3 3 2
NasNet Large 7 7 7 6

MobileNetV3 S 1 1 1 1
MobileNetV3 L 2 2 2 3
EfficientNetV2 S 4 4 5 5
EfficientNetV2 M 6 6 6 7
EfficientNetV2 L 8 8 8 8
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Table III: Power efficiency of neural network architectures based on our new metric

Model Validation Power consumption/inference (µWh) Score [5] NetScore Our Score
accuracy A100 Quadro Bi-Xeon i7 A100/A100 Quadro/A100 Bi-Xeon/A100 i7/A100

ResNetV2 [10] 80.3% 89 290 3,017 3,961 1.44 47 7.2/1 2.2/3.3 0.21/34 0.16/45

NasNet Mobile [11] 74.4% 31 63 302 580 14 70.1 17.9/1 8.8/2 1.84/8.9 0.95/19

NasNet Large [11] 82.5% 299 792 4,792 9,766 0.9 42.4 2.3/1 0.86/2.6 0.14/16 0.07/33

MobileNetV3 S [12] 68.1% 9 16 143 120 28.4 83.1 51.5/1 29.0/1.8 3.24/16 3.87/13

MobileNetV3 L [12] 75.6% 14 29 334 293 14 74.5 40.8/1 19.5/2.1 1.70/24 1.95/21

EfficientNetV2 S [13] 83.9% 125 286 3,340 4,195 3.9 54.2 5.6/1 2.46/2.3 0.21/27 0.17/34

EfficientNetV2 M [13] 85.1% 305 877 8,794 12,236 1.6 46.0 2.4/1 0.83/2.9 0.08/29 0.06/40

EfficientNetV2 L [13] 85.7% 530 1,539 16,698 24,346 0.7 39 1.4/1 0.48/2.9 0.04/32 0.03/46

First, our ranking seems generally consistent with the scores
obtained using [5] and [7]. Second, we observe a difference
in the hierarchy depending on the setup: on the Bi-Xeon
platform, NasNet Mobile outperforms MobileNetV3 Large,
and NasNet Large outperforms EfficientNetV2 Medium. Third,
by observing the factor of proportionality between our scores
and the A100 score (in small fonts next to each of our scores),
we can see that some architectures (Inception ResNetV2,
EfficientNetv2 Large) are much more penalized than other
architectures (MobileNet, NasNet) when changing setup. This
result confirms the value of taking measurements on neural
network inferences rather than relying on platform-independent
metrics. We hypothesize that this difference is due to a balance
between computing and bandwidth requirements making some
architectures less hardware constrained.

Despite having the highest average power consumption
of all platforms, the A100 has the highest score across all
architectures. While higher-grade hardware has higher idle
and in-charge energy usage, it usually exhibits a lower power
consumption per inference due to increased inference speed.
Notwithstanding, while the bi-Xeon setup outperforms the i7 on
most architectures, the i7 fares better on MobileNets. This result
emphasizes the need to study the envisioned application of a
given neural network to extract its maximum performance. It
also calls for more work on the architecture of neural networks
to identify the limiting factor across different hardware settings
and obtain the best hardware-software fit.

MobileNetv3 Small has a net lead over all other networks and
ranks first on all platforms, which seems reasonable since the
MobileNet architecture was created to be "a class of efficient
models [...] for mobile and embedded vision applications"
[15]. Some of the more recent models perform worse than
older models in terms of score. It seems likely that, in the
future, the discrepancy between networks made for optimum
efficiency and those created solely for performance will
drift apart further. This observation leads to new approaches,
with some recent architectures [16] [17] seeking to optimize
training/inference speed rather than accuracy or parameter
efficiency and advocating for better architecture-algorithm
adequation.

We hope that it will be more commonplace in the future that
some benchmarks rank neural network architectures using not

only the validation accuracy but also more metrics, especially
power consumption measured on both training and inference.

V. CONCLUSION AND FUTURE WORKS

In this paper, we attempted to create a score based not on a
technical datasheet but on measurements made on a platform.
The idea is to measure the algorithm-architecture adequation
between specific NNs and hardware. To obtain the required
metrics to compute our score, we created Tub.ai.

Tub.ai provides researchers with various metrics that can be
leveraged to create meaningful comparisons between different
software implementations and architectures. Tub.ai is open
source, induces very little overhead in terms of performance,
and is easy to use. This approach significantly benefits system
developers who have to develop or optimize algorithms for
specific hardware.

Our deep neural network architecture benchmarks estimate
how well they are fitted to be run on different platforms. The
score values we have obtained across several architectures show
that there can be significant discrepancies between platforms
for the same neural network - which proves the interest of
scoring using measurements. To our best knowledge, this is the
first time power efficiency measurements have been included
in the performance evaluation of neural network architectures.
In a context of growing concern for the ecological impact of
machine learning and high-performance computing in general,
it is a step forward in the field of HPC where the main focus
is not solely the algorithm’s or architecture’s performance but
also their power efficiency.

In the future, we plan on furthering the work we have
done on scoring by exploring other hardware, architectures,
and frameworks. Using identical neural network architectures
implemented on different frameworks and running them on
various test hardware, we would like to evaluate how well
available deep learning frameworks can exploit the hardware’s
capabilities. An examination of the power efficiency of spe-
cialized neural processing units with regard to our score is
planned. Similar undertakings on other datasets are considered.
We also plan on updating Tub.ai and making it more precise
and easier to use. We would be especially interested in seeing
the results of neural network architecture search using this new
score as the optimizing criterion.
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