Valentin Lemarié 
  
Parabolic-Elliptic Keller 
  
Parabolic-Elliptic Keller-Segel' 
  
S System 
  

come    

Introduction

In this article, we will focus on two systems : Euler-Poisson and parabolic-elliptic Keller-Segel system. Let us first present these systems and motivate their study.

The Euler-Poisson system with damping, set on the whole space R d (where d ≥ 2) reads:

   ∂ t ρ ε + div(ρ ε v ε ) = 0, ∂ t (ρ ε v ε ) + div(ρ ε v ε ⊗ v ε ) + ∇ (P (ρ ε )) + ε -1 ρ ε v ε = -ρ ε ∇V ε , -∆V ε = ρ ε -ρ (1.1) 
where ε > 0, ρ ε = ρ ε (t, x) ∈ R + represents the density of the gas (with ρ > 0 a constant state), v ε = v ε (t, x) ∈ R d the velocity, the pressure P (z) = Az γ with γ > 1 and A > 0, as well as V ε = V ε (t, x) the potential. This is the classical Euler compressible system with damping, to which we added a coupling with the Poisson equation.

Without this coupling, System (1.1) reduces to the compressible Euler system with the damping coefficient ε -1 :

∂ t ρ ε + div(ρ ε v ε ) = 0, ∂ t (ρ ε v ε ) + div(ρ ε v ε ⊗ v ε ) + ∇ (P (ρ ε )) + ε -1 ρ ε v ε = 0.
This system was recently studied by Crin-Barat and Danchin in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multidimensional case[END_REF] where they established a result of existence and uniqueness of global solutions for sufficiently small data, and obtained optimal time decay estimates for these solutions. In parallel, they studied the singular limit of the system when the damping coefficient tends towards infinity. They then obtained the equation of porous media. In this article, we will draw freely on this study and the method used to obtain a priori estimates.

The system that we will study is usually used to describe the transport of charge carriers (electrons and ions) in semiconductor devices or plasmas. The system consists of conservation laws for mass density and current density for carriers, with a Poisson equation for electrostatic potential. This system is also of interest in other fields like e.g. in chemotaxis: then, ρ ε represents cell density and V ε , the concentration of chemoattractant secreted by cells. For recent results on the Euler-Poisson system: well-posedness, existence of global solutions, study of long-time behavior or other singular limits, the reader can refer to [START_REF] Ali | Global existence of smooth solutions of the N-dimensional Euler-Poisson model[END_REF], [START_REF] Ali | The zero-electron-mass limit in the hydrodynamic model for plasmas[END_REF], [START_REF] Ali | Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma[END_REF], [START_REF] Cordier | Quasineutral limit of an Euler-Poisson system arising from plasma physics[END_REF], [START_REF] Fang | Global exponential stability of classical solutions to the hydrodynamic model for semiconductors[END_REF], [START_REF] Lattanzio | On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit[END_REF], [START_REF] Li | Global existence and asymptotic behavior of the solutions to the three-dimensional bipolar Euler-Poisson systems[END_REF], [START_REF] Xu | The optimal decay estimates for the Euler-Poisson two-fluid system[END_REF] and [START_REF] Xu | Zero-electron-mass limit of Euler-Poisson equations[END_REF].

As in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF], in order to investigate the asymptotics of solutions of (1.1) when ε goes to 0, we perform the following so-called diffusive change of variable:

(˜ ε , ṽε )(τ, x) = ( ε , ε -1 v ε )(ε -1 τ, x) (1.2) so that we have    ∂ t ˜ ε + div(˜ ε ṽε ) = 0 ε 2 (∂ t ṽε + ṽε • ∇ṽ ε ) + ∇ (P (˜ ε )) ˜ ε + ṽε + ∇(-∆) -1 (˜ ε -) = 0. (1.3) 1
We then define the damped mode:

W ε := ∇ (P (˜ ε )) ˜ ε + ṽε + ∇(-∆) -1 (˜ ε -). (1.4)
As the first equation of (1.3) can be rewritten as

∂ t ˜ ε -∆ (P (˜ ε )) -div ˜ ε ∇(-∆) -1 (˜ ε -) = div(˜ ε W ε ),
we expect the limit density N to satisfy the following parabolic-elliptic Keller-Segel system :

∂ t N -∆ (P (N )) = div (N ∇V ) -∆V = N - (1.5)
supplemented with the initial data lim ε→0 ˜ ε 0 .

Our second aim is to justify the passage to the limit when ε → 0 of the Euler-Poisson system towards the parabolic-elliptic Keller-Segel system.

Recall that (1.5) is a model for describing the evolution of density N = N (t, x) ∈ R + of a biological population under the influence of a chemical agent with concentration V = V (t, x) ∈ R d . Chemotaxis are an important means of cell communication. How cells are arranged and organized is determined by communication by chemical signals. Studying such a biological process is important because it has repercussions in many branches of medicine such as cancer [START_REF] Condeelis | The great escape: When cancer cells hijack the genes for chemotaxis and motility[END_REF], [START_REF] Murray | Mathematical biology, II: spatial models and biomedical application[END_REF], embryonic development [START_REF] Li | Cell migration and chick limb development: chemotactic action of FGF-4 and the AER[END_REF] or vascular networks [START_REF] Carmeliet | Mechanisms of angiogenesis and arteriogenesis[END_REF], [START_REF] Helmlinger | Formation of endothelial cell networks[END_REF]. The previous system is famous in biology and comes from E.F Keller and L.A Segel in [START_REF] Keller | Model for chemotaxis[END_REF]. This basic model was used to describe the collective movement of bacteria possibly leading to cell aggregation by chemotactic effect. We refer to the articles [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] and [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I[END_REF] for more details and information about the different Keller-Segel models studied since the 1970s.

Our aim here is to demonstrate that (1.5) may be obtained from the Euler-Poisson system with damping when the parameter ε tends to 0. This question has been addressed in [START_REF] Lattanzio | From gas dynamics with large friction to gradient flows describing diffusion theories[END_REF] on the torus case and Sobolev spaces in a situation where the potential satisfies a less singular equation : the author justifies the passage to the limit for regular periodic solutions. A lot of articles justify another limit: the passage from the parabolic-parabolic Keller-Segel system to the parabolic-elliptic Keller-Segel system (see e.g. the paper [?] by P-G. Lemarié-Rieusset for the case of Morrey spaces).

In the same spirit as this article, T. Crin-Barat, Q. He and L. Shou in [START_REF] Crin-Barat | The hyperbolic-parabolic chemotaxis system modelling vasculogenesis: global dynamics and relaxation limit[END_REF] justified the high relaxation asymptotics for the (less singular) parabolic-parabolic Keller-Segel system (the potential satisfies the equation -∆V + bV = aN with a, b > 0) : this other system comes from the system (HPC) (hyperbolic-parabolicchemotaxis) which is a damped isentropic compressible Euler system with a potential satisfying an elliptical equation. In comparison with what is done here, T. Crin-Barat et al used a parabolic approach to justify their passage to the limit. Here, we have to handle the more singular case where the limit system is parabolicelliptic.

Main results and sketch of the proof

In this section, we will first present and motivate the functional spaces used. Secondly we will state the results and the sketch of the proofs about the well-posedness behavior of Euler-Poisson system and the justification of the passage to the limit to parabolic-elliptic Keller-Segel system.

Functional spaces.

Before describing the main results of this article, we introduce the different notations and definitions used throughout this document. We will designate by C > 0 an independent constant of ε and time, and f g will mean f ≤ Cg. For any Banach space X and all functions f, g ∈ X, we denote (f, g) X : = f X + g X . We designate by L 2 (R + ; X) the set of measurable functions f :

[0, +∞[→ X such that t → f (t) X belongs to L 2 (R + ) and write • L 2 (R + ;X) := • L 2 (X) .
In this article we will use a decomposition in Fourier space, called the homogeneous Littlewood-Paley decomposition. To this end, we introduce a regular non-negative function ϕ on R d with support in the

annulus {ξ ∈ R d , 3/4 ≤ |ξ| ≤ 8/3} and satisfying j∈Z ϕ(2 -j ξ) = 1, ξ = 0.
For all j ∈ Z, the dyadic homogeneous blocks ∆j and the low frequency truncation operator Ṡj are defined by

∆j := F -1 (φ(2 -j •)Fu), Ṡj u := F -1 (χ(2 -j •)Fu),
where F and F -1 designate respectively the Fourier transform and its inverse. From now on, we will use the following shorter notation :

u j := ∆j u.
Let S h the set of tempered distributions u on R d such that lim j→-∞ Ṡj u L ∞ = 0. We have then :

u = j∈Z u j ∈ S , Ṡj u = j ≤j-1 u j , ∀u ∈ S h .
Homogeneous Besov spaces Ḃs p,r for all p, r ∈ [1, +∞] and s ∈ R are defined by: Ḃs p,r := u ∈ S h u Ḃs p,r

:= {2 js u j L p } j∈Z l r < ∞ •
In this article, we will only consider Besov spaces of indices p = 2 and r = 1.

As we will need to restrict our Besov norms in specific regions of low and high frequencies, we introduce the following notations :

u h Ḃs 2,1 := j≥-1 2 js u j L 2 , u l Ḃs 2,1 := j≤-1 2 js u j L 2 , u l -,ε Ḃs 2,1 := j≤-1 2 j ≤ε 2 js u j L 2 , u l + ,ε Ḃs 2,1 := j≤-1 2 j ≥ε 2 js u j L 2 .
We put in the appendix several results about Besov spaces: the reader may refer to Chapter 2 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for more information on this topic.

Main results, sketch of the proofs and article organization.

The starting point is that, formally, (1.1) rewrites :

∂ t ρ ε + div(ρ ε v ε ) = 0, ∂ t (ρ ε v ε ) + div(ρ ε v ε ⊗ v ε ) + ∇ (P (ρ ε )) + ε -1 ρ ε v ε = -ρ ε ∇ (-∆) -1 (ρ ε -ρ) . (2.1)
By the variable change

(ρ, v) = (ρ ε , v ε )(εt, εx), (2.2)
we get the following system: :

∂ t ρ + div(ρv) = 0, ∂ t (ρv) + div(ρv ⊗ v) + ∇ (P (ρ)) + ρv = -ε 2 ρ∇ (-∆) -1 (ρ -ρ) . (2.3)
For the study of this system, the key is to obtain suitable global-in-time a priori estimates. Then, very classical arguments lead to existence and uniqueness of global solutions (see Theorem 2.1 below).

Obtaining estimates will be strongly inspired by the work done by Crin-Barat et al in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multidimensional case[END_REF] where we consider the classic compressible Euler system. As the system we are studying is very close to a partially dissipative system, we will follow [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF] so as to obtain a priori estimates : the standard energy method is not enough to conclude because we do not obtain all the information through this (mainly at the low frequencies) on the dissipated part. Hence, we must better use the coupling, exhibiting a combination of unknowns (the "purely" damped mode) that will allow us to recover the whole dissipation.

For the estimates, therefore, we follow the strategy proposed by Danchin in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF]: first (second part of the third section), we analyze how to obtain the estimates for the linear system in Besov space Ḃs 2,1 where s ∈ R is any at the moment. For high frequencies, we follow step by step the approach of [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF], by putting the negligible term containing ε 2 ∇∆ -1 , in order to obtain exponential decay. For low frequencies, the task is slightly more complicated because the latter term is no more negligible : we lose the symmetry condition and we can not apply Danchin's method. But by looking at the system differently (essentially by changing v to another variable dependent on ε), we obtain a symmetrical system for which we find the associated estimates (go back to the initial unknowns to get the estimates). We then see the appearance of two regimes within the low frequencies that will be named respectively very low frequencies (frequencies below ε) and medium frequencies (frequencies of magnitude between ε and 1). To recover the full dissipative properties of the system, we introduce the damped mode W := -∂ t v. Then, from the estimate satisfied by W, we will improve the estimate for the low frequency part of v.

Let us next explain how to choose the indices of regularity for the solution. Since our system is very similar to Euler's without coupling, we make the same choice as in [START_REF] Crin-Barat | Partially dissipative hyperbolic systems in the critical regularity setting: the multidimensional case[END_REF] : s = d 2 for the medium frequencies and s = d 2 + 1 for the high frequencies. We take d 2 -1 for the very low frequencies of the density in view of the estimate obtained for the linear system.

For proving a priori estimates for (2.

3), we have to take into account non-linear terms now. To do this, for high frequencies, we again follow the method described by [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF] with a precise analysis of the system using commutators.

Concerning the low frequencies, we need some information on the damped mode W = -∂ t v, before studying the estimates of the density and velocity. By combining the obtained inequalities,we deduce the desired a priori estimates.

Before stating our main results, we provide the reader with the following diagram so as to clarify the notations of the theorem:

1 • ε -1 • |ξ| l l + , 1, ε -1 h, ε -1 l -, ε -1
Our first result states the global well-posedness of the Euler Poisson system with high relaxation. We point out an explicit dependence of the estimates with respect to the damping parameter, that we believe to be optimal: Theorem 2.1. Let ε > 0. There exists a positive constante α such that for all ε ≤ 1/2 and initial data

Z ε 0 = ( ε 0 -, v ε 0 ) ∈ Ḃ d 2 -1 2,1 ∩ Ḃ d 2 +1 2,1 × Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1
satisfying :

Z ε 0 := ε 0 -l Ḃ d 2 -1 2,1 + ε 0 -l + , 1, ε -1 Ḃ d 2 2,1 + v ε 0 l -, ε -1 Ḃ d 2 2,1 + ε ( ε 0 -, v ε 0 ) h, ε -1 Ḃ d 2 +1 2,1 ≤ α, System (1.1) supplemented with the initial data ( ε 0 -ρ, v ε 0 ) admits a unique global-in-time solution Z ε = ( ε -ρ, v ε ) in the set E := ( ε -, v ε ) ( ε -) l ∈ C b (R + : Ḃ d 2 -1 2,1 ), ε( ε -) l ∈ L 1 (R + ; Ḃ d 2 -1 2,1 ), ( ε -) l + , 1, ε -1 ∈ C b (R + : Ḃ d 2 2,1 ), ε( ε -) l + , 1, ε -1 ∈ L 1 (R + ; Ḃ d 2 +1
2,1 ),

(v ε ) l -, ε -1 ∈ C b (R + ; Ḃ d 2 2,1 ), (v ε ) l ∈ L 1 (R + ; Ḃ d 2 2,1 ), (v ε ) l + , 1, ε -1 ∈ L 1 (R + ; Ḃ d 2 +1
2,1 ),

( ε -, v ε ) h,ε -1 ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), w ε ∈ C b (R + ; Ḃ d 2 2,1 ) ∩ L 1 (R + ; Ḃ d 2 2,1 )
where we have denoted

w ε := ε ∇ (P ( ε )) ε + v ε + ε∇(-∆) -1 ( ε -).
Moreover, we have the following inequality :

Z ε (t) ≤ CZ ε 0 where Z ε (t) := ε -l L ∞ Ḃ d 2 -1 2,1 + ε -l + , 1, ε -1 L ∞ Ḃ d 2 2,1 + v ε l -, ε -1 L ∞ Ḃ d 2 2,1 + ε ( ε -, v) h, ε -1 L ∞ Ḃ d 2 +1 2,1 + ε( ε -) l L 1 Ḃ d 2 -1 2,1 + v ε l L 1 Ḃ d 2 2,1 + ε ε -l + , 1, ε -1 L 1 Ḃ d 2 +2 2,1 + v ε l + , 1, ε -1 L 1 Ḃ d 2 +1 2,1 + ( ε -, v) h,ε -1 L 1 Ḃ d 2 +1 2,1 + w ε L ∞ Ḃ d 2 2,1 + ε -1 w ε L 1 Ḃ d 2 2,1
.

Remark 2.1. In summary, for large enough damping and small enough initial data, we get a global solution to the Euler-Poisson system. The demonstration will allow us to understand the choice of regularity indices for the different frequency groups. In addition, the control of the damped mode w ε in the above theorem which enable us to obtain on the one hand the a priori estimate of the theorem and on the other hand the following theorem on the singular limit of (1.1) when the damping coefficient ε -1 tends to infinity.

By the change of variable (1.2) and the existence theorem on Euler-Poisson, we then have

W ε = O(ε) in L 1 (R + ; Ḃ d 2 2,1
) where W ε is defined by (1.4) and we need to look at the solutions of (1.3) in the following functional space :

Ẽ := ( ε -, v ε ) ( ε -) l ∈ C b (R + : Ḃ d 2 -1 2,1 ), ε( ε -) l ∈ L 1 (R + ; Ḃ d 2 -1 2,1 ), ( ε -) l + , 1, ε -1 ∈ C b (R + : Ḃ d 2 2,1 ), ε( ε -) l ∈ L 1 (R + ; Ḃ d 2 +1 2,1 ), ( ε -) l + , 1, ε -1 ∈ L 1 (R + ; Ḃ d 2 +1
2,1 ),

ε(v ε ) l-, ε -1 ∈ C b (R + ; Ḃ d 2 2,1 ), (v ε ) l ∈ L 1 (R + ; Ḃ d 2 2,1 ), (v ε ) l + , 1, ε -1 ∈ L 1 (R + ; Ḃ d 2 +1
2,1 ),

( ε -, v ε ) h,ε -1 ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), w ε ∈ C b (R + ; Ḃ d 2 2,1 ) ∩ L 1 (R + ; Ḃ d 2 2,1 )
• By studying the system satisfied by the difference between the solution of Euler-Poisson and that of Keller-Segel parabolic-elliptic and thanks to the previous theorem, we manage to justify that the solutions of the Euler-Poisson system that has been scaled back will converge to the solutions of the Keller-Segel system towards the following theorem :

Theorem 2.2. We consider (1.3) for ε > 0 small enough. Then, there exists a positive constant α (inde-

pendent of ε) such that for all initial data N 0 ∈ Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 for (1.5) and Zε 0 ∈ Ẽ for (1.3) satisfying N 0 Ḃ d 2 2,1 ∩ Ḃ d 2 -1 2,1 ≤ α, (2.4) Zε 0 := ˜ ε 0 -l Ḃ d 2 -1 2,1 + ˜ ε 0 -l + , 1, ε -1 Ḃ d 2 2,1 + ε ṽε 0 l, ε -1 Ḃ d 2 2,1 + ε ˜ ε 0 -, εṽ ε 0 h, ε -1 Ḃ d 2 +1 2,1
≤ α, the system (1.5) admits an unique solution N in the space

C b R + ; Ḃ d 2 -2 2,1 ∩ Ḃ d 2 2,1 ∩ L 1 R + ; Ḃ d 2 -2 2,1 ∩ Ḃ d 2 
2,1 , satisfying for all t ≥ 0,

N (t) - Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 + t 0 N - Ḃ d 2 +2 2,1 ∩ Ḃ d 2 +1 2,1 dτ ≤ C N 0 - Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1
, (2.5) and the system (1.3) has an unique global-in-time solution Zε in Ẽ such that

Z(t) ≤ C Z0 where (2.6) Zε (t) := ˜ ε -l L ∞ Ḃ d 2 -1 2,1 + ˜ ε -l + , 1, ε -1 L ∞ Ḃ d 2 2,1 + ε ṽε l, ε -1 L ∞ Ḃ d 2 2,1 + ε (˜ ε -, εṽ ε ) h, ε -1 L ∞ Ḃ d 2 +1 2,1 + ˜ ε -l L 1 Ḃ d 2 -1 2,1 + ṽε l L 1 Ḃ d 2 2,1 + ˜ ε -l + , 1, ε -1 L 1 Ḃ d 2 +2 2,1 + ṽε l + , 1, ε -1 L 1 Ḃ d 2 +1 2,1 + ε -1 (˜ ε -, εṽ ε ) h,ε -1 L 1 Ḃ d 2 +1 2,1 + ε W ε L ∞ Ḃ d 2 2,1 + ε -1 W ε L 1 Ḃ d 2 2,1
where W ε has been defined in (1.4).

Moreover, if, N 0 -˜ ε 0 Ḃ d 2 -1 2,1
≤ Cε, then we have

N -˜ ε L ∞ R + ; Ḃ d 2 -1 2,1 + N -˜ ε h L 1 R + ; Ḃ d 2 +1 2,1 + N -˜ ε l L 1 R + ; Ḃ d 2 2,1 ≤ Cε.
Remark 2.2. This theorem ensures that the solution densities of the Euler-Poisson system converge (in the space highlighted in the theorem) towards the only solution of the Keller-Segel system. For the velocity limit, we can take the limit in (1.4).

Study of the Euler-Poisson system with damping

This section is devoted to the proof of theorem 2.1.

3.1.

Study of the linearized system. Linearizing (2.3) around ( , 0) yields the following system :

∂ t + div v = 0 ∂ t v + P (ρ)∇ + v = -ε 2 ∇ (-∆) -1 .
Performing the change of unknown ρ := (t, P (ρ)x) reduces the study to the case P (ρ) = 1 (after changing ε into ε := ε P (ρ)

). Hence we focus on the following linear system :

∂ t + div v = 0, ∂ t v + ∇ + v = -ε 2 ∇ (-∆) -1 . (3.1)
By the Fourier transform, we get :

d dt v + 0 iξ i 1 + ε 2 |ξ| -2 ξ t I d v = 0.
The eigenvalues of the matrix of this system are:

• 1 is with multiplicity d -1, •        λ ± (ξ) = 1 2 (1 ± 1 -4(|ξ| 2 + ε 2 )) if |ξ| 2 + ε 2 < 1 4 λ ± (ξ) = 1 2 (1 ± i 4(|ξ| 2 + ε 2 ) -1) else
are the two remaining eigenvalues.

For the high frequencies, we thus have :

Re λ ± (ξ) = 1.
As for partially dissipative hyperbolic systems, we expect exponential decay for high frequencies.

For the low frequencies, in the case ε < 1/2, two regimes have to be considered: a very low frequency regime (i.e for |ξ| ≤ 1/4 -ε 2 ) and another for the medium frequencies (for

|ξ| ≥ 1/4 -ε 2 ).
In what follows, we prove a priori estimates for a smooth enough solution ( , v) of (3.1). 

:= j≥-1 2 js ∆j Z L 2 .
Then we have :

Z(t) h Ḃs 2,1 + t 0 Z h Ḃs 2,1 dτ Z 0 h Ḃs 2,1
.

Proof. Since the classical energy method does not provide enough information, we consider, as in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF], the evolution equation of ∇ • v, namely

∂ t (∇ • v) = ∇∂ t • v + ∇ • ∂ t v = -∇ div v • v -∇ • ∇ + v + ε 2 ∇(-∆) -1 •
We then integrate on R d and by integration by parts :

R d ∂ t (∇ • v)dx + R d ∇ • vdx = div v 2 L 2 -∇ 2 L 2 -ε 2 2 L 2 .
By taking the gradient in (3.1) and taking the scalar product with ∇ (respectively ∇v), we get :

       1 2 d dt ∇ 2 L 2 - R d ∇∇ • ∇vdx = 0 1 2 d dt ∇v 2 L 2 + R d ∇∇ • ∇vdx + ∇v L 2 = -ε 2 t 0 ∇∇(-∆) -1 • ∇vdx.
These identities are also true for ( j , v j ) (where j = ∆j and v j = ∆j v) since the studied system is linear with constant coefficients. To study high frequencies, we will further assume that j ∈ N.

We then set

L j := 1 2 ∇ j 2 L 2 + 1 2 ∇v j 2 L 2 + 1 4 R d ∇ j • v j dx which verifies : 3 8 ∇ j 2 L 2 + ∇v j 2 L 2 ≤ L j ≤ 5 8 ∇ j 2 L 2 + ∇v j 2 L 2
because for j ≥ 0, v j L 2 ≤ 1 2 ∇v j L 2 by Bernstein's inequality. Then we have :

d dt L j + ∇v j 2 L 2 + 1 4 R d ∇ j • v j dx - 1 4 div v 2 L 2 + 1 4 ∇ j 2 L 2 ≤ ε 2 j L 2 ∇v j L 2 + ε 2 4 j 2 L 2 ≤ 2ε 2 4 ∇ j 2 L 2 + 2ε 2 4 ∇v j 2 L 2 .
By the inequalities of Cauchy-Schwarz and Bernstein, we have :

∇v j 2 L 2 + 1 4 R d ∇ j • v j dx - 1 4 div v 2 L 2 + 1 4 ∇ j 2 L 2 - 2ε 2 4 ∇ j 2 L 2 + 2ε 2 4 ∇v j 2 L 2 ≥ - 1 4 ∇ j L 2 v j L 2 + 3 -2ε 2 4 ∇v j 2 L 2 + 1 -2ε 2 4 ∇ j 2 L 2 ≥ 4 -4ε 2 8 ∇v j 2 L 2 + 1 -4ε 2 8 ∇ j 2 L 2 ≥ 1 -4ε 2 5 L j .
By the inequality on L j , we thus get :

d dt L j + 1 -4ε 2 5 L j ≤ 0.
For ε ≤ 1 4 , so we get :

∇( j , v j )(t) L 2 + 3 20 t 0 ∇( j , v j ) L 2 dτ ≤ ∇( j , v j )(0) L 2 .
We multiply by 2 j(s-1) and we sum up on j ∈ N, we get then the inequality announced in the proposition (the case j = -1 that presents no particular difficulty can be studied separately).

3.1.2. Low frequency behavior. We have to proceed differently since the term -ε 2 ∇(-∆) -1 is of order -1. The goal will be here to understand his role.

Let us use the Helmholtz decomposition to highlight the two behaviors corresponding respectively to the solenoid and the irrotational part of v: v = Pv + Qv where P and

Q verify P = Id + ∇(-∆) -1 div and Q = -∇(-∆) -1 div .
First, let us look at the equation verified by Pv. By applying P to the second equation of the system (3.1) and using that P∇ = 0, we get :

∂ t Pv + Pv = 0.
By applying ∆j and taking the scalar product with Pv j , we have:

d dt Pv j 2 L 2 + Pv j 2 L 2 = 0.
Then we have by (A.1):

Pv j (t) L 2 + t 0 Pv j L 2 dτ ≤ Pv 0,j L 2 . (3.2)
Now let us look at the system satisfied by the divergence of v and . We then set u = div v. By taking the divergence in the second equation of (3.1), we get the following 2 × 2 system :

∂ t + u = 0, ∂ t u + ∆ + u = ε 2 .
In Fourier variables, it becomes :

∂ t + u = 0, ∂ t u -(|ξ| 2 + ε 2 ) + u = 0.
Setting w := 1

|ξ| 2 + ε 2 u yields : ∂ t Z + A(D) Z + B(D) Z = 0 (3.3) where Z = w , A(ξ) = 0 |ξ| 2 + ε 2 -|ξ| 2 + ε 2 0 , B(ξ) = 0 0 0 1 •
Let us build by hand a Lyapunov functional, allowing us to recover the dissipative properties of the system on Z. By taking the scalar product with Z in (3.3) and looking at the time derivative of Re ( • w), we have:

                   1 2 d dt | | 2 + |ξ| 2 + ε 2 Re( • w) = 0, 1 2 
d dt | w| 2 -|ξ| 2 + ε 2 Re( • w) + | w| 2 = 0, d dt Re( • w) = -|ξ| 2 + ε 2 | w| 2 + |ξ| 2 + ε 2 | | 2 -Re( • w).
With these equations, we can easily deduce the Lyapunov functional and the equation it verifies:

d dt | | 2 + | w| 2 -|ξ| 2 + ε 2 Re( • w) + (2 -(|ξ| 2 + ε 2 ))| w| 2 + (|ξ| 2 + ε 2 )| | 2 -|ξ| 2 + ε 2 Re( • w) = 0. Yet |ξ| 2 + ε 2 Re( • w) ≤ |ξ| 2 + ε 2 2 | | 2 + | w| 2 2 •
Thus for |ξ| 2 + ε 2 ≤ 1, we have:

d dt | | 2 + | w| 2 -|ξ| 2 + ε 2 Re( • w) + |ξ| 2 + ε 2 2 | w| 2 + |ξ| 2 + ε 2 2 | | 2 ≤ 0.
We have then:

|( , w) (t, ξ)| ≤ 2e -1 8 (|ξ| 2 +ε 2 )t |( 0 , w 0 ) (ξ)| . (3.4)
So we have after spectral localization of the system by means of ∆j with j ≤ -1 and for ε small enough:

( j , w j )(t) L 2 + 1 8 (2 2j + ε 2 ) t 0 ( j , w j ) L 2 dτ ≤ 2 ( 0,j , w 0,j ) L 2 . (3.5)
We have a priori estimate on Zj . A similar estimate has yet to be obtained for ( j , u j ). By definition of w and by multiplying (3.5) by 2 2j + ε 2 , we have as an estimate :

( 2 2j + ε 2 j , u j )(t) L 2 + 2 2j + ε 2 t 0 ( 2 2j + ε 2 j , u j ) L 2 dτ ( 2 2j + ε 2 0,j , u 0,j ) L 2 .
These estimates reveal two distinct regimes within the low frequencies : |ξ| ≤ ε ("very low frequencies") and |ξ| ≥ ε ("medium frequencies"). For very low frequencies, we have 2 2j + ε 2 ε 2 , and thus

(ε˜ j , u j )(t) L 2 + ε 2 t 0 (ε˜ j , u j ) L 2 dτ (ε˜ 0,j , u 0,j ) L 2 with u = div v,
and for the medium frequencies, since

2 2j + ε 2 2 2j , (˜ j , v j )(t) L 2 + 2 2j t 0 (˜ j , v j ) L 2 dτ (˜ 0,j , v 0,j ) L 2 .
Consequently, if we denote :

Z l -,ε Ḃs 2,1 := j≤-1 2 j ≤ε 2 js Z j L 2 et Z l + ,ε Ḃs 2,1 := j≤-1 2 j ≥ε 2 js Z j L 2 . (3.6)
then, we obtain:

               (ε˜ , div(v))(t) l -,ε Ḃs 2,1 + ε 2 t 0 (ε˜ , div(v)) l -,ε Ḃs 2,1 dτ (ε˜ 0 , div(v 0 )) l -,ε Ḃs 2,1 (˜ , v)(t) l + ,ε Ḃs 2,1 + t 0 (˜ , v) l + ,ε Ḃs+2 2,1 dτ (˜ 0 , v 0 ) l + ,ε Ḃs 2,1
,

Pv(t) l Ḃs 2,1 + t 0 Pv l Ḃs 2,1 dτ Pv 0 l Ḃs 2,1
(incompressible part).

3.1.3. Damped mode and improvement of estimates for v.

Like in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF], we consider the damped mode :

W := -∂ t v = ∇ + ε 2 ∇(-∆) -1 + v.
We have :

∂ t W + W = -(∇ + ε 2 ∇(-∆) -1 ) div v.
By applying the localization operator ∆j , taking the scalar product with Wj , multiplying by 2 js , summing up on j corresponding to very low and medium frequencies and applying the lemma A.1, we get :

       W (t) l -,ε Ḃs 2,1 + t 0 W l -,ε Ḃs 2,1 dτ W0 l -,ε Ḃs 2,1 + t 0 ε 2 v l -,ε Ḃs 2,1 dτ W (t) l + ,ε Ḃs 2,1 + t 0 W l + ,ε Ḃs 2,1 dτ W0 l + ,ε Ḃs 2,1 + t 0 v l + ,ε Ḃs+2 2,1 dτ .
In particular, we have :

   W0 l -,ε Ḃs 2,1 ε 2 0 l -,ε Ḃs-1 2,1 + v 0 l -,ε Ḃs 2,1 W0 l + ,ε Ḃs 2,1 0 l + ,ε Ḃs+1 2,1 + v 0 l + ,ε Ḃs 2,1
.

By using the fact v = W -∇ -ε 2 ∇(-∆) -1 and the estimates on the low frequencies obtained previously, we have :

                       v(t) l -,ε Ḃs 2,1 ≤ W (t) l -,ε Ḃs 2,1 + ε 2 (t) l -,ε Ḃs-1 2,1 ε 2 0 l -,ε Ḃs-1 2,1 + v 0 l -,ε Ḃs 2,1 + t 0 ε 2 v l -,ε Ḃs 2,1 dτ t 0 ε v l -,ε Ḃs 2,1 dτ ≤ t 0 ε W l -,ε Ḃs 2,1 dτ + t 0 ε 3 l -,ε Ḃs-1 2,1 dτ ε 0 l -,ε Ḃs-1 2,1 + v 0 l -,ε Ḃs 2,1 + t 0 ε 2 v l -,ε Ḃs 2,1 dτ v(t) l + ,ε Ḃs 2,1 W (t) l + ,ε Ḃs 2,1 + (t) l + ,ε Ḃs+1 2,1 0 l + ,ε Ḃs+1 2,1 + v 0 l + ,ε Ḃs 2,1 + t 0 v l + ,ε Ḃs+2 2,1 dτ t 0 v l + ,ε Ḃs+1 2,1 dτ ≤ t 0 W l + ,ε Ḃs+1 2,1 dτ + t 0 l + ,ε Ḃs+2 2,1 dτ 0 l + ,ε Ḃs 2,1 + v 0 l + ,ε Ḃs 2,1 + t 0 v l + ,ε Ḃs+2 2,1
dτ By summing up these inequalities and noticing that some terms in the right-hand side are negligible compared to those of the left-hand side, we get :

       v(t) l -,ε Ḃs 2,1 + t 0 ε v l -,ε Ḃs 2,1 dτ ε 0 l -,ε Ḃs-1 2,1 + v 0 l -,ε Ḃs 2,1 v(t) l + ,ε Ḃs 2,1 + t 0 v l + ,ε Ḃs+1 2,1 dτ 0 l + ,ε Ḃs 2,1 + v 0 l + ,ε Ḃs 2,1

3.2.

A priori estimates for the non-linear system.

Let us now prove similar estimates for the non-linear system. To do this, we use Makino symmetrization, which consists in setting c := (γA)

1 2 γ γ with γ = γ -1 2 • (3.7)
After this change of unknown, we obtain: Then we get:

     ∂ t c + v • ∇c + γc div(v) = 0 ∂ t v + v • ∇v + γc∇c + v = -ε 2 ∇ (-∆) -1 γ (γA) 1 2 1 γ c 1 γ - . (3.8) We set f (x) := γ (γA)
∂ t c + v • ∇c + γc div(v) + γc div(v) = 0, ∂ t v + v • ∇v + γc∇c + γc∇c + v = -ε 2 ∇ (-∆) -1 G(c). (3.9)
After changing v(t, x) and c(t, x) into v(t, γcx) and c(t, γcx), respectively, we can look at the following system (keeping the previous notations) :

     ∂ t c + 1 γc v • ∇c + div(v) + c c div(v) = 0, ∂ t v + 1 γc v • ∇v + ∇c + c c ∇c + v = -ε 2 ∇ (-∆) -1 G(c).
(3.10)

To simplify the presentation, suppose from now on that γc = 1 : the general case works the same way. We're going to assume throughout this section that:

(c, v) Ḃ d 2 2,1 1 . (3.11)
In view of the linear analysis, we will start the following study with the choice of index:

• d 2 -1 for very low frequencies, • d 2
for medium frequencies,

• d 2 + 1 for high frequencies.
This choice of index is strongly inspired by the results of [START_REF] Danchin | Fourier analysis methods for the compressible Navier-Stokes equations[END_REF] where to study the relaxation limit, a similar choice is taken.

Let us pose then :

L(t) := (εc, div v)(t) l -,ε Ḃ d 2 -1 2,1 + (c, v)(t) l + ,ε Ḃ d 2 2,1 + Pv(t) l Ḃ d 2 2,1 + (c, v)(t) h Ḃ d 2 +1 2,1 and 
H(t) := ε 2 (εc, div v)(t) l -,ε Ḃ d 2 -1 2,1 + (c, v)(t) l + ,ε Ḃ d 2 +2 2,1 + Pv(t) l Ḃ d 2 2,1 + (c, v)(t) h Ḃ d 2 +1 2,1
.

Lemma 3.2. We have the following inequalities :

             (c, v)(t) l Ḃ d 2 2,1 + (c, v)(t) h Ḃ d 2 +1 2,1 L(t), (c, v)(t) l Ḃ d 2 +2 2,1 + (c, v)(t) h Ḃ d 2 +1 2,1 ε 2 (c, v)(t) l -,ε Ḃ d 2 2,1 + (c, v)(t) l + ,ε Ḃ d 2 +2 2,1 + (c, v)(t) h Ḃ d 2 +1 2,1 H(t), ε 2 (c, v)(t) 2 Ḃ d 2 2,1 + (c, v)(t) 2 Ḃ d 2 +1 2,1 L(t) H(t).
Proof. The first two inequalities are easily deduced from the definition (3.6).

Let us set Z = (c, v). We have by definition and the second inequality:

ε 2 Z 2 Ḃ d 2 2,1 = ε 2 Z l -,ε Ḃ d 2 2,1 + ε 2 Z l + ,ε Ḃ d 2 2,1 + ε 2 Z h Ḃ d 2 2,1 Z Ḃ d 2 2,1 ε 2 Z l -,ε Ḃ d 2 2,1 + Z l + ,ε Ḃ d 2 +2 2,1 + ε 2 Z h Ḃ d 2 +1 2,1 Z Ḃ d 2 2,1 L H.
We have also :

Z 2 Ḃ d 2 +1 2,1 Z l -,ε Ḃ d 2 +1 2,1 2 + Z l + ,ε Ḃ d 2 +1 2,1 2 + Z h Ḃ d 2 +1 2,1 2 ε 2 Z l -,ε Ḃ d 2 2,1 + Z l + ,ε Ḃ d 2 2,1 Z l + ,ε Ḃ d 2 +2 2,1
+ L H L H.

High Frequency Estimates.

We rely on the high-frequency analysis carried out in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF].

Proposition 3.3. For high frequencies, we have the estimate:

Z(t) h Ḃ d 2 +1 2,1 + t 0 Z h Ḃ d 2 +1 2,1 dτ ≤ Z 0 h Ḃ d 2 +1 2,1 + C t 0 L(τ ) H(τ )dτ.
Proof. Let us denote

L j := 1 2 Z j 2 L 2 + 2 -2j 4 R d ∇c j • v j dx.
The following lemma will enable us to handle the first term of L j :

Lemma 3.4. We have the following inequality with Z = c v and ε = f (c) ε :

1 2 d dt Z j 2 L 2 + v j 2 L 2 + t 0 ε 2 ∇(-∆) -1 cj • v j dx ≤ Ca j 2 -j( d 2 +1) ∇Z Ḃ d 2 2,1 Z Ḃ d 2 +1 2,1 + ε 2 c 2 Ḃ d 2 2,1 Z j L 2
with (a j ) verifying j∈Z a j = 1. (3.12)

Proof. Let us apply ∆j to the system (3.10), then we get:

     ∂ t c j + v • ∇c j + c c div(v j ) + t 0 ε 2 ∇(-∆) -1 cj • v j dx = [v • ∇, ∆j ]c + [ c c , ∆j ] div(v), ∂ t v j + v • ∇v j + c c ∇c j + v j + ε 2 ∇(-∆) -1 cj = -ε 2 ∆j ∇(-∆) -1 F (c) + [v • ∇, ∆j ]v + [ c c , ∆j ]∇c.
By performing the scalar product with

Z j := cj v j in L 2 (R d ; R n ), we get: 1 2 d dt Z j 2 L 2 + v j 2 L 2 = - R d v • ∇c j + c c div(v j ) cj + R d [v • ∇, ∆j ]cc j dx + R d [ c c , ∆j ] div(v)c j dx - R d v • ∇v j + c c ∇c j v j dx + R d v • ∇, ∆j vv j dx + R d [ c c , ∆j ]∇c • v j dx -ε 2 R d ∆j ∇(-∆) -1 F (c) • v j dx.
In order to bound the right-hand side, we use the following facts:

• ε 2 ∇(-∆) -1 F (c) Ḃ d 2 +1 2,1 ≤ ε 2 F (c) Ḃ d 2 2,1 ≤ ε 2 C( c L ∞ ) c 2 Ḃ d 2 2,1 ε 2 c 2 Ḃ d 2 2,1
.

• The following commutator estimates with s = d 2 + 1:

[v • ∇, ∆j ]Z L 2 ≤ Ca j 2 -js ∇Z Ḃ d 2 2,1 Z Ḃs 2,1
where

j∈Z a j = 1, [ c c , ∆j ] div(v) L 2 ≤ Ca j 2 -js ∇Z Ḃ d 2 2,1 Z Ḃs 2,1 , [ c c , ∆j ]∇c L 2 ≤ Ca j 2 -js ∇Z Ḃ d 2 2,1 Z Ḃs 2,1
.

• The integration by parts:

R d v • ∇c j cj dx = - R d 1 2 div(v)|c j | 2 dx. • R d v • ∇ṽ j ṽj dx = - R d 1 2 div(v)|ṽ j | 2 dx, • R d c c (div(v j )c j + ∇c j v j ) dx = - 1 c R d v j ∇(cc j )dx + 1 c R d c∇c j v j dx = - R d v j cj ∇ c c dx, hence using the injection Ḃ d 2 2,1 (R d ) → C b (R d ) R d v • ∇c j cj dx + R d v • ∇ṽ j ṽj dx + R d c c (div(v j )c j + ∇c j v j ) dx ≤ Ca j 2 -js ∇Z Ḃ d 2 2,1 Z Ḃs 2,1 Z j L 2 .
Whence the result by putting together all the above inequalities.

For the other term of L j , look at (3.10) as:

     ∂ t c + div(v) = -v • ∇c - c c div(v) ∂ t v + ∇c + ε 2 ∇(-∆) -1 c + v = -v • ∇v - c c ∇c -ε 2 ∇(-∆) -1 F (c) where ε = f (c) ε. (3.13) Let us denote S 1 := -v • ∇c -c c div(v) and S 2 := -v • ∇v -c c ∇c -ε 2 ∇(-∆) -1 F (c)
as well as S := (S 1 , S 2 ). Analogously to linear analysis, we obtain:

d dt R d ∇c j • v j dx + R d ∇c j • v j dx -div v j 2 L 2 + ∇c j 2 L 2 + ε 2 cj L 2 = R d Re( ∆j S 1 • v)dx + R d Re(∇c j • ∆j S 2 )dx.
By Cauchy-Schwarz and Bernstein inequalities, we see that

L j := 1 2 Z j 2 L 2 + 2 -2j 4 R d ∇c j • v j dx verifies : (3.14) 3 8 Z j 2 L 2 ≤ L j ≤ 1 2 Z j 2 L 2 + 2 -2j 8 ∇c j 2 L 2 + 1 8 v j 2 L 2 ≤ 5 8 Z j 2 L 2 .
We then summarize the previous inequality with the inequality of the lemma 3.4:

d dt L j + v j 2 L 2 + t 0 ε 2 ∇(-∆) -1 cj •v j dx- 2 -2j 4 div v j 2 L 2 + 2 -2j 4 ∇c j 2 L 2 + ε 2 2 -2j 4 cj 2 L 2 + 2 -2j 4 R d ∇c j •v j dx ≤ Ca j 2 -js ∇Z Ḃ d 2 2,1 Z Ḃs 2,1 + ε 2 c 2 Ḃ d 2 2,1 Z j L 2 + 2 -2j 4 ( ∆j S 1 L 2 v j L 2 + ∆j S 2 L 2 cj L 2 ).
But owing to the Cauchy-Schwarz and Bernstein inequalities, we have

t 0 ε 2 ∇(-∆) -1 cj • v j dx + 2 -2j 4 R d ∇c j • v j dx ≥ - 1 -2ε 2 8 cj 2 L 2 - 1 -2ε 2 8 v j 2 L 2
which allows us to obtain, thanks to (3.14),

v j L 2 + t 0 ε 2 ∇(-∆) -1 cj • v j dx - 2 -2j 4 div v j 2 L 2 + 1 4 c j 2 L 2 + ε 2 2 -2j 4 cj 2 L 2 + 2 -2j 4 R d ∇c j • v j dx ≥ 5 -2ε 2 8 v j 2 L 2 + 1 -2ε 2 8 cj 2 L 2 ≥ 1 -2ε 2 5 L j .
We then get for ε ≤ 1/2 :

d dt L j + L j 2 -j ∆j S L 2 + a j 2 -js ( Z 2 Ḃs 2,1 + ε 2 c 2 Ḃ d 2 2,1 ) Z j L 2 . (3.15)
By decomposing Z = Z l + Z h where Z l = Z1 |ξ|≤1 and Z h = Z1 |ξ|≥1 as well as using the lemmas 3.2 and A.3, we have :

     Z∇Z h Ḃ d 2 2,1 ≤ Z∇Z l Ḃ d 2 +1 2,1 + Z∇Z h Ḃ d 2 2,1 Z 2 Ḃ d 2 +1 2,1 + Z Ḃ d 2 2,1 Z l Ḃ d 2 +2 2,1 + Z Ḃ d 2 2,1 Z h Ḃ d 2 +1 2,1 L H -ε 2 ∇(-∆) -1 F (c) h Ḃ d 2 2,1 ε 2 F (c) h Ḃ d 2 -1 2,1 ≤ ε 2 F (c) Ḃ d 2 2,1 ε 2 Z 2 Ḃ d 2 2,1 L H.
Consequently, we have :

2 js L j (t) + c2 js t 0 L j dτ ≤ 2 js L j (0) + C t 0 a j L(τ ) H(τ )dτ, with s = d 2 + 1
We deduce, by summing on j ∈ N, the estimate for the high frequencies of the proposition.

Damped mode.

As explained in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF], at the low frequency level, we have a loss of information on the part undergoing dissipation (here v). To overcome this loss, Danchin highlighted "the damped mode" to recover the missing information: we then pose W := -∂ t v. However here we cannot proceed as in linear analysis: some non-linear terms do not allow us to conclude. So we are going to proceed differently here: we will first study the damped mode, which will allow us to have very precise estimates. In a second step, we will study the equation on c using this damped mode and finally we will get the information on v that we need using the estimates on W and c.

From now on, let us take the constants (other than ε) appearing in our system equal to 1 to simplify the presentation: they play no role in what will follow.

Let us first look at this damped mode at the high frequencies.

Lemma 3.5. We have the following estimate for the damped mode:

W (t) h Ḃ d 2 2,1 + t 0 W h Ḃ d 2 2,1 dτ L(t) + t 0 H(τ )dτ + t 0 L(τ ) H(τ )dτ.
Proof. By definition of W , we have :

W = v + ∇c + ε 2 ∇(-∆) 1 c + v • v + c∇c + ε 2 ∇(-∆) -1 F (c).
We then have (by using the fact that

Ḃ d 2 2,1 is a multiplicative algebra) : W (t) h Ḃ d 2 2,1 v(t) h Ḃ d 2 2,1 + c(t) h Ḃ d 2 +1 2,1 + ε 2 c(t) h Ḃ d 2 -1 2,1 + v(t) h Ḃ d 2 2,1 v(t) h Ḃ d 2 +1 2,1 + c(t) h Ḃ d 2 2,1 c(t) h Ḃ d 2 +1 2,1 +ε 2 c(t) h Ḃ d 2 2,1 c(t) h Ḃ d 2 -1 2,1
.

By the lemma 3.2, we have :

W (t) h Ḃ d 2 2,1 L(t) and t 0 W (τ ) h Ḃ d 2 2,1 dτ t 0 H(τ )dτ + t 0 L(τ ) H(τ )dτ .
As ∂ t v + W = 0, thus we have :

∂ t W + W = ∂ t v + W + ∂ t v • ∇v + v • ∇(∂ t v) + ∇(∂ t c) + (∂ t c)∇c + c∇(∂ t c) + ε 2 ∇(-∆) -1 ∂ t c + ε 2 ∇(-∆) -1 F (c)∂ t c = -W • ∇v -v • ∇W -∇(v • ∇c) -∇ div v -∇(c div v) -v • ∇c∇c -div v∇c -c div v∇c -c∇(v • ∇c) -c(∇ div v) -c∇(div v∇c) -ε 2 ∇(-∆) -1 (v • ∇c) -ε 2 ∇(-∆) -1 (div v) -ε 2 ∇(-∆) -1 (c div v).
Lemma 3.6. The following estimate holds true:

(3.16) W (t) l Ḃ d 2 2,1 + t 0 W l Ḃ d 2 2,1 dτ W 0 l Ḃ2,1 + t 0 L(τ ) H(τ )dτ + t 0 v l Ḃ d 2 +2 2,1 dτ + ε 2 t 0 div v l Ḃ d 2 -1 2,1
dτ.

Proof. By applying ∆j to the previous equation verified by W , taking the scalar product with W j , multiplying by 2 j d 2 , summing up on j ∈ Z -and using the lemma A.1, we get owing to the product laws of the lemma A.3 (each non-linear term in the right-hand side appears in the same order as the following estimate):

W (t) l Ḃ d 2 2,1 + t 0 W l Ḃ d 2 2,1 dτ W 0 l Ḃ d 2 2,1 + t 0 W Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 dτ + t 0 v • W l Ḃ d 2 -1 2,1 dτ + t 0 ∇v • ∇c Ḃ d 2 2,1 + v • ∇∇c l Ḃ d 2 2,1 dτ + t 0 v l Ḃ d 2 +2 2,1 dτ + t 0 ∇c div v Ḃ d 2 2,1 + c∇ div v Ḃ d 2 2,1 dτ + t 0 v Ḃ d 2 2,1 c 2 Ḃ d 2 +1 2,1 dτ + t 0 v Ḃ d 2 +1 2,1 c Ḃ d 2 +1 2,1 dτ + t 0 c Ḃ d 2 +1 2,1 v Ḃ d 2 +1 2,1 c Ḃ d 2 2,1 dτ + t 0 c∇(v • ∇c) l Ḃ d 2 2,1 dτ + t 0 c(∇ div v) l Ḃ d 2 2,1 dτ + t 0 c∇(div v∇c) l Ḃ d 2 2,1 dτ +ε 2 t 0 v Ḃ d 2 2,1 c Ḃ d 2 2,1 dτ + t 0 ε 2 div v l Ḃ d 2 -1 2,1 dτ + ε 2 t 0 c Ḃ d 2 2,1 v Ḃ d 2 2,1 dτ.
Let us estimate one by one the terms appearing in the right-hand side:

• t 0 W l Ḃ d 2 2,1 v Ḃ d 2 +1 2,1
dτ can be absorbed by the left-hand side as we know that Z

L ∞ ( Ḃ d 2 2,1 )
is small;

• t 0 W h Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 dτ t 0 L(τ ) H(τ )
dτ by the lemma 3.5;

• t 0 v • W l Ḃ d 2 -1 2,1 dτ t 0 v Ḃ d 2 2,1 ( W l Ḃ d 2 2,1 + W h Ḃ d 2 2,1
)dτ has the low frequency part absorbed by the left-hand side and the other part below t 0 L(τ ) H(τ )dτ by the lemma 3.5;

• By using the lemma 3.2 and the fact that

Z L ∞ ( Ḃ d 2 2,1 )
is small, we have :

t 0 ∇v • ∇c Ḃ d 2 2,1 + ∇c • div v Ḃ d 2 2,1 + v Ḃ d 2 2,1 c 2 Ḃ d 2 +1 2,1 + v Ḃ d 2 +1 2,1 c Ḃ d 2 +1 2,1 + c Ḃ d 2 +1 2,1 v Ḃ d 2 +1 2,1 c Ḃ d 2 2,1 dτ t 0 Z 2 Ḃ d 2 +1 2,1 dτ t 0 L (τ ) H(τ )dτ ; • t 0 ε 2 v Ḃ d 2 2,1 c Ḃ d 2 2,1 dτ + ε 2 t 0 c Ḃ d 2 2,1 v Ḃ d 2 2,1 t 0 L(τ ) H(τ )
dτ by using the lemma 3.2;

• v • ∇∇c l Ḃ d 2 2,1 v • ∇∇c l Ḃ d 2 2,1 + v • ∇∇c h Ḃ d 2 2,1 v Ḃ d 2 2,1 c l Ḃ d 2 +2 2,1 + v • ∇∇c h l Ḃ d 2 -1 2,1 L H + v Ḃ d 2 2,1 c h Ḃ d 2 +1 2,1
L H by the lemmas 3.2 and A.3;

• By proceeding in the same way as previously, we discover that :

c∇ div v l Ḃ d 2 2,1 c Ḃ d 2 2,1 v l Ḃ d 2 +2 2,1 + v h Ḃ d 2 +1 2,1 L H; • c∇(v • ∇c) l Ḃ d 2 2,1 ≤ c div v∇c Ḃ d 2 2,1 + cv • ∇∇c Ḃ d 2 2,1
.

For the first term, the lemma 3.2 is used and for the second, we do the same as for the previous two points. We find that this term is less than L H. So we have inequality (3.16).

Study of the low frequencies of c.

We have :

∂ t c + div v = -c div v -v • ∇c. However , div v = div W -∆c + ε 2 c + ε 2 F (c) -div(c∇c) -div(v • ∇v).
So by rewriting the equation of c, we get

∂ t c -∆c + ε 2 c = -div W -ε 2 F (c) + div(c∇c) + div(v • ∇v) -c div v -v • ∇c
After spectral localization by means of ∆j , taking the scalar product with ∆j c, multiplying by ε2 j( d 2 -1)

(respectively 2 j d 2 ) and, finally, summing up on 2 j ≤ ε (respectively ε ≤ 2 j ≤ 1), we get Lemma 3.7.

The following estimates are satisfied by c :

εc(t) l -,ε Ḃ d 2 -1 2,1 + ε 2 t 0 εc(t) l -,ε Ḃ d 2 -1 2,1 dτ εc 0 l -,ε Ḃ d 2 -1 2,1 + ε t 0 W l -,ε Ḃ d 2 2,1 dτ + t 0 C(τ ) C(τ )dτ +ε t 0 v • ∇v l -,ε Ḃ d 2 2,1 + ε t 0 c div v Ḃ d 2 -1 2,1 dτ + ε t 0 v • ∇c Ḃ d 2 -1 2,1 dτ, c(t) l + ,ε Ḃ d 2 2,1 + t 0 c l + ,ε Ḃ d 2 +2 2,1 dτ c0 l + ,ε Ḃ d 2 2,1 + t 0 W l + ,ε Ḃ d 2 +1 2,1 dτ + t 0 C(τ ) C(τ )dτ + t 0 div(v • ∇v) l + ,ε Ḃ d 2 2,1 dτ + t 0 c div v Ḃ d 2 2,1 dτ + t 0 v • ∇c Ḃ d 2 2,1 dτ
where, in view of the linear estimates, we set

C(t) := εc(t) l -,ε Ḃ d 2 -1 2,1 + c(t) l + ,ε Ḃ d 2 2,1 + c(t) h Ḃ d 2 +1 2,1
and

C(t) := ε 2 εc(t) l -,ε Ḃ d 2 -1 2,1 + c(t) l + ,ε Ḃ d 2 +2 2,1 + c(t) h Ḃ d 2 +1 2,1 . 

Study of the low frequencies of v.

It is now possible to deduce optimal bounds for v from the ones we have just derived for W and c. We need to decompose v by using the damped mode as follows :

v = W -∇c + ε 2 ∇(-∆) -1 c + v • ∇v + c∇c + ε 2 ∇(-∆) -1 F (c) (3.17)
Lemma 3.8. Based on the following estimates, we will set:

V(t) := v(t) l Ḃ d 2 2,1 + v(t) h Ḃ d 2 +1 2,1 and Ṽ(t) := ε v(t) l -,ε Ḃ d 2 2,1 + v(t) l + ,ε Ḃ d 2 +1 2,1 + v(t) h Ḃ d 2 +1 2,1 .
We then obtain the following estimates:

v(t) l -,ε Ḃ d 2 2,1 + ε t 0 v l -,ε Ḃ d 2 2,1 dτ W (t) l -,ε Ḃ d 2 2,1 + (ε 2 + Z(t) Ḃ d 2 +1 2,1 + εC(t))C(t) + V(t) Z(t) Ḃ d 2 +1 2,1 + t 0 ε W l -,ε Ḃ d 2 2,1 dτ + t 0 C(τ )dτ + t 0 C(τ ) C(τ )dτ + ε t 0 V(τ ) Ṽ(τ )dτ. v(t) l + ,ε Ḃ d 2 2,1 + t 0 v(t) l + ,ε Ḃ d 2 +1 2,1 dτ W (t) l + ,ε Ḃ d 2 2,1 + c(t) l + ,ε Ḃ d 2 +1 2,1 + (V(t) + C(t)) Z(t) Ḃ d 2 +1 2,1 + ε (C(t)) 2 + t 0 W l + ,ε Ḃ d 2 +1 2,1 dτ + t 0 C(τ )dτ + t 0 V(τ ) Ṽ(τ )dτ + t 0 C(τ ) C(τ )dτ.
Proof. By lemmas A.3, A.5 and (3.17), we obtain :

v(t) l -,ε Ḃ d 2 2,1 W l -,ε Ḃ d 2 2,1 + ε 2 c l -,ε Ḃ d 2 -1 2,1 + v Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 + c Ḃ d 2 2,1 c Ḃ d 2 +1 2,1 + ε 2 c Ḃ d 2 2,1 c Ḃ d 2 -1 2,1
.

We deduce :

       v(t) l -,ε Ḃ d 2 2,1 W (t) l -,ε Ḃ d 2 2,1 + (ε + Z(t) Ḃ d 2 +1 2,1 + εC(t))C(t) + V(t) v(t) Ḃ d 2 +1 2,1 ε t 0 v l -,ε Ḃ d 2 2,1 dτ t 0 ε W l -,ε Ḃ d 2 2,1 dτ + t 0 C(τ )dτ + t 0 C(τ ) C(τ )dτ + ε t 0 V(τ ) Ṽ(τ )dτ.
Similarly, we get :

v(t) l + ,ε Ḃ d 2 2,1 W (t) l + ,ε Ḃ d 2 2,1 + c(t) l + ,ε Ḃ d 2 +1 2,1 + (V(t) + C(t)) Z(t) Ḃ d 2 +1 2,1 + ε (C(t)) 2 .
By lemmas A.3 and A.5 and inequality Z l + ,ε

Ḃ d 2 +1 2,1 ≤ Z l + ,ε Ḃ d 2 2,1
, we have also :

v l + ,ε Ḃ d 2 +1 2,1 W l + ,ε Ḃ d 2 +1 2,1 + c l + ,ε Ḃ d 2 +2 2,1 + v Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 + c • ∇c l + ,ε Ḃ d 2 +1 2,1 + ε 2 c 2 Ḃ d 2 2,1
.

Like the proof of lemma 3.2, we have that

ε 2 c 2 Ḃ d 2 2,1 C C. Moreover, c • ∇c l + ,ε Ḃ d 2 +1 2,1 c • ∇c l l Ḃ d 2 +1 2,1 + c • ∇c h l Ḃ d 2 +1 2,1 c Ḃ d 2 +1 2,1 c l Ḃ d 2 +1 2,1 + c Ḃ d 2 2,1 c l Ḃ d 2 +2 2,1 + c • ∇c h l Ḃ d 2 2,1 C C + c Ḃ d 2 2,1 c Ḃ d 2 +1 2,1 C C.
We deduce :

t 0 v l + ,ε Ḃ d 2 2,1 dτ t 0 W l + ,ε Ḃ d 2 +1 2,1 dτ + t 0 C(τ )dτ + t 0 V(τ ) Ṽ(τ )dτ + t 0 C(τ ) C(τ )dτ.

Final a priori estimates.

Let us denote

(3.18) L(t) := C(t) + V(t) + W (t) l Ḃ d 2 2,1
and

H(t) := C(t) + Ṽ(t) + W (t) l Ḃ d 2 2,1 
.

We notice that : L(t) ≤ L(t) and H(t) ≤ H(t).

Proposition 3.9. We have the following estimate :

L(t) + t 0 H(τ )dτ L(0) + t 0 L(τ )H(τ )dτ.
If we take L(0) sufficiently small, thus we obtain the final a priori estimate :

L(t) + t 0 H(τ )dτ L(0).
Proof. First, we note that by summing up the previous inequalities (lemmas 3.6, 3.7, 3.8), terms in the right-hand side can be absorbed by those of the left-hand side. Indeed :

• In (3.16), we have that the term

t 0 v l Ḃ d 2 +2 2,1 dτ + ε 2 t 0 div v Ḃ d 2 -1 2,1
dτ is negligible compared to t 0 Ṽ(τ )dτ (so also to

t 0 H(τ )dτ ).
• In the estimates of the lemma 3.7, we have that

t 0 ε W l -,ε Ḃ d 2 2,1 dτ , t 0 W l + ,ε Ḃ d 2 +1 2,1 dτ are negligible compared to t 0 W l Ḃ d 2 2,1 dτ . By using that Z Ḃ d 2 2,1
is small and the lemma A.3, we also have that

terms ε t 0 v • ∇v l -,ε Ḃ d 2 2,1
dτ and

t 0 div(c • ∇v) l + ,ε Ḃ d 2 2,1
dτ are negligible compared to

t 0 Ṽ(τ )dτ . • (ε 2 + εC(t))C(t) and c(t) l + ,ε Ḃ d 2 +1 2,1
are negligible compared to L(t).

Using the definitions of the various introduced norms and L, H and the lemma A.3, we have :

• t 0 L Hdτ t 0 LHdτ , • t 0 C(τ ) C(τ )dτ + t 0 V(τ ) Ṽ(τ )dτ t 0 L(τ )H(τ )dτ, • t 0 ε c div v l -,ε Ḃ d 2 -1 2,1 dτ t 0 εc Ḃ d 2 -1 2,1 v Ḃ d 2 +1 2,1 dτ t 0 L(τ )H(τ )dτ , • t 0 c div v l -,ε Ḃ d 2 2,1 dτ t 0 c Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 dτ t 0 L(τ )H(τ )dτ, • ε v • ∇c l -,ε Ḃ d 2 -1 2,1 dτ t 0 c Ḃ d 2 2,1 εv Ḃ d 2 2,1 dτ t 0 L(τ )H(τ )dτ.
Now, if we sum up the previous inequalities by using what we just did before and by removing "negligible terms compared to the right term", we get:

L(t) + t 0 H(τ )dτ L(0) + t 0 L(τ )H(τ )dτ + t 0 v • ∇c l + ,ε Ḃ d 2 2,1 dτ.
To handle the last term, let us use the fact that v and w are interrelated as follows:

v = W -∇c + ε 2 ∇(-∆) -1 c + v • ∇v + c∇c + ε 2 ∇(-∆) -1 F (c).
By the lemma A.3, we have also :

v • ∇c Ḃ d 2 2,1 W Ḃ d 2 2,1 c Ḃ d 2 +1 2,1 + εc Ḃ d 2 -1 2,1 c Ḃ d 2 +1 2,1 + c 2 Ḃ d 2 +1 2,1 + v Ḃ d 2 2,1 v Ḃ d 2 +1 2,1 c Ḃ d 2 +1 2,1 + c Ḃ d 2 2,1 c 2 Ḃ d 2 +1 2,1 + c Ḃ d 2 2,1 εc Ḃ d 2 -1 2,1 εc Ḃ d 2 +1 2,1 .
We then have by lemma 3.2 and definition of L, H :

v • ∇c Ḃ d 2 2,1 L H + LH LH,
hence the result. We have the second inequality of the proposition by using lemma A.2.

A global well-posedness theorem.

Here is the theorem that we will prove in the rest of this section: Theorem 3.10. We assume ε ≤ 1/2 with ε defined in (3.13). Then, there exists a positive constant α such that for all

Z ε 0 = (c 0 , v 0 ) ∈ Ḃ d 2 2,1 ∩ Ḃ d 2 +1
2,1 satisfying

Z ε 0 := εc 0 l -,ε Ḃ d 2 -1 2,1 + c0 l + ,ε Ḃ d 2 2,1 + v 0 l Ḃ d 2 2,1 + (c 0 , v 0 ) h Ḃ d 2 +1 2,1
≤ α, the system (3.8) with the initial data (c 0 , v 0 ) admits a unique global-in-time solution Z = (c, v) in the set

E := (c, v) εc l -,ε ∈ C b (R + : Ḃ d 2 -1 2,1 ), ε 3 c l -,ε ∈ L 1 (R + ; Ḃ d 2 -1 2,1 ), c l + ,ε ∈ C b (R + : Ḃ d 2 2,1 ), c l + ,ε ∈ L 1 (R + ; Ḃ d 2 +2 2,1 ), v l ∈ C b (R + ; Ḃ d 2 2,1 ), εv l -,ε ∈ L 1 (R + ; Ḃ d 2 2,1 ), v l + ,ε ∈ L 1 (R + ; Ḃ d 2 +1 2,1 ), (c, v) h ∈ C b (R + ; Ḃ d 2 +1 2,1 ) ∩ L 1 (R + , Ḃ d 2 +1 2,1 ), W l ∈ C b (R + ; Ḃ d 2 2,1 ) ∩ L 1 (R + ; Ḃ d 2 2,1 )
where we denote W := -∂ t v.

Moreover, we have the following inequality :

Z(t) ≤ CZ ε 0 where Z(t) := εc l -,ε L ∞ Ḃ d 2 -1 2,1 + c l + ,ε L ∞ Ḃ d 2 2,1 + v l L ∞ Ḃ d 2 2,1 + (c, v) h L ∞ Ḃ d 2 +1 2,1 + ε 2 εc l -,ε L 1 Ḃ d 2 -1 2,1 + ε v l -,ε L 1 Ḃ d 2 2,1 + c l + ,ε L 1 Ḃ d 2 +2 2,1 + v l + ,ε L 1 Ḃ d 2 +1 2,1 + (c, v) h L 1 Ḃ d 2 +1 2,1 + W L ∞ Ḃ d 2 2,1 + W L 1 Ḃ d 2 2,1
.

The first step is to approximate (3.9).

(1) Approximate systems Let us take J n the spectral truncation operator on {ξ ∈ R d , n -1 ≤ |ξ| ≤ n}.

We consider the following system :

d dt c v + J n (J n (v) • (∇J n (c))) + γJ n (J n (c) div (J n (v))) J n (J n (v) • ∇ (J n (v))) + γJ n (J n (c)∇ (J n (c))) + J n (v) = 0 -ε 2 ∇(-∆) -1 J n (G(J n (c)))
.

• By the Cauchy-Lipschitz theorem, we have (using the spectral truncation operator) that this system admits a maximal solution

(c n , v n ) ∈ C 1 ([0, T n [: L 2 ) with initial data (J n c 0 , J n v 0 ) for all n ∈ N. • We have J n c n = c n and J n (v n ) = v n (
by using the uniqueness in the previous system) and thus:

∂ t c n + J n (v n • ∇c n ) + γJ n (c n div(v n )) = 0, ∂ t v n + J n (v n • ∇v n ) + γJ n (c n ∇c n ) + v n = -ε 2 ∇ (-∆) -1 J n (G( cn )) .
• From the lemma 3.9, we deduce (the n index corresponding to the sequence (c n , v n )):

L n (t) + t 0 H n (τ )dτ L n (0) ≤ L(0).
In particular (by argument of extension of the maximal solution), we have that T n = +∞.

(2) Convergence of the sequence The previous estimates guarantee that (c n , v n ) n∈N is a bounded sequence of E, where E is the functional space described in the theorem.

In particular,

(c n , v n ) n∈N is bounded in L ∞ (R + ; Ḃ d 2 2,1 )∩L 1 (R + ; Ḃ d 2 +2
2,1 ) and in

L ∞ (R + ; Ḃ d 2 +1 2,1 )∩L 1 (R + ; Ḃ d 2 +1
2,1 ) at low and respectively high frequencies level, so bounded (by interpolation) in

L 2 Ḃ d 2 +1 2,1
.

We know that

Ḃ d 2 2,1 is included continuously in L ∞ , hence Ḃ d 2 +1
2,1 is locally compact in L 2 . We can therefore apply the Ascoli theorem and after diagonal extraction, we gather that, up to subsequence, (c n , v n ) n∈N converges to some (c, v) in C([0, T [; S (R d )).

By classical arguments of weak compactness, one can conclude as in e.g [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] that (c, v) belongs to E and that (c, v) is a solution of the initial system.

Proof of uniqueness.

Let Z 1 = (c 1 , v 1 ) and Z 2 = (c 2 , v 2 ) be two solutions. We denote δc := c 1 -c 2 , δv := v 1 -v 2 and δZ := Z 1 -Z 2 .

In particular, we have :

∂ t δc + v 2 • ∇δc + γc 2 div(δv) = -δv∇c 1 -γδc div(v 1 ) ∂ t δv + v 2 • ∇δv + γc 2 ∇δc + ε 2 ∇(-∆) -1 δc + δv = -δv • ∇v 1 -γδc∇c 1 -ε 2 ∇(-∆) -1 (F ( c1 ) -F ( c2 )) .
Lemma 3.11. We have the inequality :

δZ(t) h Ḃ d 2 2,1 + δv(t) l Ḃ d 2 2,1 + δc(t) l + ,ε Ḃ d 2 2,1 + ε δc(t) l -,ε Ḃ d 2 -1 2,1 t 0 (L 1 + L 2 + H 1 + H 2 + 1) (τ ) δZ(t) h Ḃ d 2 2,1 + δv(t) l Ḃ d 2 2,1 + δc(t) l + ,ε Ḃ d 2 2,1 + ε δc(t) l -,ε Ḃ d 2 -1 2,1
dτ where L i , H i for i ∈ {1, 2} correspond to L and H in (3.18) for Z i .

Once this lemma is proven, it is easy to conclude the uniqueness by Grönwall's lemma.

Proof.

(1) Estimate for high frequencies : Let us start by proving an estimate for high frequencies. By applying the localization operation ∆j , we get :

       ∂ t δc j + v 2 • ∇δc j + γc 2 div(δv j ) = v 2 • ∇, ∆j δc + γc 2 , ∆j div(δc) -∆j (δv • ∇c 1 + γδc div(v 1 )) ∂ t δv j + v 2 • ∇δv j + γc 2 ∇δc j + ε 2 ∇(-∆) -1 δc j + δv j = v 2 • ∇, ∆j δv + γc 2 ∇, ∆j δc -∆j δv • ∇v 1 + γδc∇c 1 + ε 2 ∇(-∆) -1 (F (c 1 ) -F (c 2 ))
On the one hand, owing to commutator estimates (see e.g [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]), we have:

v 2 • ∇, ∆j δc + γc 2 , ∆j div(δc) + v 2 • ∇, ∆j δv + γc 2 ∇, ∆j δc h Ḃ d 2 2,1 Z 2 Ḃ d 2 +1 2,1 δZ h Ḃ d 2 2,1 H 2 (τ ) δZ h Ḃ d 2 2,1 .
On the other hand, we have by integration by parts:

• - R d v 2 • ∇δc j δc j dx = 1 2 R d div(v 2 )|δc j | 2 dx, • - R d v 2 • ∇δv j • δv j dx = 1 2 R d div(v 2 )|δv j | 2 dx, • - R d γc 2 div(δv j )δc j dx- R d γc 2 ∇δc j •δv j dx = - R d γc 2 div(δc j δv j )dx = R d γ∇c 2 •(δc j δv j ) dx.
Then we have for all j ≤ -1 :

-

R d v 2 • ∇δc j δc j dx - R d v 2 • ∇δv j • δv j dx - R d γc 2 div(δv j )δc j dx - R d γc 2 ∇δc j • δv j dx = 1 2 R d div(v 2 )|δZ j | 2 dx + R d γ∇c 2 • (δc j δv j )dx a j 2 -j d 2 Z 2 Ḃ d 2 +1 2,1 δZ Ḃ d 2 2,1 δZ Ḃ d 2 2,1 a j 2 -j d 2 H 2 (t) δZ Ḃ d 2 2,1 δZ Ḃ d 2 2,1
.

We have also :

-∆j (δv

• ∇c 1 + γδc div(v 1 )) -∆j δv • ∇v 1 + γδc∇c 1 + ε 2 ∇(-∆) -1 (F (c 1 ) -F (c 2 )) L 2 a j 2 -j d 2 δZ Ḃ d 2 2,1 Z 1 Ḃ d 2 +1 2,1 a j 2 -j d 2 δZ Ḃ d 2 2,1 H 1 .
We then have (taking the scalar product with δZ j in the previous system) the following estimate:

δZ h Ḃ d 2 2,1 + t 0 δZ h Ḃ d 2 2,1 dτ t 0 (H 1 + H 2 )(τ ) δZ h Ḃ d 2 2,1 dτ. 
(2) Estimates for low frequencies :

As for the study of the Euler-Poisson system, we will look at δv in

Ḃ d 2 2,1 , the very low frequencies of εδc in Ḃ d 2 -1
2,1 and the medium ones of δc in Ḃ d 2 2,1 . For the above system, we obtain the following estimates:

                                   εδc(t) l -,ε Ḃ d 2 -1 2,1 t 0 ε δv l -,ε Ḃ d 2 2,1 + (Z 1 , Z 2 ) Ḃ d 2 2,1 δZ Ḃ d 2 2,1 dτ δc(t) l + ,ε Ḃ d 2 2,1 t 0 δv l + ,ε Ḃ d 2 +1 2,1 + Z 2 Ḃ d 2 2,1 δZ l Ḃ d 2 +1 2,1 + δZ h Ḃ d 2 2,1 + δZ Ḃ d 2 2,1 Z 1 Ḃ d 2 +1 2,1 dτ δv l Ḃ d 2 +1 2,1 + t 0 δv l Ḃ d 2 +1 2,1 dτ t 0 ε 2 δc l -,ε Ḃ d 2 -1 2,1 + δc l + ,ε Ḃ d 2 +1 2,1 + Z 2 Ḃ d 2 2,1 δZ l Ḃ d 2 +1 2,1 + δZ h Ḃ d 2 2,1 + δZ Ḃ d 2 2,1 Z 1 Ḃ d 2 +1 2,1 + ε 2 δc Ḃ d 2 2,1 (c 1 , c 2 ) Ḃ d 2 -1 2,1 + δc Ḃ d 2 -1 2,1 (c 1 , c 2 ) Ḃ d 2 2,1
dτ.

(3) Final estimate : We now put together all the estimates and observe that some terms in the right-hand side are negligible compared to the left-hand side (thanks in particular to our lemma about 3.9 a priori estimates) and we obtain the final result.

We deduce by change of variable (2.2) and lemma A.4 the statement of the theorem 2.1.

Keller-Segel parabolic/elliptical system

The goal of this section is to justify the convergence of the density solution of the first equation of (1.3) to the unique solution of (1.5) when ε tends to 0.

We deduce from the theorem 2.1 the following theorem which will allow us to study the singular limit of the Euler-Poisson system: Theorem 4.1. Let be ε > 0. Let ε be defined as (3.13). There exists a positive constant α such that for all

ε ≤ 1 2 and data Z ε 0 = ( ε 0 -, v ε 0 ) Ḃ d 2 -1 2,1 ∩ Ḃ d 2 +1 2,1 × Ḃ d 2 2,1 ∩ Ḃ d 2 +1 2,1
satisfying :

Z ε 0 := ε 0 -l -, ε ε -1 Ḃ d 2 -1 2,1 + ε 0 -l + , ε ε -1 , ε Ḃ d 2 2,1 + ε v ε 0 l, ε -1 Ḃ d 2 2,1 + ε ( ε 0 -, εv ε 0 ) h, ε -1 Ḃ d 2 +1 2,1
≤ α, the system (1.1) with the initial data ( ε 0 , v ε 0 ) admits a unique global-in-time solution

Z ε = ( ε -ρ, v ε ) in the set Ẽ := ( ε -, v ε ) ( ε -) l -, ε ε -1 ∈ C b (R + : Ḃ d 2 -1 2,1 ), ε( ε -) l -, ε ε -1 ∈ L 1 (R + ; Ḃ d 2 -1 2,1 ), ( ε -) l + , ε ε -1 , ε -1 ∈ C b (R + : Ḃ d 2 2,1 ), ε( ε -) l + , ε ε -1 ∈ L 1 (R + ; Ḃ d 2 +1 2,1 ), ( ε -) l + , ε ε -1 , ε -1 ∈ L 1 (R + ; Ḃ d 2 +1 2,1 ), ε(v ε ) l, ε -1 ∈ C b (R + ; Ḃ d 2 2,1 ), (v ε ) l -, ε ε -1 ∈ L 1 (R + ; Ḃ d 2 2,1 ), (v ε ) l + , ε ε -1 ∈ L 1 (R + ; Ḃ d 2 +1 2,1 ), ( ε -, v ε ) h,ε -1 ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), w ε ∈ C b (R + ; Ḃ d 2 2,1 ) ∩ L 1 (R + ; Ḃ d 2 2,1 )
where we have denoted w

ε := ε ∇ (P ( ε )) ε + v ε + ε∇(-∆) -1 ( ε -).
Moreover, we have the following inequality :

Z ε (t) ≤ CZ ε 0 where Z ε (t) := ε -l -, ε ε -1 L ∞ Ḃ d 2 -1 2,1 + ε -l + , ε ε -1 , ε -1 L ∞ Ḃ d 2 2,1 + ε v ε l, ε -1 L ∞ Ḃ d 2 2,1 + ε ( ε -, εv ε ) h, ε -1 L ∞ Ḃ d 2 +1 2,1 + ε -l -, ε ε -1 L 1 Ḃ d 2 -1 2,1 + v ε l -, ε ε -1 L 1 Ḃ d 2 2,1 + ε -l + , ε L 1 Ḃ d 2 +2 2,1 + v ε l + , ε L 1 Ḃ d 2 +1 2,1 + ε -1 ( ε -, εv ε ) h,ε -1 L 1 Ḃ d 2 +1 2,1 + w ε L ∞ Ḃ d 2 2,1 + ε -2 w ε L 1 Ḃ d 2 2,1
.

We notice with theorem 4.1 ensures that

W ε = O(ε) in L 1 (R + ; Ḃ d 2 2,1
). As the first equation of (1.3) can be rewritten as

∂ t ˜ ε -∆ (P (˜ ε )) -div ˜ ε ∇(-∆) -1 (˜ ε -) = div(˜ ε W ε )
, we suspect that the density will tend to satisfy the parabolic-elliptic Keller-Segel system (1.5) supplemented with the initial data lim ε→0 ˜ ε 0 . Let us now rigorously prove the theorem 2.2 :

Proof. Let us justify quickly that for all N 0 satisfying (2.4), there exists a unique global-in-time solution N of (1.5) 

in C b R + ; Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 ∩ L 1 R + ; Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1
satisfying (2.5).

In terms of Ñ := N -, the equation (1.5) is rewritten :

∂ t Ñ -∆(P (N )) -div N ∇(-∆) -1 Ñ = 0.
By the Taylor-Lagrange formula, we notice that :

P (N ) -P ( ) = Ñ P ( ) + g( Ñ )
where g is a smooth function vanishing at 0 (and also its first derivative).

(1) Low frequency analysis We can rewrite this system as :

∂ t Ñ + Ñ = ∆ Ñ P ( ) + g( Ñ ) + div Ñ ∇(-∆) -1 Ñ •
We then obtain the following estimates:

Ñ (t) l Ḃ d 2 -1 2,1 + t 0 Ñ l Ḃ d 2 -1 2,1 dτ Ñ0 l Ḃ d 2 -1 2,1 + t 0 g( Ñ ) Ḃ d 2 +1 2,1 dτ + t 0 Ñ l Ḃ d 2 +1 2,1 dτ + t 0 Ñ Ḃ d 2 2,1 Ñ Ḃ d 2 -1 2,1 dτ,
We note that the term

t 0 Ñ l Ḃ d 2 +1 2,1 dτ is negligible compared to t 0 Ñ l Ḃ d 2 -1 2,1
dτ.

We deduce that :

Ñ (t) l Ḃ d 2 -1 2,1 + t 0 Ñ l Ḃ d 2 -1 2,1 dτ Ñ0 l Ḃ d 2 -1 2,1 + t 0 Ñ Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 Ñ Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1
dτ.

(2) High frequency analysis We can rewrite the system as :

∂ t Ñ -P ( )∆ Ñ = ∆(g( Ñ )) -div(N ∇(-∆) -1 Ñ ).
Then, we get :

Ñ (t) h Ḃ d 2 2,1 + t 0 Ñ h Ḃ d 2 +2 2,1 dτ Ñ0 h Ḃ d 2 2,1 + t 0 Ñ Ḃ d 2 +2 2,1 Ñ Ḃ d 2 2,1 dτ + t 0 Ñ h Ḃ d 2 2,1 dτ + t 0 Ñ Ḃ d 2 +1 2,1 Ñ Ḃ d 2 -1 2,1 + Ñ 2 Ḃ d 2 2,1
dτ.

Thus, we have :

Ñ (t) h Ḃ d 2 2,1 + t 0 Ñ h Ḃ d 2 +2 2,1 dτ Ñ0 h Ḃ d 2 2,1 + t 0 Ñ Ḃ d 2 +2 2,1 Ñ Ḃ d 2 2,1 + Ñ Ḃ d 2 -1 2,1 Ñ Ḃ d 2 +1 2,1
dτ.

(3) A priori estimate By gathering the previous information, we get:

Ñ (t) Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 + t 0 Ñ Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1 dτ Ñ0 Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 + t 0 Ñ Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 Ñ Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1
dτ.

Then, we have:

Ñ (t) Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 + t 0 Ñ Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1 dτ Ñ0 Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 
.

Hence (2.5). By taking advantage of the Picard fixed point theorem in the functional framework given by the inequalities above, we obtain an unique global-in-time solution Ñ of (1.5) in

C b R + ; Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 ∩ L 1 R + ; Ḃ d 2 +2 2,1 ∩ Ḃ d 2 -1 2,1
satisfying (2.5).

In order to prove the last part of this theorem, let us observe that (N, ˜ ε ) satisfies :

∂ t ˜ ε -∆(P (˜ ε )) -div ˜ ε ∇(-∆) -1 (˜ ε -= div ˜ ε W ε , ∂ t N -∆(P (N )) -div N ∇(-∆) -1 (N -) = 0.
Let us denote δN = N -˜ ε . We obtain :

∂ t δN + ∆ (P (˜ ε ) -∆ (P (N )) + δN -div δN ∇(-∆) -1 (N -)

-div (˜ ε -)∇(-∆) -1 δN = -div ˜ ε W ε • Let us look estimate δN at the level of regularity Ḃ d 2 -1 2,1 . We have :

t 0 div(˜ ε W ε ) Ḃ d 2 -1 2,1 dτ t 0 ˜ ε W ε Ḃ d 2 2,1 dτ ˜ ε L ∞ t Ḃ d 2 2,1 t 0 W ε Ḃ d 2 2,1
dτ αε, dτ.

In order to study ∆ (P (˜ ε ) -P (N )), we use the identity :

∆ (P (φ)) = ∆φP (φ) + |∇φ| 2 P (φ).

Hence, we have : By using all previous inequalities, we get : .

Ḃ d 2 -1 2,1 dτ t 0 ˜ ε Ḃ d 2 +1 2,1 ˜ ε Ḃ d 2 2,1 δN Ḃ d 2 2,1 ( Ñ , ˜ ε ) Ḃ d 2 
δN L ∞ t (
Therefore, for α small enough, we get :

δN L ∞ (R + ; Ḃ d 2 -1 2,1 )∩L 1 (R + ; Ḃ d 2 -1 2,1 ∩ Ḃ d 2 +1
2,1 ) δN (0)

Ḃ d 2 -1 2,1
+ αε which completes the proof of the theorem.

Appendix A.

Here we recall classic lemmas involving differential inequalities and some basic properties on Besov spaces and product estimates have been be used repeatedly in the article.

Lemma A.1. Let X : [0, T ] → R + be a continuous function such that X 2 is differentiable. Assume that there exist a constant c ≥ 0 and a measurable function A : [0, T ] → R + such that Then, for all t ∈ [0, T ], we have:

X(t) + c t 0 X(τ ) dτ ≤ X 0 + t 0 A(τ ) dτ.
This classical lemma can be found for instance in [START_REF] Danchin | Partially dissipative hyperbolic systems in the critical regularity setting[END_REF] : With the continuity of L, we must have T 0 = T , whence the result.

The following lemmas are classic results on Besov spaces ( see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]).

1 γ.= 2 γ

 12 So we have by Taylor's formula with integral rest : f (c + c) -f (c) = cf (c) + c c (c -y)f (y)dy. Let us set F (c) = c c (c -y)f (y)dy and G(c) = cf (c) + c c (c -y)f (y)dy which vanishes at 0 where c := (γA) 1 γ and c = c -c.

∆ 2 - 1 2, 1 )|∇˜ ε | 2 P

 2112 (P (˜ ε ) -P (N )) = P ( )∆(δN ) + (P (N ) -P ( ))∆(δN ) + ∆˜ ε P (N ) -P (˜ ε ) + |∇N | 2 -|∇˜ ε | 2 P (N ) + |∇˜ ε | 2 P (N ) -P (˜ ε ) • Let bound the r.h.s in L 1 (R + ;Ḃ d (in particular, the estimate of Theorem 4.1 will be used but also the different lemmas in the appendix) : t 0 ∆(δN ) P (N ) -P ( ) ε P (N ) -P (˜ ε ) (N ) -P ( )

2 , 1 dτ(α 3 + α 2 )|∇N | 2 -

 21322 |∇˜ ε | 2 P (N )In particular, δN satisfies :∂ t δN -P ( )∆δN + δN = -div ˜ ε W ε + div δN ∇(-∆) -1 (N -+ div (˜ ε -)∇(-∆) -1 δN -∆(δN )(P (N ) -P ( )) -∆˜ ε P (N ) -P (˜ ε ) -|∇˜ ε | 2 P (N ) -P ( ) -|∇N | 2 -|∇˜ ε | 2 P (N ).

2 +

 2 cX 2 ≤ AX a.e. on [0, T ].

Lemma A. 2 . 0 H 0 L 2 t 0 H 0 H(τ )dτ ≤ T 0 0 H

 2002000 Let T > 0. Let L : [0, T ] → R and H : [0, T ] → R two continous positive functions on [0, T ] such thatL(t) + c t (τ )dτ ≤ L(0) + C t (τ )H(τ )dτ,and L(0) ≤ α << 1 then for all t ∈ [0, T ], we have :L(t) + c (τ )dτ ≤ L(0). Proof. Let α ∈]0, c 2C [. We set T 0 = sup T 1 ∈[0,T ] sup t∈[0,T 1 ]L(t) ≤ α . This sup exists because the previous set is non empty (0 belongs to this set) and since L is continuous, T 0 > 0. In time t = T 0 , we get : )dτ ≤ L(0).As L(t) ≤ L(T 0 ) for all t ∈ [0, T 0 ] and t (τ )dτ , we obtain with the previous inequality :L(t) ≤ α ∀t ∈ [0, T 0 ].

Lemma A. [START_REF] Ali | Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma[END_REF]. For all d ≥ 2, the pointwise product extends in a continuous application of

2,1 and the following inequality : uv

.

The following lemma comes from the proof in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] of the following well-known property on Besov spaces :

for all α > 0.

Lemma A.4. Let s ∈ R and z ∈ Ḃs 2,1 . We have that :

where we denote

, with C depending only on u L ∞ , F (and higher order derivatives), s, p and d.

Lemma A.6. Let g ∈ C ∞ (R) such that g (0) = 0. Then, for all u, v ∈ Ḃs 2,1 ∩ L ∞ with s > 0,