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Cross-Domain Pattern Classification With
Distribution Adaptation Based on Evidence Theory

Lin-Qing Huang , Zhun-Ga Liu , Member, IEEE, and Jean Dezert

Abstract—In pattern classification, there may not exist labeled
patterns in the target domain to train a classifier. Domain adap-
tation (DA) techniques can transfer the knowledge from the
source domain with massive labeled patterns to the target domain
for learning a classification model. In practice, some objects
in the target domain are easily classified by this classification
model, and these objects usually can provide more or less use-
ful information for classifying the other objects in the target
domain. So a new method called distribution adaptation based
on evidence theory (DAET) is proposed to improve the classi-
fication accuracy by combining the complementary information
derived from both the source and target domains. In DAET,
the objects that are easy to classify are first selected as easy-
target objects, and the other objects are regarded as hard-target
objects. For each hard-target object, we can obtain one clas-
sification result with the assistance of massive labeled patterns
in the source domain, and another classification result can be
acquired based on the easy-target objects with confidently pre-
dicted (pseudo) labels. However, the weights of these classification
results may vary because the reliabilities of the used information
sources are different. The weights are estimated by mean differ-
ence reflecting the information source quality. Then, we discount
the classification results with the corresponding weights under the
framework of the evidence theory, which is expert at dealing with
uncertain information. These discounted classification results are
combined by an evidential combination rule for making the final
class decision. The effectiveness of DAET for cross-domain pat-
tern classification is evaluated with respect to some advanced DA
methods, and the experiment results show DAET can significantly
improve the classification accuracy.

Index Terms—Belief functions (BFs), cross-domain pattern
classification, evidence theory, information fusion, transfer
learning.

I. INTRODUCTION

IN PATTERN classification, a common assumption is that the
training and test data are drawn from the same distribution,

that is, they satisfy the condition of independence and identical
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distribution (i.i.d.). Unfortunately, this assumption usually can-
not be satisfied in many applications, and the standard machine
learning methods are unable to work well when this assump-
tion is not valid. For example, we can collect rich labeled data
in an existing domain (called the source domain), and there
are no labeled patterns in a new domain (called the target
domain). The distributions of patterns in the source and target
domains are not close to each other, so the standard classifi-
cation models cannot be directly employed. The classification
performance will be poor if one directly uses the classifier
learnt by labeled patterns in the source domains to classify
unseen objects in the target domain. It is called the domain
adaptation (DA) problem, and the major issue is how to effec-
tively reduce the distribution discrepancy between the source
and target domains for building a more reliable classification
model. In recent years, many DA techniques [1]–[3] have been
proposed to solve this issue. These methods can be divided
into two main categories: 1) instance-based methods [4]–[7]
and 2) feature-based methods [8]–[17].

For instance-based methods, the patterns in the source
domain are reused with appropriate weights to reduce the
distribution difference for learning a classification model to
classify unseen objects. The TrAdaBoost method proposed by
Dai et al. [4] decreased the weights if the patterns in the
source domain are not correctly classified, and increases them
if the patterns in the target domain are committed into wrong
classes. The Kernel mean match (KMM) [5] method directly
produces the resampling weights. It accounts for the difference
by reweighting the training points such that the means of the
training and test data in a reproducing Kernel Hilbert space
(RKHS) are drawn sufficiently close in some mathematical
sense (i.e., for a chosen distance metric). Sugiyama et al. [6]
proposed a Kullback–Leibler importance estimation proce-
dure (KLIEP) method, which consists of patterns importance
estimation and a natural model selection procedure based
on Kullback–Leibler divergence. The metric transfer learning
framework (MTLF) [7] proposes to simultaneously learn the
instance weights and the Mahalanobis distance to maximize
intraclass distances, and to minimize interclass distances.

The principle of featured-based methods is to discover a
new feature representation of patterns in the source and target
domains for reducing the distribution discrepancy. The source
and target data are transformed into a new feature space to
make the distributions closer, and the standard machine learn-
ing models can be successfully employed for these patterns
in this new feature space. Pan et al. [8] proposed a transfer
component analysis (TCA) method to learn the transformation
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matrix by minimizing the marginal distribution discrepancy. 
The stratified transfer learning (STL) [9] method aims to 
reduce the conditional distribution discrepancy between the 
source and target domains. Long et al. [10] presented a 
joint distribution adaptation (JDA) method to discover a new 
feature representation, which simultaneously adapts both the 
marginal and conditional distributions. The balanced distribu-
tion adaptation (BDA) method proposed by Wang et al. [11] 
used one tradeoff parameter to balance the importance of 
marginal and conditional distributions when learning the new 
feature representation. The visual DA (VDA) [12] method 
reduces the distribution discrepancy across domains in an 
unsupervised manner, and constructs domain invariant clusters 
in the embedding representation to separate various classes. 
The joint geometrical and statistical alignment (JGSA) [13] 
method is a unified framework to geometrically and statis-
tically reduce the shifts between domains. Wei et al. [14] 
proposed the transfer with manifolds discrepancy alignment 
(TMDA) method to couple the discovery of data manifolds 
with the minimization of manifold maximum mean discrep-
ancy (MMD). The dynamic double classifiers approximation 
(DDCA) [15] method integrates the feature representation 
learning and classifier learning into a unified optimization 
objective to guarantee the good classification performance.

Many deep feature transformation methods have been 
proposed to adapt the distribution because of the powerful 
feature representation capability of the convolutional neural 
network (CNN). Long et al. [17] proposed a deep adaptation 
network (DAN) framework to embed the deep features of all 
task-specific layers into RKHSs and optimally match distribu-
tion. The adversarial tight match (ATM) method proposed by 
Li et al. [18] used the maximum density divergence (MDD) to 
measure the distribution discrepancy between the source and 
target domains, and the MDD loss in ATM can simultane-
ously minimize the interdomain divergence and maximize the 
intraclass density.

The aforementioned methods are in the setting of transduc-
tive transfer learning [19], and they require that the source and 
target tasks are the same. They also require that all unlabeled 
objects in the target domain must be available at training time. 
In applications, the unlabeled objects in the target domain can 
provide some extra useful information for classification. Thus, 
we want to exploit the entire useful information contained in 
both the source and target domains. Some objects in the target 
domain are easily classified into the correct classes after distri-
bution alignment, and we call them the easy-target objects. The 
classification accuracy of the remaining objects in the target 
domain is usually very low, and they are called the hard-target 
objects. In other words, the classification model learned from 
the knowledge in the source domain cannot perform very well 
on the hard-target objects. Actually, the easy-target objects 
also can train a classifier to classify these hard-target objects. 
The effective combination of complementary knowledge in the 
source domain patterns and easy-target objects can provide 
better classification performance on the hard-target objects. By 
doing this, the classification accuracy of total unseen objects 
in the target domain (i.e., easy-target objects and hard-target 
objects) is expected to be improved.

The feature-based methods are frequently employed because
of their good performance for solving the DA problem. Thus,
we adapt the distributions between the source and target
domains using feature-based methods. In previous feature-
based works [10], [11], the developed methods usually employ
an expectation maximization-like (EM-like) mechanism to
predict the labels of target-domain objects for estimating the
conditional distribution under an unsupervised manner. If the
pseudolabels of the unseen objects predicted by this mecha-
nism do not change at each iteration, the labels correspond
to the ground truth with a very high confidence. Inspired by
this phenomenon, these objects can be used to provide some
extra information for classifying the hard-target objects. The
evidence theory is a good mathematical framework to rep-
resent and combine uncertain information, and it has been
successfully used for information fusion [20], [21]. That is
why we propose a method called distribution adaptation based
on evidence theory (DAET) for effectively extracting and com-
bining the complementary information contained in both the
source and target domains. Based on this new approach, we
will improve the classification accuracy of unseen objects. The
main principles of DAET are as follows.

1) The exploitation of the knowledge is available in the tar-
get domain. For this, we identify the easy-target objects
whose predicted labels never change during iterations
because they are very likely correctly classified. These
easy-target objects usually can bring some extra useful
information for classifying the hard-target objects.

2) For one unseen hard-target object, we integrate the
multiple classification results, thanks to the labeled
source patterns at multistep iterations. This procedure
aims to generate one high-quality item of evidence as
much as possible using the knowledge in source-domain
patterns. The easy-target objects under the new and
original feature representations provide some comple-
mentary knowledge to classify this unseen hard-target
object. Two pieces of the classification results will be
obtained based on these easy-target objects under the
original and new feature representations. The classifica-
tion results are also integrated to effectively extract the
useful information in the easy-target objects.

3) Two integrated classification results yielded by source-
domain patterns and easy-target objects are combined,
thanks to the framework of the evidence theory. The reli-
abilities/weights of these classification results are usually
different because of the discrepancy between datasets.
We use the mean discrepancy between the hard-target
objects and the source-domain patterns, and that of the
hard-target objects and easy-target objects to estimate
the weighting factors. A discounting operation will make
the combination results close to ground truth.

The remainder of this article is organized as follows. In
Section II, some background knowledge, that is, transfer learn-
ing and evidence theory, is briefly introduced. The DAET
method for cross-domain pattern classification is presented in
Section III, and several experiments to test the effectiveness of
DAET are reported in Section IV. Finally, Section V concludes
this article.



II. BACKGROUND KNOWLEDGE

This article focuses on the DA problem, which is essential 
to the transfer learning technique. The combination of useful 
knowledge in both the source and target domains is expected 
to improve the classification accuracy of unseen objects in 
the target domain. The evidence theory is an interesting 
mathematical framework to represent and fuse uncertain 
information [22]–[24]. In [24], the belief-based bidirectional 
heterogeneous transfer classification method is proposed to 
reduce the uncertainty using evidence theory and achieve 
the good classification performance. Thus, evidence theory is 
also employed here, and we briefly introduce some important 
concepts of transfer learning and evidence theory.

A. Transfer Learning

In transfer learning [2], there exist two important concepts:
1) domain D and 2) task T . A domain contains two elements,
that is: 1) a feature space X and 2) a marginal distribution P(X),
where X = {x1, x2, . . . , xn} is the set of patterns. The domain
is usually denoted by D = {X , P(X)}. The task T also has two
components: 1) a label space Y and 2) a predictive function
f (·), where f (·) is a function to predict the labels of unseen
objects. Similarly, the task is often denoted by T = {Y, f (·)}.

Given one source domain Ds = {Xs, P(Xs)}, one source task
Ts = {Ys, fs(·)}, one target domain Dt = {Xt, P(Xt)}, and one
target task Tt = {Yt, ft(·)}, transfer learning aims to improve
the learning of ft(·) using the knowledge in the source domain
Ds and source task Ts when Ds �= Dt or Ts �= Tt. The prepro-
cessing of original data or modification of the classification
model should be done to transfer knowledge from the source
domain Ds into the target domain Dt.

Transfer learning becomes a standard/traditional machine
learning problem when DS = DT and TS = TT . In such case,
patterns in the source domains (i.e., training labeled data) are
used to learn a predictive function f (·), and it is directly used
to predict the label of one unseen object x in the target domain
(i.e., test data) as f (x). The traditional machine learning meth-
ods try to learn a classifier from scratch for each domain (i.e.,
one should collect labeled data for building classification mod-
els when a new domain arises), while transfer learning tries to
use the knowledge in related domains to build the classifica-
tion models in the target domain when the source and target
domains have different feature spaces or distributions.

When Ds �= Dt, there exist two cases to consider.
1) Xs = Xt and P(Xs) �= P(Xt), which is called DA or

homogeneous transfer learning (HoTL).
2) Xs �= Xt, which is known as heterogeneous transfer

learning (HeTL).
The DA technique uses the knowledge in the source domain

to help the learning of the target predictive function when
the feature spaces of source and target domains are the same
but the distributions are different, which corresponds to the
aforementioned case 1. It has been successfully employed
in many real applications [1], that is, cross-domain pattern
classification [25], clustering [26], regression [27], and so
on. Papers [1]–[3] provide detailed presentations of transfer
learning and DA techniques.

The multisource DA is also an interesting research topic,
and we have developed the combination transferable classifica-
tion (CTC) [28] and evidential combination of augmented mul-
tisource of information (ECAMI) [29] methods for improving
the classification accuracy of unseen objects in the target
domains. The two methods combine information in multiple
source domains by the evidence theory to obtain a higher clas-
sification performance. Our aim in this work is to effectively
extract and combine useful information contained in the sin-
gleton source domain and the target domain to improve the
classification accuracy.

B. Evidence Theory

The mathematical theory of evidence or evidence theory is
a mathematical framework developed by Shafer [30] to reason
about uncertainty, which is based on the belief functions (BFs)
and on the rule of combination proposed by Dempster [31].
This theory is also known as the Dempster–Shafer theory
(DST), or evidential reasoning (ER). It has been widely used in
many real-world applications [32], [33] because of its ability to
represent and combine imprecise/uncertain information in dif-
ferent fields, for example, data classification [34], [35], data
clustering [36], [37], information fusion [20], [21], decision
making [38], [39], and so on.

Let � = {ω1, ω2, . . . , ωC} be a finite set of answers of
some questions, called the frame of discernment (FoD). In
pattern classification, the element {ωc}C

c=1 and � denote the
actual category of one pattern and the label space, respec-
tively. The power-set 2� is the set of all subsets of FoD �,
for example, if the FoD is � = {ω1, ω2, ω3}, its power set is
2� = {∅, {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},�}.

The basic belief assignment (BBA), also called a mass func-
tion, is defined as a mapping m(·) from the power set 2� to the
interval [0, 1], and it satisfies the conditions:

∑
A∈2� m(A) = 1

and m(∅) = 0. For any A ∈ 2�\{∅}, m(A) represents the
belief that one is willing to commit exactly to A, given a
certain piece of evidence. A is a focal element of the BBA
m(·) when m(A) > 0. If all the focal elements are single-
tons, m(·) is said to be the simple Bayesian BBA. In a c-class
pattern classification problem, m(A) denotes the belief of one
object belonging to the singleton class (e.g., A = {ω1}) or the
disjunction (union) of several classes (e.g., A = {ω1, ω2}).

In DST, two BBA’s m1 and m2 induced by two distinct
sources of evidence are combined by Dempster’s rule (a.k.a.,
DS rule) to provide a new BBA denoted by m12 = m1 ⊕ m2.
The DS combination rule is called the orthogonal sum of m1
and m2, and it is defined by

{
m12(∅) = 0

m12(A) = m1 ⊕ m2(A) =
∑

B,C∈2�|B∩C=A m1(B)m2(C)

1−K

(1)

where K = ∑
B,C∈2�|B∩C=∅ m1(B)m2(C) ∈ [0, 1] reflects the

conflicting mass between two BBA’s, and the symbol ⊕ is the
DS combination operator. The computation of m12 is possible
if and only if K �= 1 because, otherwise, there is a logical
contradiction when K = 1. The DS rule may produce unrea-
sonable results when the sources of evidence highly conflict.
Many other methods [30], [40] have been developed to solve



this problem. Nevertheless, DS rule has the important commu-
tativity and associativity properties, and it often achieves pretty 
good combination performance when the sources of evidence 
are with low conflict. Thus, it is widely employed to combine 
the BBA’s in many applications [20], [21].

III. PROPOSED METHOD

Let Ds = {Xs, P(Xs)} and Ds = {(xs
p, ys

p)}n
p

s 
1 be the source 

domain and source-domain dataset, where 
=

s is the feature

space of patterns {xs
p}n

p
s 

1; Xs = [xs
1, x

s
2, . . . , x

X
s
ns ] ∈ Rk×ns , and k is the dimension of 

=
feature space; P(Xs) is the marginal dis-

tribution of source patterns; ns is the number of patterns in the 
source domain. Similarly, the target domain and target-domain
dataset are denoted by Dt = {Xt, P(Xt)} and Dt = {xt

q}n
q

t 
1, 

respectively, where t is the feature space of target patterns
=

{xt
q}n

q
t 

1; Xt = [xt
1, x

t
2

X
, . . . , xt

nt ] ∈ Rk×nt ; P(Xt) is the marginal 
distrib

=
ution of target patterns, and nt is the number of unseen 

objects in the target domain. In this work, we consider the 
cross-domain classification problem where the source-domain 
patterns and the target-domain objects are in the same feature 
space but drawn from different distributions, that is, Xs = Xt 
but P(Xs) �= P(Xt).

The distribution shift affects the classification accuracy of 
unseen objects in the target domain, and the classification 
performance in the target domain is low if we directly use 
the classification model learned by labeled patterns in the 
source domain. Many DA methods for solving such issue 
propose to first align the distribution, and then train clas-
sifiers based on labeled patterns in the source domain to 
classify unseen objects in the target domain. However, the 
information in the target domain is usually not considered 
because the target domain does not have any labeled patterns. 
The supervised information in the source domain is only used 
to classify unseen objects in the target domain. If we can take 
full advantage of useful knowledge in both the source and 
target domains, the classification accuracy should be substan-
tially improved. In order to extract the useful information in 
the target domain, the classification model learned by knowl-
edge in the source domain can be used to predict the (pseudo) 
labels of unseen objects in the target domain. The objects 
whose predicted labels are very likely correct can provide 
some (pseudo) supervised information for the classification. 
The combination of complementary information in both the 
source and target domains should improve the classification 
performance with respect to the only using of the knowledge 
in the source domain. A method to effectively extract and 
combine the useful information in both the source and target 
domains is presented in the sequel.

A. Easy-Target Objects Selection

The feature-based DA methods usually learn a new fea-
ture representation of patterns in both the source and target
domains for reducing the distribution discrepancy. One clas-
sical feature-based method called JDA [10] adapts both the
marginal and conditional distribution difference. JDA proposes
an EM-like iteration mechanism to estimate the conditional
distribution difference for learning the robust new feature

representations. It makes sense to align the distributions and
to transfer information as much as possible. In this work, we
propose to extract the knowledge in the target domain based
on this EM-like mechanism.

Let X = [Xs, Xt] ∈ R
k×(ns+nt) be the set of patterns in

the source domain Ds and the target domain Dt. The learning
goal is to find a transformation matrix A ∈ R

k×k̃(k̃ ≤ k) such
that the distributions of the source and target domain data
under the new feature representation (i.e., ATXs ∈ R

k̃×ns and
ATXt ∈ R

k̃×nt ), where k̃ is the dimension of the new feature
space, are very close.

The discrepancy between the marginal probability distribu-
tions Ps(Xs) and Pt(Xt) is computed by

P =
∥
∥
∥
∥
∥
∥

1

ns

∑

xs
p∈Ds

ATxs
p − 1

nt

∑

xt
q∈Dt

ATxt
q

∥
∥
∥
∥
∥
∥

2

= tr
(
ATXM0XTA

)
(2)

with

M0 =
[

1
nsns

1ns1
T
ns

− 1
nsnt

1ns1
T
nt

− 1
ntns

1nt 1
T
ns

1
ntnt

1nt 1
T
nt

]

(3)

where tr(·) is the trace of matrix; and 1ns and 1nt are vertical
vectors of ones with ns and nt elements, respectively.

The discrepancy between the conditional probability distri-
butions Qs(Xs|y = ωc) and Qt(Xt|y = ωc) w.r.t.1 class ωc is
similarly computed by

Qc =
∥
∥
∥
∥
∥
∥

1

nc
s

∑

xs
p∈Dc

s

ATxs
p − 1

nc
t

∑

xt
q∈Dc

t

ATxt
q

∥
∥
∥
∥
∥
∥

2

= tr
(
ATXMcXTA

)
(4)
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Mc =
⎡

⎣
1

nc
snc

s
1̃

c
ns

1̃
cT

ns
− 1

nc
snc

t
1̃

c
ns

1̃
cT

nt

− 1
nc

t nc
s
1̃

c
nt

1̃
cT

ns
1

nc
t nc

t
1̃

c
nt

1̃
cT

nt

⎤

⎦ (5)

where Dc
s = {xs

p|xs
p ∈ Ds ∧ ys

p = ωc} and Dc
t = {xt

q|xt
q ∈

Dt ∧ ŷt
q = ωc} are the set of patterns belonging to class ωc;

ys
p is the true label of source-domain pattern xs

p, and ŷt
q is the

predicted (pseudo) label of target object xt
q by the classifier

learned by knowledge in the source domain; nc
s = |Dc

s | and
nc

t = |Dc
t | are the number of patterns in the source and target

domains with class ωc; 1̃
c
ns

and 1̃
c
nt

are indicator vectors with
ns and nt elements. The pth (qth) element of vector 1̃

c
ns

(1̃
c
nt

)
will be 1 if xs

p (xt
q) belongs to class ωc, or 0 otherwise.

To obtain the robust new feature representation, one has to
minimize the objective function

P +
C∑

c=1

Qc =
C∑

c=0

tr(ATXMcXTA) + λ‖A‖F. (6)

Let {zs
p = ATxs

p}ns
p=1 and {zt

q = ATxt
q}nt

q=1 be the patterns
in the source and target domains under the new feature
representation. The pseudolabels (i.e., ŷt

q) for one unseen

1with respect to.



L L

L

object zt
q can be obtained by the classification model learned

by {zt
p}n

p
s
=1. The predicted (pseudo) labels {ŷt

q}n
q

t
=1 are used 

for computing the discrepancy between conditional distri-
butions when the true labels {yt

q}n
q

t
=1 of target objects are 

not available. Then, an EM-like iteration mechanism [10] is 
employed to refine the predicted (pseudo) label quality. After 
multiple iterations, a robust new feature representation for the 
source-domain data and target-domain data is obtained.

If the distribution of some unseen objects is quite different 
from that of source-domain patterns, the predicted (pseudo) 
labels of these unseen objects will frequently change dur-
ing iterations, and they are usually committed into a wrong 
class even though aligning the distributions. In practice, some 
unseen objects in the target domain may be easily classified 
with few steps of iteration because the distribution discrep-
ancy between these unseen objects and patterns in the source 
domain is small. Moreover, the class is very likely to be the 
ground truth when its corresponding probability value is close 
to 1. Thus, the target-domain objects whose predicted labels 
never change and the corresponding class has a probability 
close to 1 at each iteration are very likely to be correctly clas-
sified. We call these objects the easy-target objects. Similarly, 
the unseen objects changing their pseudolabels a lot dur-
ing iterations are usually hard to correctly classify, and we 
distinguish them as the hard-target objects.

Let {ωl
q}l=1 and {m(ωl

q)}l=1 be the predicted label and 
corresponding probability value at the lth iteration for the
unseen object xt

q, where L is the number of iterations. The 
pattern will be regarded as easy-target object if and only if
ωq

1 = ωq
2 =  · · ·  =  ωq

L and {m(ωl
q)}l=1 ≥ ε, where ε is a 

positive threshold value (i.e., a tuning parameter) to control 
the selection of easy-target objects. This operation can suc-
cessfully extract the knowledge in the target domain, and the 
selected easy-target objects will provide some extra (pseudo) 
supervised information for classification.

In order to obtain higher classification accuracy of unseen 
objects in the target domain (i.e., to correctly classify both 
the easy-target objects and hard-target objects), the classifica-
tion performance on hard-target objects should be improved 
because they degrade the total classification accuracy a lot. 
In applications, the hard-target objects usually cannot be cor-
rectly classified based only on the information in the source 
domain. Fortunately, an extra classifier can be trained by easy-
target objects with their pseudolabels, that is, the easy-target 
objects can provide some pseudosupervised information in the 
target domain for classifying hard-target objects. The clas-
sification results of hard-target objects using the classifiers 
trained by easy-target objects usually have more or less com-
plementary knowledge w.r.t. the classification results yielded 
by the assistance of source-domain patterns. The combination 
of supervised information in the source domain and pseudo-
supervised information in the target domain is expected to 
improve the classification accuracy of hard-target objects.

B. Weighted Combination of Classification Results

For one unseen hard-target object x, let m̂1,l be the soft
classification result yielded by the auxiliary of source-domain

patterns at the lth iteration. The new feature representations
of patterns in the source and target domains are different at
each iteration. Thus, the information contained in the source-
domain data under different feature representations is more or
less diverse. To obtain the useful information in L iterations,
one can integrate the L classification results. The L pieces
of classification results are not distinct because the preserved
information on the new feature representations with L iter-
ations overlaps to some degree, and the average fusion (AF)
method can be naturally used here to integrate them. It is worth
noting that the reliabilities/weights {m̂1,l}L

l=1 are usually dif-
ferent because the performance (i.e., classification accuracy)
of the classifier learned at each iteration is diverse. It is not
reasonable to directly use the AF method, and some weight-
ing factors should be considered. Let θl be the classification
accuracy in the source domain at the lth iteration, we propose
to integrate the L classification results using AF with weights
estimated by the classification accuracy as

m1 =
L∑

l=1

wl · m̂1,l (7)

with wl = [θl/(
∑L

l=1 θl)]. This operation aims to extract useful
information in the source domain as much as possible.

Let Dea
t = {(xt

i, ŷt
i)}Ne

i=1 and Dha
t = {xt

j}Nh
j=1 be the dataset

of easy-target objects and hard-target objects under original
feature representation, respectively, and one can obtain Dt =
Dea

t ∪ Dha
t . The classification result for the hard-target object

x can be denoted by m̃2 using the knowledge in Dea
t . Let

D̂ea
t,l = {(zt

i,l, ŷt
i)}Ne

i=1 and D̂ha
t = {zt

j,l}Nh
j=1 be the dataset of easy-

target and hard-target objects with new feature representation
at the lth iteration, and one can also obtain D̂t,l = D̂ha

t,l ∪ D̂ea
t,l .

The classification result for object x using information in D̂ea
t,l

can be denoted by m̂2,l. There may exist some complementary
knowledge in the original and new feature representations at
the lth iteration. The information contained in the original and
new feature representation may overlap to some extent, so we
also integrate the classification results using the AF method.
Whereas, the performance of the classifier learned by easy-
target objects under the original and new feature representations
affects the reliabilities/weights of classification results. Thus, the
weights estimated by classification accuracy must be considered
when integrating the classification results m̃2 and m̂2,l. Let ξ̃

and ξ̂l be the classification accuracy on easy-target objects under
the original and new feature representations at the lth iteration,
and the integration result can be computed by

m2 = ξ̃

ξ̃ + ∑L
l=1 ξ̂l

m̃2 +
L∑

l=1

ξ̂l

ξ̃ + ∑L
l=1 ξ̂l

m̂2,l. (8)

This operation aims to obtain a robust classification result by
effectively extracting knowledge in the easy-target objects.

In applications, the classification results yielded by the
assistance of source-domain patterns and easy-target objects
are regarded as two pieces of evidence for combination.
The knowledge contained in the source-domain patterns and
easy-target objects comes from different information sources,
so the classification results are considered as distinct and



complementary. The proper combination of the two pieces 
of classification results should be able to further improve 
the classification accuracy. The evidence theory provides 
an efficient tool to characterize and combine the uncertain 
information, and it is also employed here for combining the 
classification results. The two pieces of classification results 
obtained by different classifiers usually have different relia-
bilities/weights. The classification result represented by BBA 
will be discounted by Shafer’s discounting operation [30] 
with the corresponding weight to control its influence on the 
combination.

Let m and β ∈ [0, 1] be one BBA and its correspond-
ing weight, respectively, and the discounted BBA βm is 
computed by

{
βm(A) = β · m(A), A ∈ 2�\�
βm(�) = 1 − β + β · m(�).

(9)

In this discounting operation, the belief of each focal element
will be partially discounted to the ignorance � according to
the weight β. If the evidence is completely unreliable, we
take β = 0. Thus, the discounted BBA will be βm(A) = 0,
A ∈ 2�\� and βm(�) = 1. If the source of evidence is
completely reliable, we take β = 1, and hence, we have
βm(A) = m(A), A ∈ 2�. After the discounting operation, the
two pieces of classification results usually are not in very high
conflict, because some beliefs are committed to the ignorance,
which plays a neutral role in combination. The DS rule satis-
fies the commutativity and associativity law, and it generally
produces pretty good performance in applications [34]. So it is
employed here to combine the discounted classification results.

The weight of the classification result will be determined
depending on the discrepancy between the hard-target objects
and source-domain patterns (or easy-target objects). If the dis-
crepancy of source-domain patterns (or easy-target objects)
is high, the quality of classification result obtained based on
the source-domain patterns (or easy-target objects) should be
low, and the weight should be small. In applications, the
mean difference is usually used to measure the discrepancy
across datasets [8]. Thus, we use mean discrepancy between
the hard-target objects and source-domain patterns, and the
hard-target objects and easy-target objects to estimate the reli-
abilities/weights of the two classification results. There exist
much useful knowledge when the mean discrepancy is small,
and the corresponding classification results have high reliabil-
ities/weights for combination. If the mean discrepancy is big,
the useful knowledge is scarce, and one cannot obtain reliable
classification results by fusing. In other words, the bigger the
mean discrepancy, the smaller the weights.

The information in the patterns under the original and new
feature representation is diverse, and the mean difference is
also different. In order to obtain robust weights, the discrep-
ancy between datasets under the original and new feature
representation should be both considered when estimating the
weighting factors. The weights can be determined by the
above-mentioned mechanism as

{
β1 = min{d1,d2}

d1

β2 = min{d1,d2}
d2

(10)

with

d1 =
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∥
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and

d2 =
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(12)

where ‖ · ‖ is the L2 (Euclidean) norm; ns, Ne, and Nh are
the number of source-domain patterns, easy-target objects,
and hard-target objects; Ds, Dea

t , and Dha
t are the datasets of

source-domain patterns, easy-target objects, and hard-target
objects under the original feature representation; D̂s, D̂ea

t , and
D̂ha

t denote the datasets of source-domain patterns, easy-target
objects, and hard-target objects under the new representation.

The classification results obtained from the source-domain
patterns and easy-target objects will be discounted by the esti-
mated weighting (i.e., discounting) factors β1 and β2. Because
the minimum mean discrepancy will induce a maximum
weight (whose value is 1), the corresponding classification
result will have an important impact for the combination. Let
β1 m1 and β2 m2 be the discounted classification results by (9),
and the combination of them using the DS rule as (1) is
computed by

m = β1 m1 ⊕ β2 m2. (13)

In applications, the combination result is usually transformed
into the pignistic probability BetP(·) [41] for making the final
class decision, and it is defined by

BetP(ωc) =
∑

X∈2�,ωc∈X

m(X)

|X| (14)

where |X| denotes the cardinality of X. The unseen object x
is committed to the class with the biggest BetP(·) value as

ω = max
ωc

BetP(ωc). (15)

The flowchart to show the principle of DAET is shown in
Fig. 1, and the pseudocode is given in Algorithm 1. In order
to illustrate how DAET works, we also give a simple example.

Example: Assume the class space is � = {ω1, ω2, ω3}, and
there, respectively, exist five patterns in the source and target
domains. The source- and target-domain datasets are given by

Ds = {(
xs

1, ω1
)
,
(
xs

2, ω2
)
,
(
xs

3, ω1
)
,
(
xs

4, ω2
)
,
(
xs

5, ω3
)}

Dt = {
xt

1, xt
2, xt

3, xt
4, xt

5

}
.



Fig. 1. Principle of the proposed DAET method.

It is assumed the easy-target objects with predicted (pseudo)
labels are (xt

1, ω̂1), (xt
4, ω̂3), and (xt

5, ω̂3), and the hard-target
objects are xt

2 and xt
3. For the hard-target object x2, two pieces

of evidences obtained by effectively extracting information in
five source-domain patterns and three easy-target objects are

m1(ω1) = 0.50, m1(ω2) = 0.40, m1(ω3) = 0.10

m2(ω1) = 0.20, m2(ω2) = 0.50, m2(ω3) = 0.30.

Assume the estimated weights are β1 = 0.8 and β2 = 1, and
then the discounted resulted using (9) is

β1 m1(ω1) = 0.40, β1 m1(ω2) = 0.32, β1 m1(ω3) = 0.08
β1 m1(�) = 0.20

β2 m2(ω1) = 0.20, β2 m2(ω2) = 0.50, β2 m2(ω3) = 0.30
β2 m2(�) = 0.

The DS combination of these discounted classification results
using (1) will be

m(ω1) = 0.2586, m(ω2) = 0.5603, m(ω1) = 0.1811

m(�) = 0.

Algorithm 1 DAET
Input:

Data:
The source domain data set: DS = {(xS

p, yS
p)}NS

p=1

and the target domain data set: DT = {xT
q }NT

q=1.
Parameter:
ε: Parameter to control the selection of easy-target objects.

1: Adapt distributions between the source and target
domains, and obtain the new feature representation;

2: for i = 1 to Nh do
3: Select easy-target objects in the target domain by

method proposed in Section III-A, and regard the rest
of objects as the hard-target objects;

4: Obtain the classification results for hard-target objects
by the knowledge in source domain patterns and easy-
target objects using Eq. (7) and Eq. (8);

5: Compute the mean discrepancy using Eqs. (11)-(12) to
estimate the weighting factors as Eq. (10);

6: Discount the classification results using Eq. (9) with
estimated weighting factors;

7: Fuse the discounted results by DS rule as Eq. (13);
8: Make the class decision using Eq. (15).
9: end for
Output:

Labels for objects in the target domain.

One can see that the pignistic probability BetP(ω2) = 0.5603
is the biggest value, so the hard-target object xt

2 is committed
to the class ω2.

C. Discussion of the Tuning Parameter

The parameter ε ∈ [0, 1] is used to control the selection
of easy-target objects, and it must be tuned in real applica-
tions for good classification performance. It affects the number
of easy-target objects a lot. If the value of ε is too big, the
selected easy-target objects are correctly classified with very
high confidence but few objects will be regarded as the easy-
target objects. In this case, the number of easy-target objects
is small, which means that the useful knowledge in easy-target
objects will have a marginal impact in the improvement of the
classification performance. There will be some wrong classi-
fied objects in easy-target objects when setting the ε value too
small. Some objects which are wrongly classified are regarded
as easy-target objects, and the wrong information usually has a
negative influence on the combination. To summarize, the big
ε value will lead to little useful information, while there will
exist much wrong information in the easy-target objects when
setting a small ε value. In other words, the determination of ε

should not be too big or too small. In applications, if we want
to obtain a good classification performance, we must select
an appropriate value to guarantee that the number of selected
easy-target objects is big, and the predicted (pseudo) labels of
all easy-target objects are very likely to be the ground truth
(i.e., the classification accuracy of easy-target objects is high).
The influence of ε on classification accuracy is reported in the
experiment. According to our heuristical test, we find that a



good classification performance is often obtained when setting 
ε = 0.8, so we recommend 0.8 as the default value for ε.

The iteration number L also affects the selection of easy-
target objects, and the L times EM-like iteration mechanism 
aims to minimize both the marginal and conditional distribu-
tion. Thus, the determination of L depends on the the objective 
function given in (6), that is, the iteration number L should 
guarantee that the objective function can achieve the minimum 
value. In previous works [10]–[13], we have observed that the 
minimum objective function value is usually found after ten 
iterations, so we set L = 10 in our proposed DAET method.

IV. EXPERIMENTS
A. Benchmark Datasets

Several classical benchmark datasets have been used to test
the effectiveness of our proposed DAET method, and they are
briefly described here.

Office+Caltech-10 contains four different domains, that
is: 1) Amazon (A); 2) Caltech (C); 3) DSLR (D); and
4) Webcam (W) and it has 2533 images with ten cate-
gories, and the feature dimension is 800. We can define
4×3 = 12 cross-domain classification tasks as C→A, D→A,
W→A, . . . , A→W, C→W, D→W.

PIE are the subsets of CMU-PIE, which is a popular
dataset for face recognition, and the feature dimension is
1024. It involves five different domains (i.e., face orienta-
tions) with 41 368 faces of 68 different identities, that is,
PIE_C05 (PIE1, left pose), PIE_C07 (PIE2, upward pose),
PIE_C09 (PIE3, downward pose), PIE_C25 (PIE4, front pose),
and PIE_C29 (PIE5, right pose). Thus, 5 × 4 = 20 cross-
domain classification tasks can be constructed as PIE2→PIE1,
PIE3→PIE1, . . . , PIE3→PIE5, PIE4→PIE5.

VLSC is a large image dataset with 4096 D features. It
contains four domains: 1) VOC2007 (V); 2) LabelMe (L);
3) SUN09 (S); and 4) Caltech (C), and 10 729 samples w.r.t.
five categories, that is: 1) bird; 2) cat; 3) chair; 4) dog; and
5) human. Thus, we define the cross-domain classification
under 4 × 3 = 12 tasks: L→V, S→V, C→V, . . . , V→C,
L→C, S→C.

VisDA [42] is a very large benchmark dataset, which con-
sists of a training domain, a validation domain, and a test
domain. It contains over 280 000 images from 12 classes.
We regard the training and validation sets as two (source
and target) domains according to [18]. Two cross-domain
classification tasks are defined: 1) training→Validation and
2) validation→Training.

B. Ablation Experiment

The proposed DAET method consists of two parts: 1) easy-
target objects selection and 2) weighted combination of classi-
fication results. In order to test the effectiveness of our method,
we do the ablation experiment2 for performance evaluation of
several variants of DAET with different fusion methods.

2Ablation experiment can be used to test the performance of a system
by removing a chosen component to understand its contribution in the
entire system. It is often employed to isolate the contributions of new
method [16]–[18]. So we do ablation experiment here.

1) DAET (CSETD): In this method, the source-domain
patterns and easy-target objects are simply merged as
training data, and one classifier is learned based on these
data to classify the hard-target objects.

2) DAET (AF): We can obtain two classifiers, respectively,
trained by the source-domain patterns and easy-target
objects. For one hard-target object, two pieces of clas-
sification results yielded by the classifiers are integrated
by the AF method. The AF result is computed by
m = (m1 + m2)/2.

3) DAET (DS): In this method, two pieces classification
results yielded by two classifiers using the source-
domain patterns and easy-target objects are combined
by Dempster’s (DS) rule. The DS combination result is
computed by (1) as m = m1 ⊕ m2.

4) DAET (Murphy): Two classification results obtained by
information in the source and target domains are com-
bined by the Murphy average rule [40]. The Murphy
AF result is computed by m = m̄ ⊕ m̄, where m̄ =
(m1 + m2)/2.

5) DAET (WDS): This method use the DS rule with the
weighting factors to combine the two pieces of classifi-
cation results, and the weighted DS combination result
is computed by (13) as m = β1 m1 ⊕ β2 m2.

C. Comparison Methods

Several related methods are employed to construct the
experiments for evaluating the effectiveness of DAET. The
brief introduction of them are given as follows.

1) K Nearest Neighbor (KNN) [43]: The source-domain
data are directly employed to learn the KNN model
for classifying the unseen objects in the target domain
without any data preprocessing or model modification.

2) Correlation Alignment (CORAL) [44]: It minimizes the
distribution discrepancy by aligning the second-order
statistics feature of the source and target domains.

3) Geodesic Flow Kernel (GFK) [45]: GFK embeds data
into Grassmann manifolds and constructs geodesic flows
between them to model domain shift. It integrates an
infinite number of subspaces to learn new representa-
tions.

4) Transfer Component Analysis [8]: TCA adapts the
marginal distribution discrepancy by learning a new rep-
resentation. One classifier learned by source patterns
under new representation is used to classify unseen
objects.

5) Adaptation Regularization-Based Transfer Learning
(ARTL) [46]: The method learns an adaptive classi-
fier by simultaneously optimizing the structural risk, the
joint distribution matching between domains, and the
manifold consistency underlying marginal distribution.

6) Landmarks Selection-Based Subspace Alignment
(LSSA) [47]: LSSA selects the landmarks to reduce
the discrepancy between domains, and then the data
are projected in the same space to make an efficient
subspace alignment.



7) Scatter Component Analysis (SCA) [48]: SCA finds
the representation that trades between maximizing the
separability of classes, minimizing the shifts between
domains, and maximizing the separability of data.

8) Easy Transfer Learning (EasyTL) [49]: It exploits the
intradomain structures features to learn nonparametric
transfer features and classifiers, and it does not need
model selection and hyperparameter tuning.

9) Stratified Transfer Learning [9]: STL exploits the
intraaffinity of each class between the source and target
domains, and the intraclass knowledge are transferred
into the same subspaces.

10) Joint Distribution Adaptation [10]: The marginal
and conditional distributions across domains are both
matched using an EM-like iteration mechanism to obtain
the domain-invariant feature representation.

11) Manifold Embedded Distribution Alignment
(MEDA) [50]: It learns a domain-invariant classier in
Grassmann manifold with structural risk minimization,
and performs dynamic distribution alignment to account
for the relative importance of marginal and conditional
distributions.

12) Centroid Matching and Manifold Self-Learning
CMMS [51]: It makes label prediction for unseen
objects by class centroid matching in order to exploit
the data distribution structure, and a local manifold
self-learning strategy is employed to capture the
inherent local connectivity.

13) Joint Distinct Subspace Classification (JDSC) [52]:
This method finds two coupled feature transformation
matrixes for the source- and target-domain data to mini-
mize the distribution shift, which considers the different
importance of marginal and conditional distributions.

14) Guide Subspace Learning (GSL) [53]: The projection-
based subspace guide, low-rank reconstruction-based
data guidance, and relaxation-based label guidance are
integrated to learn the domain-invariant feature.

15) Joint Probability Domain Adaptation (JPDA) [54]: It
presents the joint MMD to replace the frequently used
MMD, and this operation improves the transferability
across domains and the discriminability across classes.

16) Combined Source and Easy-Target Data (CSETD) [28]:
The source-domain patterns and easy-target objects
are simply merged as new training data to provide
information for classifying unseen objects in the target
domain.

The code of these methods can be downloaded from the
link http://transferlearning.xyz/.

D. Implementation Details

For fair comparison, the KNN classification method is
regarded as the base classifier to classify unseen objects in the
target domain after aligning the distribution by [8]–[10], [44],
and [46]–[50], that is, the comparison methods also use the
same KNN classifier. We set K = 5 according to our previous
work on CTC [28], and the influence of K value has been
discussed in CTC. The parameters of all comparison methods

TABLE I
CORRECT CLASSIFICATION RATE (%) OF DIFFERENT DAET VARIANTS

ON DIFFERENT CROSS-DOMAIN PATTERN CLASSIFICATION TASKS

are set according to their values given in the related original
papers. As for DAET, the iteration number is set to L = 10,
and the regularization parameter where it is used in (6) is set
to λ = 1. We set the dimension of new feature representation
k̃ = 20, 50, 20, 20 for Office+Caltech-10, PIE, VLSC, and
VisDA datasets, which are the same taken for the comparison
methods. The reported results are the classification accuracy
in the target domain

Accuracy =
∣
∣x : x ∈ Dt ∧ ŷt = yt

∣
∣

x : x ∈ Dt
(16)

where ŷt is the predicted label of unseen object in the target
domain, and yt is the ground truth.

E. Experimental Results and Analysis

The classification accuracy of ablation study on PIE,
Office+Caltech-10, and VLSC are shown in Table I. One
can observe that the classification performance degrades if
the source-domain patterns and easy-target objects are simply
merged as new training data to classify hard-target objects.
This is because the pseudolabels of the easy-target objects are
not completely correct, and they have a negative influence on
training the classifier. In the DAET (AF/DS/WDS) method,
two classifiers are, respectively, trained using source-domain
patterns and easy-target objects. This operation can reduce the
negative influence of easy-target objects with wrong pseudola-
bels more or less. The DS rule is an interesting combination
method to integrate the knowledge in different information
sources, so the DAET (DS) method usually can achieve the
higher classification accuracy compared with DAET (AF). One
can see that the classification accuracy of DAET (Murphy) is
higher than DS and AF method in some cases. It demonstrates
that the Murphy average rule can reduce the negative influence
of conflicts, and usually achieve a relative good classification
performance compared with DS and AF. In applications, the
classifier learned by easy-target objects with wrong pseudola-
bels is not completely reliable, and the classifier trained by
source-domain patterns with somewhat distribution discrep-
ancy also may be unreliable. Thus, two pieces of classification
results m1 and m2 should be taken in account with differ-
ent weights. The proposed method DAET (WDS) can further
reduce the harmful influence, and combine the complementary
information contained in source-domain patterns and easy-
target objects. To summarize, the two parts working together
can achieve a better classification performance than other
methods. The detailed experiment results and analysis on these
benchmarks are given in the sequel.



TABLE II
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON DATASET PIE (%)

TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON DATASET OFFICE+CALTECH-10 (%)

TABLE IV
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON DATASET VLSC (%)

The classification performance (i.e., accuracy) of the
proposed DAET method and other tested methods is shown
in Tables II–V. We can see that the performance of standard
machine learning method (i.e., KNN) is poor because the train-
ing and test data are drawn from different distributions. It is
unreasonable to directly employ the standard machine learning
methods without any data preprocessing. One can also see that

the DA methods improve the classification performance more
or less compared with the standard machine learning method.
The distribution discrepancy is successfully reduced by these
DA methods, that is, the knowledge in the source domain is
effectively employed to classify unseen objects in the target
domain. The performance of CSETD is not very good compared
with other related methods because the information quality in



TABLE V
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON DATASET VISDA (%)

the source patterns and easy-target objects is different, and
the simplistic merging operation usually yields a bad influence
on the classification. The performance of DAET on different
datasets is globally higher than other related DA techniques
because these DA techniques only use the information in the
source domain to classify unseen objects in the target domain,
and some useful information in the target domain is ignored.

In DAET, the unseen objects whose pseudolabels do not
change during iterations and corresponding classes have very
high probability values are regarded as easy-target objects to
provide some extra knowledge. The integration of the classifi-
cation results through L-steps iteration can effectively extract
the useful information in the source-domain patterns. The inte-
gration of the classification results obtained by the assistance
of easy-target objects under original and new feature represen-
tation provides robust Bayesian BBA’s. The two integration
procedures can successfully extract useful information in the
source-domain patterns and easy-target objects.

Our experiment shows that the reliabilities/weights must
be considered when combining information in source-domain
patterns and easy-target objects. The weights estimated by
the mean discrepancy discount the BBA’s to reduce the neg-
ative influence of poor reliability. Finally, the combination
of discounted classification results yielded by the auxiliary
of source-domain patterns and easy-target objects makes the
fusion result closer to the ground truth. The experimental
results in Tables II-V demonstrate that the selection of easy-
target objects can successfully work for providing some extra
useful information for the classification of hard-target objects,
and the estimated weights reduce the bad influence of relia-
bility on the fusion. In some extreme cases, the classification
accuracy of DAET is not higher than related methods because
the predicted labels of easy-target objects are not completely
correct, and the discounting operation cannot completely elim-
inate their negative influence on the combination even though
a small weight is given. Overall, the classification accuracy
of DAET is the highest compared with related methods in
general, that is, DAET can successfully work to improve the
classification accuracy in the target domain.

F. Parameter Influence

The parameter ε plays an important role to control the selec-
tion of easy-target objects, and we have evaluated its influence
on the classification performance. The accuracy and number
of easy-target objects, and the accuracy of the cross-domain
classification tasks on benchmark datasets w.r.t. the ε value
are shown in Figs. 2–4.

One can see that the accuracy of easy-target objects is
improved with the increasing of ε, the bigger the ε value,

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Accuracy of easy-target objects w.r.t. ε value on different datasets.
(a) PIE: PIE3→PIE1. (b) PIE: PIE1→PIE3. (c) Office+Caltech-10: C→A.
(d) Office+Caltech-10: A→C. (e) VLSC: L→V. (f) VLSC: V→L.

the higher the accuracy of easy-target objects. This is a rea-
sonable result because the predicted label with a very high
probability value (i.e., mass value) is usually the ground truth.
However, the number of easy-target objects decreases as the
ε value increases because few objects will be regarded as the
easy-target objects if the ε value is very big (i.e., less and
close to one). The number of easy-target objects often drops a
lot when one sets a bigger ε value than 0.8. The classification
accuracy of cross-domain classification tasks also varies with
the ε value, whereas one cannot achieve the best performance
when the setting of ε is too big (i.e., close to one) or too
small (i.e., close to zero). When selecting a small ε value,
the accuracy of easy-target objects is low. There will be some
wrong information in easy-target objects for classification, and
it has a negative influence on the combination result. Thus,
the total classification accuracy in the target domain is not
very high. If one commits a big value to ε, the easy-target
objects are almost corrected classified. However, the number of
easy-target objects will be very small, that is, the information
involved in them is not rich. We cannot effectively extract the
knowledge in the target domain with a big ε value, so the total
classification accuracy in the target domain is not the highest.
One sees that the proposed method usually produces a good



(a) (b)

(c) (d)

(e) (f)

Fig. 3. Number of easy-target objects w.r.t. ε value on different datasets.
(a) PIE: PIE3→PIE1. (b) PIE: PIE1→PIE3. (c) Office+Caltech-10: C→A.
(d) Office+Caltech-10: A→C. (e) VLSC: L→V. (f) VLSC: V→L.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Classification accuracy of DAET w.r.t. ε value on different datasets.
(a) PIE: PIE3→PIE1. (b) PIE: PIE1→PIE3. (c) Office+Caltech-10: C→A.
(d) Office+Caltech-10: A→C. (e) VLSC: L→V. (f) VLSC: V→L.

classification performance when ε ∈ [0.6, 0.8], and that is why
we recommend ε = 0.8 as the default value.

V. CONCLUSION

In this article, we have proposed a new DAET method to
solve the cross-domain classification problem, and to improve
the classification accuracy in the target domain. The unseen

objects in the target domain whose predicted (pseudo) labels
never change during iterations can be easily classified, and
their pseudolabels correspond to the real classes with a very
high confidence. So, we distinguished them as easy-target
objects, and the remaining objects as hard-target objects. The
easy-target objects are used to provide useful knowledge for
classifying the hard-target objects. In contrary to classical
methods of classification that are based only on the knowl-
edge drawn in the source-domain patterns, we have shown in
this article how to exploit the information of the easy-target
objects to improve the classification accuracy. To effectively
extract knowledge in the source domain, the classification
results characterized by BBAs for the hard-target objects
at multistep iterations are integrated by AF with the esti-
mated weights. Similarly, the classification results yielded by
easy-target objects under the original and new feature rep-
resentation are also integrated. This processing makes the
BBA’s obtained by information in the source-domain pat-
terns and easy-target objects robust. The final combination of
complementary knowledge contained in the source and tar-
get domains improves in general the classification accuracy
compared with only using knowledge in the source domain.
Several classical cross-domain pattern classification bench-
mark datasets have been used to evaluate the effectiveness of
this new DAET method. The experimental results show DAET
can successfully improve the classification performance.

In future research works, we want to extend the application
of DAET in other scenarios such as synthetic aperture radar
automatic target recognition. Moreover, we also attempt to
develop new cross-domain classification methods for dealing
with multiple (more than two) source domains. It is expected
that the classification accuracy could be further improved
by combining complementary information in different source
domains, and by using more advanced effective fusion rules.
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