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Abstract—Network calculus is a well established method for
computing guaranteed delay bounds in networks. When a net-
work element is shared between several flows, its aggregate
capacity is shared with regards to a scheduling policy. In this
case, network calculus can compute a residual service curve for
each flow, based on scheduling information. In most systems,
when a frame is selected for transmission, it is transmitted at full
(constant) line rate up to completion or preemption. In this letter,
we propose a generic approach that can enhance any residual
service curve by taking this effect into account.

I. INTRODUCTION

Networks are often a critical element of computing systems,
and the latency introduced by the network can be a critical
part of the response time of a system. Depending on the
context, one may be interested in the average delay or by
the worst case. Network calculus is a well established method
for computing guaranteed bounds on such delay. In network
calculus, the workload generated by the data flows is modelled
using arrival curves, and the capacity of the network elements
is modelled using service curves. When this capacity is shared
by different flows, one can derive for each flow a residual
service curve, using either a result matching the scheduling
policy or a generic one. Nevertheless, in most systems, when
a frame is selected for transmission, it is transmitted at full
(constant) line rate up to completion or preemption, and this
effect is rarely taken into account. In this letter, we propose a
generic result that can enhance any residual service curve by
taking this effect into account.

After a short recall on network calculus (Section II) and
the presentation of a motivating example (Section III), the
main theorems will be presented in Section IV. They will
be compared qualitatively with state of the art results in
Section V, and Section VI will evaluate the gain on some
examples.

II. NETWORK CALCULUS

Here is a short introduction to network calculus, a more
detailed presentation can be found in [1], [2]. Let N the set
of integers, R+ the set of non-negative reals, d·e : R+ → N
the ceiling function (d1e = 1, d1.9e = 2), F↑ the set of non-
decreasing functions from R+ to R+. The convolution is defined
by ( 5 ∗ 6) (C) = inf0≤B≤C 5 (C − B) + 6(B). It is associative, com-
mutative and isotone (∀ 5 , 6, ℎ ∈ F↑ : 5 ≥ 6 =⇒ 5 ∗ℎ ≥ 6∗ℎ).
For any ', !, � ≥ 0, _� , V',! ∈ F↑ are defined by _� (C) = �C,
V',! (C) = 'max(0, C − !).

In network calculus, the workload of a flow at an obser-
vation point is represented by a function � : R+ → R+, non-
decreasing, left-continuous, and �(C) represents the cumulative
amount of data (in some data unit, like bit or words) observed
up to time C. This exact behavior can be abstracted by an
arrival curve U satisfying ∀C, 3 ∈ R+ : �(C + 3) − �(C) ≤
U(3). This is a contract on the amount of data received
on any interval of duration 3. A server associates to a
list of input flows (�1, . . . , �=) a list of departure flows
(�1, . . . , �=), with �8 ≥ �8 (because the arrival happens
before the departure). A backlogged period is an interval
(B, C] where ∀D ∈ (B, C] : � (D) < �(D). For any instant C,
let B = Start(C) = sup {D ≤ C � (D) = �(D)}, then (B, C] is
a backlogged period, and �(B) = � (B). A minimal capacity
of a server is represented either by a simple minimal service
curve V when � ≥ � ∗ V holds for any pair of arrival and
departure, with � =

∑=
8=1 �8 and � =

∑=
8=1 �8 , or by a strict

minimal service curve V when � (C + 3) − � (C) ≥ V(3) holds
for any backlogged period (C, C + 3]. When a flow � with
arrival curve U crosses a server with simple or strict service
curve V, its delay is bounded by the horizontal deviation
hdev(U, V) = supC≥0 inf {D U(C) ≤ V(C + D)}.

III. MOTIVATING EXAMPLE

To illustrate the different approaches, let us consider as a
motivating example the famous CAN configuration from [3]
with 3 flows, �, �, �, listed by order of priority, sending
packets of 125 bits, �, �, � having respective periods of 2.5
ms, 3.5 ms and 3.5 ms. sharing a bus with 125Kb/s speed.

At top of Figure 1 are represented the arrivals of the frames,
and the resulting schedule, resulting in a delay of 3ms for
frame �1 and 3.5ms for frame �2. It has been shown in [3]
that this is the worst case for the flow �. Just below are plotted
U� (the best arrival curve of � ), Ulin

�
(the best linear arrival

curve of �), U� + U� (the sum of the best arrival curves for
� and �) and Ulin

�
+ Ulin

�
(the sum of their best linear arrival

curves).
The existing result on static priority scheduling states that, if

a server offers a strict service curve V, then �, the lowest pri-
ority flow receives a residual service V� = [V − (U� + U�)]+↑,
plotted at bottom of Figure 1. From this service, network
calculus ensures that the delay experienced by � is less than
hdev(U� , V� ) = 5. This bound is correct, but quite large with
regard to the real worst case. The reason comes from what
happens at time 2.5ms. Whereas �1 begins its transmission
at 2ms, the high priority frame �2 is released at 2.5ms. In a
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Fig. 1. A CAN bus shared by three flows: worst schedule and related arrival
and service curves

preemptive scheduling, it would stop the transmission of �1,
leading to a delay of 5ms, but on a non-preemptive bus, �1 is
transmitted up to completion. From residual service point of
view, it means that V̂� , drawn at bottom of Figure 1, is also
a service curve for �.

IV. ENHANCING SERVICE CURVES

Here are presented the theorems enhancing any service
curve in the case of a server transmitting packets at a minimal
constant rate up to completion1.

A. Strict minimal service curve

Theorem 1 (Strict minimal service curve). Let ( be a server
and (�, �) ∈ ( with � made of packets of length in
[;min, ;max], such as when a packet starts transmission, it is
transmitted up to completion with at least the constant speed
�. If ( offers to � a strict minimal service curve V, then it
also offers to � the strict minimal service curve

V̂ = ;<8=

⌈
V

;<0G

⌉
∗ _� . (1)

Proof. Let (C, C + 3] a backlogged period and consider the
amount of data � (C + 3) − � (C).

Define G as: If a packet is transmitting a C then G is defined
as the end of transmission of this packet, (we know that each
packet is transmitted until the end at constant speed � so this
moment exists); otherwise, G = C.

Similarly define H as: If a packet is transmitting a C + 3 then
H is the start of transmission of this packet, otherwise H = C+3.

By definition, we know that C ≤ G and H ≤ C + 3.

• First consider the special case H < G:

1The real transmission speed may be larger that � (e.g. due to clock drift)

This means that the same packet is transmitted at C and
at C + 3. This packet is transmitted at minimal constant
speed � so:

� (C + 3) − � (C) ≥ _� (3) (2)

Since V(0) = _� (0) = 0, _� ≥ ;min

⌈
V

;max

⌉
∗ _� [1,

Thm. 3.1.6], � (C + 3) − � (C) ≥ V̂(3).
• Now consider the case G ≤ H:

During [C, G] and [H, C+3], part of a packet is transmitted,
at least at constant speed �, so:

� (C + 3) − � (C) (3)
=(� (C + 3) − � (H)) + (� (H) − � (G)) + (� (G) − � (C))
≥(C + 3 − H)� + (� (H) − � (G)) + (G − C)�
≥� (G − H + 3) + (� (H) − � (G)) (4)

But by construction, there are = ∈ N packets transmitted
during [G, H]. For the proof, let us introduce ;

G,H
<40= =

� (H)−� (G)
=

, the average size of these = packets and notice
that ;min ≤ ;G,H<40= ≤ ;max. By definition of strict service,
� (H) − � (G) ≥ V(H − G), so

=;
G,H
<40= ≥ V(H − G) (5)

⇒ d=e = = ≥
⌈
V(H − G)
;
G,H
<40=

⌉
≥

⌈
V(H − G)
;<0G

⌉
. (6)

It also holds

� (H) − � (G) ≥ =;min. (7)

Then, by combining eq (4), (6) and (7), it comes

� (C + 3) − � (C) ≥ ;<8=
⌈
V(H − G)
;<0G

⌉
+ � (G − H + 3). (8)

Let B = 3 + G − H

� (C + 3) − � (C) ≥ ;<8=
⌈
V(3 − B)
;<0G

⌉
+ � (B) (9)

≥ inf
0≤B≤3

(
;<8=

⌈
V(3 − B)
;<0G

⌉
+ _� (B)

)
(10)

≥
(
;<8=

⌈
V

;<0G

⌉
∗ _�

)
(3) = V̂(3) (11)

�

Corollary 1. With the same hypotheses and notations than in
Theorem 1, ( offers to � the strict minimal service curve

max(V, V̂). (12)

Proof. The maximum of two strict minimal service curves is
a strict minimal service curve [2, Prop. 5.6], leading to the
result. �

B. Simple service curve

Theorem 2 (Simple service curve). Let ( be a server and
(�, �) ∈ ( with � left-continuous where data is grouped
by packets of fixed length ;, such as when a packet starts
transmitting, it is transmitted up to completion with at least
the constant speed �. If ( offers to � a simple minimal service
curve V with V a left-continuous function and if � is packetized



i.e. � = ;
⌈
�
;

⌉
, then ( also offers to � a simple minimal service

curve
V′ = ;

⌈
V

;

⌉
∗ _� . (13)

Proof. Let C ∈ R+, and consider the amount of data � (C).
Define B as: if a packet is transmitting a C then B is defined

as the start of transmission of this packet; otherwise B = C.
During [B, C], part of the packet is transmitted, at constant

speed �, so:

� (C) ≥ � (B) + � (C − B) (14)

Since ( offers to � a simple minimal service curve V, � (B) ≥
(� ∗ V) (B). But by construction, there are = ∈ N packets of
length ; transmitted during [0, B] 8.4. � (B) = =;, so

=; ≥ (� ∗ V) (B) ⇒ d=e = = ≥
⌈
(� ∗ V) (B)

;

⌉
(15)

and

� (C) ≥ ;
⌈
(� ∗ V) (B)

;

⌉
+ � (C − B) (16)

Moreover since � and V are left-continuous

∃D ≤ B such that (� ∗ V) (B) = �(D) + V(B − D) (17)

Then it can be deduced

� (C) ≥ ;
⌈
�(D) + V(B − D)

;

⌉
+ � (C − B) (18)

≥ ;
⌈
�(D)
;
+ V(B − D)

;

⌉
+ � (C − B) (19)

Since � is packetized � = ;
⌈
�
;

⌉
, so:

� (C) ≥ ;
⌈⌈
�(D)
;

⌉
+ V(B − D)

;

⌉
+ � (C − B) (20)

≥ ;
⌈
�(D)
;

⌉
+ ;

⌈
V(B − D)

;

⌉
+ � (C − B) (21)

= �(D) + ;
⌈
V(B − D)

;

⌉
+ � (C − B) (22)

≥
(
� ∗ ;

⌈
V

;

⌉)
(B) + _� (C − B) (23)

≥ inf
0≤B≤C

((
� ∗ ;

⌈
V

;

⌉)
(B) + _� (C − B)

)
(24)

=

(
� ∗

(
;

⌈
V

;

⌉
∗ _�

))
(C) = (� ∗ V̂) (C) (25)

�

V. STATE OF THE ART

It is well known that taking into account the packets sizes
in network calculus gives significantly better bounds than a
linear modeling (gain of 18% in [5], and between 20% and
25% in [6]), either in the arrival curves or the services curves.

On arrival curves, a generic result is presented in [6, Thm. 6]
with hypotheses very close to the ones of this paper: if all
packets in a flow have the same size ; and if each packet is
emitted up to completion at constant rate �, then any arrival
curve U can be enhanced into ;

⌊
U
;

⌋
� _� where � denotes

the deconvolution operator.

On service curves, one may divide the contributions into
two kinds: the ones offering generic results, not related to a
specific policy, and the ones devoted to one specific scheduling
policy.

The oldest specific work starts with the same motivating
example as in Section III. It addresses non-preemptive static
priority scheduling, but lead to a very complex expression and
seems not having being reused [7].

Another piece of work addresses two approximations of the
GPS policy: Weighted Round Robin and Deficit Round Robin.
There were linear residual curves [8], [9] based on the amount
of bits transmitted. By counting the number of packets and
using pseudo-inverses, one may generate a service curve as
an alternation of plateaus and full speed service, for Weighted
Round Robin [2, § 8.2.4], Interleaved Weighted Round Robin
[10] and Deficit Round Robin [11].

The oldest generic work, in [12], is a framework to
transform service curve based on packet sizes, devoted to a
better modeling of packet-based scheduling policies, not an
enhancement of generic service curve.

The result closer to the ones presented in this paper is in
[4]. It also takes into account the effect of transmission at full
line speed (�) up to the end of the packet, independent of the
scheduling policy and applicable for packets of any size, but
applicable only for rate-latency service curves. It proves that,
if V = V',! , and if the horizontal deviation computes an upper
bound on delay 3, then 3 −&; is also a valid bound with

&; = ;

(
1
'
− 1
�

)
. (26)

VI. ILLUSTRATION ON SOME EXAMPLES

Single node, constant packet size, static priority: A first
comparison between Theorem 1 and [4] has been plotted
in Figure 1. Applying Theorem 1 to V� gives the bound
3ℎ = hdev(U� , V̂� ) = 3.5ms whereas [4] gives 3& =

hdev(U� , Vlin
�
) − &; = 9.5 − 2 = 7.5ms. Nevertheless, in this

case, it exists better rate-latency service curves for �, and
applying [4] on such a curve will give a better delay, but as
illustrated by [11, Thm. 2], computing a good rate-latency
lower bound is not a simple problem.

Single node: Consider for a second comparison a server
offering a service V',! to a flow whose minimal and maximal
frame sizes are ;min, ;max and with arrival curve conforming to
a token-bucket of rate A and burst 1, i.e. U(C) = AC + 1.

The delay bound without considering frame sizes is 3ℎ =

hdev(U, V) = ! + 1
'

.
Assume now that each packet is served at line speed �, and

to ease interpretation, set � = 4'.
At first glance, the use of [4] requires a frame size ;, since

the gain &; depends on the frame size. Consider a frame of
size ;min, the bound ! + 1

'
is valid, and the gain is &; = 3

4
;min
'

,

leading to a bound 3min = ! + 1−;min
3
4

'
. The same for a frame

of size ;max leads to a bound, 3max = ! + 1−;max
3
4

'
< 3min.

To solve the paradox 3max < 3min, one has to state that,
inside a given flow, the delay of a given frame is always
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Fig. 2. Application of Theorem 1 and Corollary 1 with V (C) = 'max(0, C −
!) , U(C) = AC + 1, � = 10, ' = 5/2, ! = 1, ;min = 6, ;max = 9, 1 = 11,
A = 15/8

Parameters Single server Sequence of switches
1 ;min ;max 3ℎ 3& 3̂ 4ℎ 4& 4̂

12 6 6 5.80 4 4 12.60 17.80 10.80
12 6 7 5.80 3.70 4.40 13.60 17.20 13.60
12 6 8 5.80 3.40 4.80 14.60 16.40 14.60
12 6 9 5.80 3.10 5.20 15.60 15.60 15.60
12 6 10 5.80 2.80 5.60 16.60 14.40 16.60
12 6 11 5.80 2.50 5.80 17.60 13.10 17.60
12 6 12 5.80 2.20 5.80 18.60 11.80 18.60
9 6 9 4.60 1.90 4.60 14.70 10.60 14.70

10 6 9 5 2.30 5 15 12.30 15
11 6 9 5.40 2.70 5.10 15.30 14 15.30
12 6 9 5.80 3.10 5.20 15.60 15.60 15.60
13 6 9 6.20 3.50 6.20 15.90 17.17 15.90
12 6 6 5.80 4 4 12.60 17.80 10.80
12 7 7 5.80 3.70 4.30 13.60 17.20 12.10
12 8 8 5.80 3.40 4.60 14.60 16.40 13.40
12 9 9 5.80 3.10 4.90 15.60 15.60 14.70
12 10 10 5.80 2.80 5.20 16.60 14.40 16
12 11 11 5.80 2.50 5.50 17.60 13.10 17.30
12 12 12 5.80 2.20 2.20 18.60 11.80 15

TABLE I
DELAY BOUNDS USING VALUES � = 10, ' = 5/2, ! = 1, A = 15/8.

smaller that the one of any larger frame. Then, 3max is a valid
bound for any frame, and let 3& denote this bound.

Conversely, the application of V̂ from Theorem 1 is direct,
and leads to 3̂ = hdev(U,max( V̂, V)) but there is no simple
analytic solution. Then, the values of the bounds 3ℎ , 3& and
3 ′ are reported in Table I for several values of burst 1, minimal
and maximal packet sizes ;min and ;max. In a first series, 1 = 12
and ;min = 6 while ;max goes from 6 to 12, in a second series,
;min = 6, ;max = 9 while 1 goes from 9 to 13, and in a third,
1 = 12 and ;min = ;max, both going from 6 to 7.

It can be seen that the 3& always gives the best bound, that
the quality of 3̂ decreases whereas the difference between ;<8=
and ;max increases. Also notice that the quality of 3̂ decreases
with the rest of the Euclidean division of the burst by ;min.

Multiple nodes: Consider now that the flow crosses a
sequence of three store-and-forward switches, where each
switch is made of one element that stores bits up to having
one full packet (packetizer), and then forwards it to a queue
with a per-bit minimal service V',! . A bound on the end-
to-end delay of the flow can be computed either as the sum
of the delay bound in each server, or using the ”pay burst
only once” principle (PBOO), stating that when a flow crosses
a sequence of two servers of respective service V1, V2, the
end-to-end delay is bounded by hdev(U, V1 ∗ V2). To use it
in a store-and-forward context, one may use the fact that the
sequence of a per-bit service V and a packetizer offers a service
V−;max. Using these two results permit us to compute a PMOO

bound 4ℎ using only the service curves, and a PMOO bound
4̂ that uses Corollary 1. The bound 4& can be computed using
the sum of local delays. The script used for this example
can be found at https://doi.org/10.5281/zenodo.5226867 and
interpreted using an online interpreter [13].

The results are presented in Table I. Like for the single
node, the quality of 4̂ is highly dependent of the difference
between ;min and ;max, and the improvement w.r.t. 4ℎ can be
null (when 1 = 12, ;min = 6, and ;max ≥ 7 or when ;min = 6,
;max = 9). The enhancement provided by [4] is dependent of
the size of the packet size w.r.t. the burst size.

To sum up, both results in [4] and Corollary 1 try to save
“one packet time” per server, but the efficiency of Corollary 1
depends on the ratio ;min/;max. On the opposite, the result in
[4] can not be used to pay the burst only once in case of
sequence of servers, and its efficiency decreases when the size
of burst is large w.r.t. the packet size (and when the path length
increases).

VII. CONCLUSION

This paper presents a generic result that enhances the service
curve of a server whose per packet transmission rate is lower
bounded, whatever the scheduling policy or the service curve
is. This result can be applied in more contexts than already
existing results, but its gain decreases when the difference
between the maximal an minimal packet size increases.
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