
HAL Id: hal-04151207
https://hal.science/hal-04151207v1

Submitted on 4 Jul 2023 (v1), last revised 13 Mar 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expiring opacity problems in parametric timed
automata

Étienne André, Engel Lefaucheux, Dylan Marinho

To cite this version:
Étienne André, Engel Lefaucheux, Dylan Marinho. Expiring opacity problems in parametric timed au-
tomata. 2023 27th International Conference on Engineering of Complex Computer Systems (ICECCS),
Jun 2023, Toulouse, France. pp.89-98, �10.1109/ICECCS59891.2023.00020�. �hal-04151207v1�

https://hal.science/hal-04151207v1
https://hal.archives-ouvertes.fr

Expiring opacity problems in parametric timed
automata

Étienne André
Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030

F-93430 Villetaneuse, France

Engel Lefaucheux
Dylan Marinho

Université de Lorraine, CNRS, Inria, LORIA
F-54000 Nancy, France

Abstract—Information leakage can have dramatic conse-1

quences on the security of real-time systems. Timing leaks occur2

when an attacker is able to infer private behavior depending3

on timing information. In this work, we propose a definition of4

expiring timed opacity w.r.t. execution time, where a system is5

opaque whenever the attacker is unable to deduce the reachability6

of some private state solely based on the execution time; in7

addition, the secrecy is violated only when the private state was8

visited “recently”, i. e., within a given time bound (or expiration9

date) prior to system completion. This has an interesting parallel10

with concrete applications, notably cache deducibility: it may be11

useless for the attacker to know the cache content too late after12

its observance. We study here expiring timed opacity problems13

in timed automata. We consider the set of time bounds (or14

expiration dates) for which a system is opaque and show when15

they can be effectively computed for timed automata. We then16

study the decidability of several parameterized problems, when17

not only the bounds, but also some internal timing constants18

become timing parameters of unknown constant values.19

Index Terms—security, distributed systems, timed opacity,20

timed automata21

I. INTRODUCTION22

Complex timed systems combine hard real-time constraints23

with concurrency. Information leakage can have dramatic24

consequences on the security of such systems. Among harmful25

information leaks, the timing information leakage is the ability26

for an attacker to deduce internal information depending on27

timing information. In this work, we focus on timing leakage28

through the total execution time, i. e., when a system works as29

an almost black-box and the ability of the attacker is limited30

to know the model and observe the total execution time. We31

consider the setting of timed automata (TAs), which is a32

popular extension of finite-state automata with clocks [AD94].33

a) Context and related works: Franck Cassez proposed34

in [Cas09] a first definition of timed opacity: the system is35

opaque if an attacker cannot deduce whether some set of ac-36

tions was performed, by only observing a given set of observ-37

able actions together with their timestamp. It is then proved38

in [Cas09] that it is undecidable whether a TA is opaque, even39

for the restricted class of event-recording automata [AFH99]40

(a subclass of TAs). This notably relates to the undecidability41

of timed language inclusion for TAs [AD94].42

This work is partially supported by the ANR-NRF French-Singaporean
research program ProMiS (ANR-19-CE25-0015 / 2019 ANR NRF 0092) and
the ANR research program BisoUS.

The aforementioned negative result leaves hope only if 43

the definition or the setting is changed, which was done in 44

three main lines of works. First, in [WZ18], [WZA18], the 45

input model is simplified to real-time automata, a severely 46

restricted formalism compared to TAs. Timed aspects are 47

only considered by interval restrictions over the total elapsed 48

time along transitions. Real-time automata can be seen as a 49

subclass of TAs with a single clock, reset at each transition. In 50

this setting, (initial-state) opacity becomes decidable [WZ18], 51

[WZA18]. 52

Second, in [ALMS22], we consider a weaker attacker, who 53

has access only to the execution time: this is execution-time 54

opacity (ET-opacity).1 In the setting of TAs, the execution time 55

denotes the time from the system start to the reachability of 56

a given (final) location. Therefore, given a secret location, a 57

TA is ET-opaque for an execution time d if there exist at 58

least two paths of duration d from the initial location to a 59

final location: one visiting the secret location, and another 60

one not visiting the secret location. The system is fully ET- 61

opaque (FET-opaque) if it is ET-opaque for all execution 62

times: that is, for each possible d, either no final location 63

is reachable, or the final location is reachable for at least 64

two paths, one visiting the secret location, and another one 65

not visiting it. These definitions of (F)ET-opacity become 66

decidable for TAs [ALMS22]. We studied various parametric 67

extensions, and notably showed that the parametric emptiness 68

problem (the emptiness over the parameter valuations set 69

for which the TA is ET-opaque) becomes decidable for a 70

subclass of parametric timed automata (PTAs) [AHV93] where 71

parameters are partitioned between lower-bound and upper- 72

bound parameters [HRSV02]. 73

Third, in [AETYM21], the authors consider a time-bounded 74

notion of the opacity of [Cas09], where the attacker has to 75

disclose the secret before an upper bound, using a partial 76

observability. This can be seen as a secrecy with an expiration 77

date. The rationale is that retrieving a secret “too late” is 78

useless; this is understandable, e. g., when the secret is the 79

value in a cache; if the cache was overwritten since, then 80

knowing the secret is probably useless in most situations. In 81

addition, the analysis is carried over a time-bounded horizon; 82

this means there are two time bounds in [AETYM21]: one 83

for the secret expiration date, and one for the bounded-time 84

1In [ALMS22], this notion was only referred to as “timed opacity”.

https://orcid.org/0000-0001-8473-9555
https://orcid.org/0000-0003-0875-300X
https://orcid.org/0000-0002-2548-6196
https://www.loria.science/ProMiS/

execution of the system. (We consider only the former one85

in this work, and lift the assumption regarding the latter.)86

The authors prove that this problem is decidable for TAs. A87

construction and an algorithm are also provided to solve it; a88

case study is verified using SPACEEX [FLGD+11].89

b) Contribution: In this work, we combine both con-90

cepts from [ALMS22], [AETYM21] and consider an expiring91

version of FET-opacity, where the secret is subject to an92

expiration date. That is, we consider that an attack is successful93

only when the attacker can decide that the secret location was94

visited less than ∆ time units before the system completion.95

Conversely, if the attacker exhibits an execution time d for96

which it is certain that the secret location was visited, but this97

location was visited strictly more than ∆ time units prior to the98

system completion, then this attack is useless, and can be seen99

as a failed attack. The system is therefore expiring FET-opaque100

if the set of execution times for which the private location101

was visited within ∆ time units prior to system completion102

is exactly equal to the set of execution times for which the103

private location was either not visited or visited > ∆ time104

units prior to system completion.105

On the one hand, our attacker model is weaker106

than [AETYM21], because our attacker has only access to the107

execution time (and to the input model); in that sense, our at-108

tacker capability is identical to [ALMS22]. On the other hand,109

we lift the time-bounded horizon analysis from [AETYM21],110

allowing to analyze systems without any assumption on their111

execution time; therefore, we only import from [AETYM21]112

the notion of expiring secret. Also note that our formalism113

is much more expressive (and therefore able to encode richer114

applications) than in [WZ18], [WZA18] as we consider the full115

class of TAs instead of the restricted real-time automata. We116

also consider parametric extensions, not discussed in [Cas09],117

[WZ18], [WZA18], [AETYM21].118

We first consider ET-opacity problems for TAs. We show119

that120

1) it is possible to decide whether a TA is expiring FET-121

opaque for a given time bound ∆ (decision problem);122

2) it is possible to decide whether a TA is expiring FET-123

opaque for at least one bound ∆ (emptiness problem);124

3) it is possible to compute the set of time bounds (or125

expiration dates) for which a TA is expiring FET-opaque126

(computation problem), under the assumption of weak-127

ness of FET-opacity (i. e., when the set of execution128

times passing through the private location within ∆ time129

units prior to system completion is included in (and not130

necessary equal to) the set of all execution times).131

We also show that in PTAs the emptiness of the parameter132

valuation sets for which the system is expiring FET-opaque is133

undecidable, even for a subclass of PTAs usually well-known134

for its decidability results.135

c) Outline: We recall preliminaries in Section II. We136

define temporary opacity in Section III. We address problems137

for TAs in Section IV, and parametric extensions in Section V.138

We conclude in Section VI.139

II. PRELIMINARIES 140

Let N, Z, Q+, R+, R denote the sets of non-negative 141

integers, integers, non-negative rational numbers, non-negative 142

real numbers, and real numbers, respectively. Let N∞ = 143

N ∪ {+∞} and R∞+ = R+ ∪ {+∞}. 144

A. Clocks and guards 145

We assume a set X = {x1, . . . , xH} of clocks, i. e., real- 146

valued variables that all evolve over time at the same rate. A 147

clock valuation is a function µ : X→ R+. We write 0⃗ for the 148

clock valuation assigning 0 to all clocks. Given d ∈ R+, µ+d 149

denotes the valuation s.t. (µ+d)(x) = µ(x)+d, for all x ∈ X. 150

Given R ⊆ X, we define the reset of a valuation µ, denoted by 151

[µ]R, as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) 152

otherwise. 153

We assume a set P = {p1, . . . , pM} of parameters, i. e., 154

unknown constants. A parameter valuation v is a function v : 155

P→ Q+. 156

A clock guard g is a constraint over X defined by a 157

conjunction of inequalities of the form x ▷◁ d, with d ∈ Z 158

and ▷◁ ∈ {<,≤,=,≥, >}. Given g, we write µ |= g if 159

the expression obtained by replacing each x with µ(x) in g 160

evaluates to true. 161

B. Parametric timed automata 162

Parametric timed automata (PTA) extend timed automata 163

with parameters within guards and invariants in place of 164

integer constants [AHV93]. We extend PTAs with a special 165

location called “private location”. 166

Definition 1 (PTA). A PTA P is a tuple 167

P = (Σ, L, ℓ0, ℓpriv , ℓf ,X,P, I, E), where: 168

1) Σ is a finite set of actions, 169

2) L is a finite set of locations, 170

3) ℓ0 ∈ L is the initial location, 171

4) ℓpriv ∈ L is the private location, 172

5) ℓf ∈ L is the final location, 173

6) X is a finite set of clocks, 174

7) P is a finite set of parameters, 175

8) I is the invariant, assigning to every ℓ ∈ L a clock guard 176

I(ℓ), 177

9) E is a finite set of edges e = (ℓ, g, a,R, ℓ′) where ℓ, ℓ′ ∈ 178

L are the source and target locations, a ∈ Σ, R ⊆ X is a 179

set of clocks to be reset, and g is a clock guard. 180

C. Timed automata 181

Given a PTA P and a parameter valuation v, we denote by 182

v(P) the non-parametric structure where all occurrences of a 183

parameter pi have been replaced by v(pi). We denote as a 184

timed automaton any structure v(P), by assuming a rescaling 185

of the constants: by multiplying all constants in v(P) by the 186

least common multiple of their denominators, we obtain an 187

equivalent (integer-valued) TA, as defined in [AD94]. 188

Example 1. Consider the PTA in Fig. 1 (inspired by [GMR07, 189

Fig. 1b]), using one clock x and two parameters p1 and p2. ℓ0 190

is the initial location, while we assume that ℓf is the (only) 191

final location. 192

2

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2
x ≥ p1

Figure 1: A PTA example

1) Concrete semantics of TAs:193

Definition 2 (Semantics of a TA). Given a PTA P =194

(Σ, L, ℓ0, ℓpriv , ℓf ,X,P, I, E), and a parameter valuation v,195

the semantics Tv(P) of v(P) is given by the timed transition196

system (TTS) (S, s0,→), with197

• S = {(ℓ, µ) ∈ L× RH
+ | µ |= v(I(ℓ))},198

• s0 = (ℓ0, 0⃗),199

• → consists of the discrete and (continuous) delay transi-200

tion relations:201

1) discrete transitions: (ℓ, µ)
e7→ (ℓ′, µ′),202

if (ℓ, µ), (ℓ′, µ′) ∈ S, and there exists203

e = (ℓ, g, a,R, ℓ′) ∈ E, such that µ′ = [µ]R,204

and µ |= v(g).205

2) delay transitions: (ℓ, µ) d7→ (ℓ, µ+ d), with d ∈ R+, if206

∀d′ ∈ [0, d], (ℓ, µ+ d′) ∈ S.207

Moreover we write (ℓ, µ)
(d,e)−→ (ℓ′, µ′) for a combination of208

a delay and discrete transition if ∃µ′′ : (ℓ, µ) d7→ (ℓ, µ′′)
e7→209

(ℓ′, µ′).210

Given a TA v(P) with concrete semantics (S, s0,→), we211

refer to the states of S as the concrete states of v(P). A run212

of v(P) is an alternating sequence of concrete states of v(P)213

and pairs of edges and delays starting from the initial state214

s0 of the form s0, (d0, e0), s1, · · · with i = 0, 1, . . . , ei ∈ E,215

di ∈ R+ and si
(di,ei)−→ si+1.216

The duration between two states of a finite run ρ :217

s0, (d0, e0), s1, · · · , sk is durρ(si, sj) =
∑

i≤m≤j−1 dm. The218

duration of a finite run ρ : s0, (d0, e0), s1, · · · , si is dur(ρ) =219

durρ(s0, sk) =
∑

0≤j≤k−1 dj . We also define the duration220

between two locations ℓ1 and ℓ2 as the duration durρ(ℓ1, ℓ2) =221

durρ(si, sj) with ρ : s0, (d0, e0), s1, · · · , si, · · · , sj , · · · , sk222

where sj the first occurrence of a state with location ℓ2 and si223

is the last state of ρ with location ℓ1 before sj . We choose this224

definition to coincide with the definitions of opacity that we225

will define later (Definition 6). Indeed, we want to make sure226

that revealing a secret (ℓ1 in this definition) is not a failure227

if it is done after a given time. Thus, as soon as the system228

reaches its final state (ℓ2), we will be interested in knowing229

how long the secret has been present, and thus the last time230

it was visited (si).231

Example 2. Let us go back to Example 1. Let v be232

such that v(p1) = 1 and v(p2) = 2. Consider the fol-233

lowing run ρ of v(P): (ℓ0, x = 0), (1.4, e2), (ℓpriv , x =234

1.4), (0.4, e3), (ℓf , x = 1.8), where e2 is the edge from ℓ0235

to ℓpriv in Fig. 1, and e3 is the edge from ℓpriv to ℓf . We236

write “x = 1.4” instead of “µ such that µ(x) = 1.4”. We have237

dur(ρ) = 1.4 + 0.4 = 1.8 and durρ(ℓpriv , ℓf) = 0.4.238

2) Timed automata regions: Let us next recall the concept 239

of regions and the region graph [AD94]. 240

Given a TA A, for a clock xi, we denote by ci the 241

largest constant to which xi is compared within the guards 242

and invariants of A (that is, ci = maxi({ di | x ▷◁ 243

di appears in a guard or invariant of A}). Given α ∈ R, let 244

⌊α⌋ and fract(α) denote respectively the integral part and the 245

fractional part of α. 246

Example 3. Consider again the PTA in Fig. 1, and let v be 247

such that v(p1) = 2 and v(p2) = 4. In the TA v(P), the clock 248

x is compared to the constants in {2, 3, 4}. In that case, c = 4 249

is the largest constant to which the clock x is compared. 250

Definition 3 (Region equivalence). We say that two clock 251

valuations µ and µ′ are equivalent, denoted µ ≈ µ′, if the 252

following three conditions hold for any clocks xi, xj : 253

1) either 254

a) ⌊µ(xi)⌋ = ⌊µ′(xi)⌋ or 255

b) µ(xi) > ci and µ′(xi) > ci 256

2) fract(µ(xi)) ≤ fract(µ(xj)) iff fract(µ′(xi)) ≤ 257

fract(µ′(xj)) 258

3) fract(µ(xi)) = 0 iff fract(µ′(xi)) = 0 259

The equivalence relation ≈ is extended to the states of TA: 260

if s = (ℓ, µ), s′ = (ℓ′, µ′) are two states of TA, we write s ≈ s′ 261

iff ℓ = ℓ′ and µ ≈ µ′. 262

We denote by [s] the equivalence class of s for ≈. A region 263

is an equivalence class [s] of ≈. The set of all regions is 264

denoted RA. Given a state s = (ℓ, µ) and d ≥ 0, we write 265

s+ d to denote (ℓ, µ+ d). 266

Definition 4 (Region graph [BDR08]). The region graph 267

RGA = (RA,FA) is a finite graph with: 268

• RA as the set of vertices 269

• given two regions r = [s] , r′ = [s′] ∈ RA, we have 270

(r, r′) ∈ FA if one of the following holds: 271

– s
e7→ s′ ∈ TA for some e ∈ E (discrete instantaneous 272

transition); 273

– if r′ is a time successor of r: r ̸= r′ and there exists d 274

such that s+d ∈ r′ and ∀d′ < d, s+ d′ ∈ r ∪ r′ (delay 275

transition); 276

– r = r′ is unbounded: s = (ℓ, µ) with µ(xi) > ci for 277

all xi (equivalent unbounded regions). 278

We now define a version of the region automaton based 279

on [BDR08] where the only letter that can be read, ‘a’ 280

means that one time unit has passed. Note that this automaton 281

is not timed. As such, it is as usual described by a tuple 282

(Σ, Q, q0, F, T) where Σ is the alphabet, Q is the set of 283

states, q0 is the initial state, F is the set of final states and 284

T ∈ (Q× Σ×Q) is the set of transitions. 285

We assume that the given automaton A possesses a clock 286

xa that is maintained by invariants smaller or equal to 1 and 287

can be reset if it is equal to 1. This clock does not affect the 288

behavior of the automaton, but every time it is reset, we know 289

that one unit of time passed. We also assume that the TA is 290

3

blocked once ℓf is reached (i.e. no transition can be taken and291

no time can elapse).292

Definition 5 (Region automaton [BDR08]). The region au-293

tomaton RAA = {{a} ,RA, [s0] , F, T} where294

1) a is the only action;295

2) RA is the set of states (a state of RAA is a region of296

A);297

3) [s0] is the initial location (the region associated to the298

initial state);299

4) the set of final locations F is the set of regions associated300

to the location ℓpriv where xa is not set at 1 (i.e. the set301

of regions r = [(ℓpriv , µ)] where µ(xa) < 1)302

5) (r, z, r′) ∈ T iff (r, r′) ∈ FA and z = a if xa was reset303

in the discrete instantaneous transition corresponding to304

(r, r′), and z = ε otherwise.305

An important property of this automaton is that the word ak306

with k ∈ N is accepted by RAA iff there exists a run reaching307

the final state within [k, k + 1).308

III. TEMPORARY EXECUTION TIME OPACITY PROBLEMS309

In this section, we formally introduce the problems we310

address in this paper. On the following, let A be a TA.311

A. Temporary-opacity312

Given A, and a run ρ, we say that ℓpriv is313

reached on the way to ℓf in ρ if ρ is of the form314

(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓm, µm), (dm, em), · · · (ℓn, µn)315

for some m,n ∈ N such that ℓm = ℓpriv , ℓn = ℓf and316

∀0 ≤ i ≤ m− 1, ℓi ̸= ℓf . We denote by Reachpriv (A) the set317

of those runs, and refer to them as private runs. We denote by318

by DReachpriv (A) the set of all the durations of these runs.319

Conversely, we say that ℓpriv is avoided on the way to ℓf in ρ320

if ρ is of the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn)321

with ℓn = ℓf and ∀0 ≤ i < n, ℓi /∈ {ℓpriv , ℓf}. We denote322

the set of those runs by Reach¬priv (A), referring to them323

as public runs, and by DReach¬priv (A) the set of all the324

durations of its runs.325

We define Reachpriv
>∆ (A) (resp. Reachpriv

≤∆ (A)) as the set326

of runs ρ ∈ Reachpriv (A) s.t. durρ(ℓpriv , ℓf) > ∆ (resp.327

durρ(ℓpriv , ℓf) ≤ ∆). We refer the runs of Reachpriv
≤∆ (A)328

as secret runs. DReachpriv
>∆ (A) (resp. DReachpriv

≤∆ (A)) is the329

set of all the durations of the runs in Reachpriv
>∆ (A) (resp.330

Reachpriv
≤∆ (A)).331

We define below two notions of full execution timed opacity332

(FET) w.r.t. a time bound ∆. We will compare two sets:333

1) the set of execution times for which the private location334

was visited at most ∆ time units prior to system comple-335

tion; and336

2) the set of execution times for which either the private337

location was not visited at all, or it was visited more338

than ∆ time units prior to system completion (which,339

in our setting is equivalent to not visiting the private340

location, in the sense that visiting it “too early” is341

considered of little interest).342

If both sets match, the system is (≤ ∆)-FET-opaque. If the 343

former is included into the latter, then the system is weakly 344

(≤ ∆)-FET-opaque. 345

Definition 6 ((≤ ∆)-FET-opacity). Given a TA A and a 346

bound (i. e., an expiration date for the secret) ∆ ∈ R∞+ 347

we say that A is (≤ ∆)-FET-opaque if DReachpriv
≤∆ (A) = 348

DReachpriv
>∆ (A) ∪ DReach¬priv (A). Moreover, we say that 349

A is weakly (≤ ∆)-FET-opaque if DReachpriv
≤∆ (A) ⊆ 350

DReachpriv
>∆ (A) ∪DReach¬priv (A). 351

Remark 1. Our notion of weak opacity may still leak some 352

information: on the one hand, if a run indeed visits the 353

private location ≤ ∆ before system completion, there exists 354

an equivalent run not visiting it (or visiting it earlier), and 355

therefore the system is opaque; but on the other hand, there 356

may exist execution times for which the attacker can deduce 357

that the private location was not visited ≤ ∆ before system 358

completion. This remains acceptable in some cases, and this 359

motivates us to define a weak version of (≤ ∆)-FET-opacity. 360

Also note that the “initial-state opacity” for real-time automata 361

considered in [WZ18] can also be seen as weak in the sense 362

that their language inclusion is also unidirectional. 363

Example 4. Consider again the PTA in Fig. 1; let v be such 364

that v(p1) = 1 and v(p2) = 2.5. Fix ∆ = 1. 365

We have: 366

• DReach¬priv (v(P)) = [0, 3] 367

• DReachpriv
>∆ (v(P)) = [2, 2.5] 368

• DReachpriv
≤∆ (v(P)) = [1, 2.5] 369

Therefore, we say that v(P) is: 370

• weakly (≤ 1)-FET-opaque, as [1, 2.5] ⊆ ([2, 2.5] ∪ [0, 3]) 371

• not (≤ 1)-FET-opaque, as [1, 2.5] ̸= ([2, 2.5] ∪ [0, 3]) 372

As introduced in Remark 1, despite the weak (≤ 1)-FET- 373

opacity of A, the attacker can deduce some information about 374

the visit of the private location for some execution times. For 375

example, if a run has a duration of 3 time units, it cannot be 376

a private run, and therefore the attacker can deduce that the 377

private location was not visited. 378

We define three different problems: 379

(Weak) (≤ ∆)-FET-opacity decision problem:
INPUT: A TA A and a bound ∆ ∈ R∞+
PROBLEM: Decide whether A is (weakly) (≤ ∆)-FET-
opaque

380

381

(Weak) (≤ ∆)-FET-opacity emptiness problem:
INPUT: A TA A
PROBLEM: Decide the emptiness of the set of bounds ∆
such that A is (weakly) (≤ ∆)-FET-opaque

382

383

(Weak) (≤ ∆)-FET-opacity computation problem:
INPUT: A TA A
PROBLEM: Compute the maximal set D of bounds such
that A is (weakly) (≤ ∆)-FET-opaque for all ∆ ∈ D

384

385

Example 5. Consider again the PTA in Fig. 1; let v be 386

such that v(p1) = 1 and v(p2) = 2.5 (as in Example 4). 387

4

ℓ0 ℓfA

ℓ′0

ℓ′priv

ℓ′f

y ≤ ∆+ 1

z = 0

I(ℓf) ∧ z = 0

z = 0

y
=

∆
+
1

X
′
\
{y
}
←

0

z
=

0
∧
y
>

∆

z
=
0
∧ y
≤
∆

z
=
0

Figure 2: Construction used in Theorem 1

Given ∆ = 1, the weak (≤ ∆)-FET-opacity decision problem388

asks whether v(P) is weakly (≤ ∆)-FET-opaque—the answer389

is “yes” from Example 4. The weak (≤ ∆)-FET-opacity390

emptiness problem is therefore “no” because the set of bounds391

∆ such that v(P) is weakly (≤ ∆)-FET-opaque is not empty.392

Finally, the weak (≤ ∆)-FET-opacity computation problem393

asks to compute all the corresponding bounds: in this example,394

the solution is ∆ ∈ R+.395

Note that, considering ∆ = ∞, DReachpriv
>∆ (A) = ∅396

and all the execution times of runs passing by ℓpriv are in397

DReachpriv
≤∆ (A). Therefore, (≤ ∞)-FET-opacity matches the398

FET-opacity defined in [ALMS22]. We can therefore notice399

that answering the (≤ ∞)-FET-opacity decision problem is400

decidable ([ALMS22, Proposition 5.3]). However, the empti-401

ness and computation problems cannot be reduced to FET-402

opacity problems from [ALMS22]. Conversely, it is possible403

to answer the FET-opacity decision problem2 by checking404

the (≤ ∞)-FET-opacity decision problem. Moreover, FET-405

opacity computation problem3 reduces to (≤ ∆)-FET-opacity406

computation: if ∞ ∈ D, we get the answer.407

Note that our problems are incomparable to the ones ad-408

dressed in [AETYM21] as the models used in their paper have409

a bounded execution time < ∞, in addition to the bounded410

opacity ∆.411

IV. TEMPORARY FET-OPACITY IN TIMED AUTOMATA412

In this entire section, unless otherwise specified, we set ∆ ∈413

N.414

Theorem 1. The (≤ ∆)-FET-opacity decision problem re-415

duces to the weak (≤ ∆)-FET-opacity decision problem.416

Proof: Fix a TA A and a time bound ∆. In this reduction,417

we build a new TA A′ where secret and non-secret runs418

are swapped. More precisely, we add a new clock y that419

measures how much time has elapsed since the latest visit420

of the private location. It is thus reset whenever we enter the421

2Named “Full timed opacity decision problem” in [ALMS22]
3Named “Full timed opacity computation problem” in [ALMS22]

private location ℓpriv . This clock is initialized to value ∆+1 422

(which can be ensured by waiting in a new initial location 423

ℓ′0 for ∆ + 1 time units before going to the original initial 424

location ℓ0 and resetting every clock but y). When reaching 425

the final location ℓf , one can urgently (a new clock z can 426

be used to force the system to move immediately) move to 427

a new secret location ℓ′priv if y > ∆ and then to the new 428

final location ℓ′f ; otherwise (if y ≤ ∆), the TA can go directly 429

to the new final location ℓ′f . Therefore, a run that would not 430

be secret, as y > ∆ is now secret and reciprocally. Then, by 431

testing weak (≤ ∆)-FET-opacity of both A and A′, one can 432

check (≤ ∆)-FET-opacity of A. 433

Formally, given a TA A = (Σ, L, ℓ0, ℓpriv , ℓf ,X, I, E) 434

and ∆ ∈ R ∪ {+∞}, we build a second TA A′ = (Σ ∪ 435

{♯}, L′, ℓ′0, ℓ′priv , ℓ′f ,X∪{y, z}, I ′, E′) where ♯ denotes a spe- 436

cial action absent from Σ and where: 437

• L′ = L ∪ {ℓ′0, ℓ′priv , ℓ′f}; 438

• ∀ℓ ∈ L \ {ℓf} : I ′(ℓ) = I(ℓ); I ′(ℓf) = (I(ℓf) ∧ z = 0); 439

I ′(ℓ′0) = (y ≤ ∆ + 1); I ′(ℓ′priv) = (z = 0); I ′(ℓ′f) = 440

(z = 0). 441

• for each (ℓ, g, a,R, ℓ′) ∈ E, we add
(
ℓ, g, a,R′, ℓ′

)
442

to E′ where R′ = R ∪ {y, z} if ℓ′ = ℓpriv and 443

R′ = R ∪ {z} otherwise. We also add the following 444

edges to E′:
{(

ℓ′0, (y = ∆ + 1), ♯,X, ℓ0
)
,
(
ℓf , (z = 445

0 ∧ y > ∆), ♯, ∅, ℓ′priv
)
,
(
ℓf , (z = 0 ∧ y ≤ 446

∆), ♯, ∅, ℓ′f
)
,
(
ℓ′priv , (z = 0), ♯, ∅, ℓ′f

)}
. 447

We give a graphical representation of our construction in 448

Fig. 2. There is a one-to-one correspondence between the 449

secret (resp. non-secret) runs ending in ℓpriv in A and the 450

non-secret (resp. secret) runs ending in ℓ′priv in A′. Given ρ a 451

run in A and ρ′ the corresponding run in A′, then the duration 452

of ρ′ is equal to the duration of ρ plus ∆+1 (the time waited 453

in ℓ′0). 454

Recall from Definition 6 the definition of weak (≤ ∆)- 455

FET-opacity for P ′: DReachpriv
≤∆ (A′) ⊆ DReachpriv

>∆ (A′) ∪ 456

DReach¬priv (A′). 457

1) First consider the left-hand part “DReachpriv
≤∆ (A′)”: these 458

execution times correspond to runs of A′ for which 459

ℓ′priv was visited less than ∆ (and actually 0) time units 460

prior to reaching ℓ′f . These runs passed the y > ∆ 461

guard between ℓf and ℓ′priv . From our construction, these 462

runs correspond to runs of the original A either not 463

passing at all by ℓpriv (since y was never reset since 464

its initialization to ∆ + 1, and therefore y ≥ ∆ + 1 > 465

∆), or to runs which visited ℓpriv more than ∆ time 466

units before reaching ℓf . Therefore, DReachpriv
≤∆ (A′) = 467{

d+ 1 +∆ | d ∈ DReachpriv
>∆ (A) ∪DReach¬priv (A)

}
468

2) Second, consider the right-hand part “DReachpriv
>∆ (A′)∪ 469

DReach¬priv (A′)”: the set DReachpriv
>∆ (A′) is neces- 470

sarily empty, as any run of A′ passing through ℓ′priv 471

reaches ℓ′f immediately in 0-time. The execution times 472

from DReach¬priv (A′) correspond to runs of P ′ not 473

visiting ℓ′priv , therefore for which only the guard y ≤ 474

∆ holds. Hence, they correspond to runs of A which 475

5

visited ℓpriv less than ∆ time units prior to reach-476

ing ℓf . Therefore, DReachpriv
>∆ (A′)∪DReach¬priv (A′) =477 {

d+ 1 +∆ | d ∈ DReachpriv
≤∆ (A)

}
478

To conclude, checking that A′ is weakly479

(≤ ∆)-FET-opaque (i. e., DReachpriv
≤∆ (A′) ⊆480

DReachpriv
>∆ (A′) ∪ DReach¬priv (A′)) is equivalent to481

DReachpriv
>∆ (A) ∪ DReach¬priv (A) ⊆ DReachpriv

≤∆ (A).482

Moreover, from Definition 6, checking that A is weakly483

(≤ ∆)-FET-opaque denotes checking DReachpriv
≤∆ (A) ⊆484

DReachpriv
>∆ (A) ∪ DReach¬priv (A). Therefore, checking485

that both A′ and A are weakly (≤ ∆)-FET-opaque denotes486

DReachpriv
≤∆ (A) = DReachpriv

>∆ (A) ∪ DReach¬priv (A),487

which is the definition of (≤ ∆)-FET-opacity for A.488

To conclude, A is (≤ ∆)-FET-opaque iff A and A′ are489

weakly (≤ ∆)-FET-opaque.490

Theorem 2. The (weak) (≤ ∆)-FET-opacity decision problem491

is decidable in NEXPTIME.492

Proof: Given a TA A, we first build two TAs from A,493

named Ap and As and representing respectively the public494

and secret behavior of the original TA, while each constant495

is multiplied by 2. The consequence of this multiplication is496

that the final location can be reached in time strictly between497

t and t + 1 (with t ∈ N) by a public (resp. secret) run in498

A iff the target can be reached in time 2t + 1 in the TA Ap499

(resp. As). Note that the correction of this statement is a direct500

consequence of [BDR08, Lemma 5.5].501

We then build the region automata RAp and RAs (of Ap502

and As respectively).503

RAp is a non-deterministic unary (the alphabet is restricted504

to a single letter) automaton with ε transitions the language505

of which is {ak | there is a run of duration k in Pp}, and506

similarly for RAs.507

We are interested in testing equality (resp. inclusion) of508

those languages for deciding the (resp. weak) (≤ ∆)-FET-509

opacity decision problem.510

[SM73, Theorem 6.1] establishes that language equality of511

unary automata is NP-complete and the same proof implies512

that inclusion is in NP. As the region automata are exponen-513

tial, we get the result.514

515

Remark 2. In [ALMS22], we established that the (≤ +∞)-516

FET-opacity decision problem is in 3EXPTIME. Our result517

thus extends our former results in three ways: by including the518

parameter ∆, by reducing the complexity and by considering519

as well the weak notion of FET-opacity.520

Theorem 3. The weak (≤ ∆)-FET-opacity computation prob-521

lem is solvable.522

Proof: In a first time, we consider weak temporary523

opacity (i. e., without any bound on the secret expiration date).524

First, we test whether A is weakly (≤ +∞)-FET-opaque525

thanks to Theorem 2. If it is, then by definition (and mono-526

tonicity) of weak temporary opacity, A is weakly (≤ ∆)-527

FET-opaque for all ∆ ∈ N∞. If it is not, then there exists528

a non-opaque duration t. t can be computed as a smallest 529

word differentiating the two exponential automata described 530

in Theorem 2. Hence, t is at most doubly exponential. We test 531

(≤ ∆)-FET-opaque for all ∆ < t as, due to the construction of 532

the counter example, A is not (≤ ∆)-FET-opaque for ∆ ≥ t. 533

This synthesizes our set as there are finitely many values to 534

test. 535

536

Corollary 1. The weak (≤ ∆)-FET-opacity emptiness problem 537

is decidable. 538

Proof: According to Theorem 3, the weak (≤ ∆)-FET- 539

opacity computation problem is solvable. Therefore, to ask 540

the emptiness problem, one can compute the set of bounds 541

ensuring the weak (≤ ∆)-FET-opacity of the TA and check 542

its emptiness. 543

In contrast to weak (≤ ∆)-FET-opacity computation, we 544

only show below that (non-weak) weak (≤ ∆)-FET-opacity 545

emptiness is decidable; the computation problem remains 546

open. 547

Theorem 4. The (≤ ∆)-FET-opacity emptiness problem is 548

decidable. 549

Proof: Given a TA A, using Theorem 3, we first compute 550

the set of bounds ∆ such that A is weakly (≤ ∆)-FET-opaque. 551

As (≤ ∆)-FET-opacity requires weak (≤ ∆)-FET-opacity, if 552

the computed set is finite, then we only need to check the 553

bounds of this set for (≤ ∆)-FET-opacity and thus synthesize 554

all the bounds achieving (≤ ∆)-FET-opacity. 555

If this set is infinite however, by the proof of Theorem 3, any 556

bound in N∞ works. To achieve (≤ ∆)-FET-opacity we only 557

need to detect when the secret durations are included in the 558

non-secret ones. As the set of non-secret durations decrease 559

when ∆ increases, there is a valuation of ∆ achieving (≤ ∆)- 560

FET-opacity iff the TA is (≤ ∞)-FET-opaque. The latter can 561

be decided with Theorem 2. 562

Corollary 2. The (≤ ∆)-FET-opacity decision problem is 563

decidable. 564

Theorem 5. All aforementioned results with ∆ ∈ N also hold 565

for ∆ ∈ R+. 566

Proof: Given a TA A and ∆ ∈ R+ \N, we will show that 567

A is (weak) (≤ ∆)-FET-opaque iff it is (weak) (≤ ⌊∆⌋+ 1
2)- 568

FET-opaque. Constructing the TA A′ where every constant is 569

doubled, we thus have that A is (weak) (≤ ∆)-FET-opaque iff 570

A′ is (weak) (≤ ∆′)-FET-opaque where ∆′ = 2∆ if ∆ ∈ N 571

and ∆′ = 2⌊∆⌋ + 1 otherwise. The previous results of this 572

section applying on A′, they can be transposed to A. 573

We now move to the proof that A is (weak) (≤ ∆)-FET- 574

opaque iff it is (weak) (≤ ⌊∆⌋ + 1
2)-FET-opaque. Let ∆ ∈ 575

R+ \ N such that A is (weak) (≤ ∆)-FET-opaque and let 576

∆′ = ⌊∆⌋+ 1
2 . 577

Given a run ρ ∈ Reachpriv
≤∆ (A), let tp(ρ) be the time 578

at which ρ visits for the last time the private location. We 579

denote by Vpriv(ρ) the set {tp(ρ)} if tp(ρ) ∈ N and the 580

6

interval (⌊tp(ρ)⌋, ⌊tp(ρ)⌋ + 1) otherwise. By definition of581

the region automaton, one can create runs going through the582

same path as ρ in the region automaton of A but reaching583

the private location at any point within Vpriv(ρ). Similarly,584

if tf (ρ) = dur(ρ) is the duration of ρ until the final585

location, we denote F (ρ) the set {tf (ρ)} if tf (ρ) ∈ N586

and the interval (⌊tf (ρ)⌋, ⌊tf (ρ)⌋ + 1) otherwise. The set587

of durations of runs that follow the same path as ρ in588

the region automaton and which belong to Reachpriv
≤∆ (A) is589

F (ρ)∩[0,maxρ′,dur(ρ′)=dur(ρ)(Vpriv(ρ
′))+∆], which is either590

F (ρ) or the interval (⌊tf (ρ)⌋, ⌊tf (ρ)⌋+ fract(∆)]. We denote591

this set of durations Priv∆(ρ).592

Similarly, given a run ρ ∈ Reachpriv
>∆ (A) reaching the593

final location at time tf (ρ), we can again rely on the region594

automaton to build a set of durations Pub∆(ρ) describing the595

durations of runs that follow the same path as ρ in the region596

automaton and that reach the final location more than ∆ after597

entering the private location. This set is either of the form598

{tf (ρ)} if tf (ρ) ∈ N, (⌊tf (ρ)⌋ + fract(∆), ⌊tf (ρ)⌋ + 1) or599

(⌊tf (ρ)⌋, ⌊tf (ρ)⌋+ 1).600

Assume first that A is (≤ ∆)-FET-opaque. As the set of601

durations reaching the final location is an union of inter-602

vals with integer bounds [BDR08, Proposition 5.3] and as603

A is (≤ ∆)-FET-opaque, the set DReachpriv
≤∆ (A) and the604

set DReachpriv
>∆ (A) ∪ DReach¬priv (A) describe the same605

union of intervals with integer bounds. Let t be a du-606

ration within those sets. Then we will show that t ∈607

DReachpriv
≤∆′(A) and t ∈ DReachpriv

>∆′(A)∪DReach¬priv (A).608

Note that if t ∈ DReach¬priv (A) the latter statement is609

directly obtained, we will thus ignore this case in the fol-610

lowing. By definition of DReachpriv
>∆ (A) and DReachpriv

≤∆ (A),611

there thus exists a run ρpriv and a run ρpub such that612

t ∈ Priv∆(ρpriv) and t ∈ Pub∆(ρpub). Moreover, we613

can assume that those runs satisfy that Priv∆(ρpriv) and614

Pub∆(ρpub) do not depend on the bound ∆ (i.e. they615

are equal to F (ρpriv) and F (ρpub) respectively). Indeed, if616

such runs did not exist, the set DReachpriv
≤∆ (A) or the set617

DReachpriv
>∆ (A)∪DReach¬priv (A) would have ⌊t⌋+fract(∆)618

as one of its bounds. As a consequence, DReachpriv
>∆ (A) ∪619

DReach¬priv (A) = DReachpriv
>∆′(A) ∪ DReach¬priv (A) and620

DReachpriv
≤∆ (A) = DReachpriv

≤∆′(A). Thus A is (≤ ∆′)-FET-621

opaque.622

Assume now that A is weak (≤ ∆)-FET-opaque. We623

consider first the case where ∆ ≥ ∆′. There we have by def-624

inition Reachpriv
≤∆′(A) ⊆ Reachpriv

≤∆ (A) and Reachpriv
>∆ (A) ⊆625

Reachpriv
>∆′(A), thus A is weak (≤ ∆′)-FET-opaque.626

Now assume that ∆ < ∆′. The same reasoning as for627

the non-weak version mostly applies. As the set of du-628

rations reaching the final location is an union of inter-629

vals with integer bounds [BDR08, Proposition 5.3] and as630

A is weak (≤ ∆)-FET-opaque, the set DReachpriv
>∆ (A) ∪631

DReach¬priv (A) describe the same union of intervals632

with integer bounds. By the same reasoning as before,633

DReachpriv
>∆ (A) ∪ DReach¬priv (A) = DReachpriv

>∆′(A) ∪634

DReach¬priv (A). Moreover, given t ∈ DReachpriv
≤∆′(A),635

there exists ρpriv such that t ∈ Priv∆′(ρpriv). Note that 636

either Priv∆′(ρpriv) = Priv∆(ρpriv) and is thus included 637

in DReachpriv
>∆ (A) ∪ DReach¬priv (A) or Priv∆′(ρpriv) = 638

(⌊tf (ρpriv)⌋, ⌊tf (ρpriv)⌋ + fract(∆′)] and Priv∆(ρpriv) = 639

(⌊tf (ρpriv)⌋, ⌊tf (ρpriv)⌋+ fract(∆)]. As the latter is included 640

in DReachpriv
>∆ (A)∪DReach¬priv (A) which only has integer 641

bounds, then the former is included in it as well. 642

V. TEMPORARY FET-OPACITY IN PARAMETRIC TAS 643

We are now interested in the synthesis (or the existence) 644

of parameter valuations ensuring that a system is (≤ ∆)-FET- 645

opaque. We define the following problems, where we ask for 646

parameter valuation(s) v and for valuations of ∆ s.t. v(P) is 647

(≤ ∆)-FET-opaque. 648

(weak) (≤ ∆)-FET-opacity emptiness problem:
INPUT: A PTA P
PROBLEM: Decide whether the set of parameter valua-
tions v and valuations of ∆ such that v(P) is (weakly)
(≤ ∆)-FET-opaque for ∆ is empty

649

650

(weak) (≤ ∆)-FET-opacity computation problem:
INPUT: A PTA P
PROBLEM: Synthesize the set of parameter valuations v
and valuations of ∆ such that v(P) is (weakly) (≤ ∆)-
FET-opaque for ∆.

651

652

Remark 3. A “(≤ ∆)-FET-opacity decision problem” over 653

PTAs is not defined; it aims to decide whether, given a 654

parameter valuation v and a bound ∆, a PTA is (≤ ∆)-FET- 655

opaque: it can directly reduce to the problem over a TA (which 656

is decidable, Corollary 2). 657

Example 6. Consider again the PTA P in Fig. 1. 658

For this PTA, the answer to the (≤ ∆)-FET-opacity empti- 659

ness problem is that their exists such a valuation (e. g., the 660

valuation given for Example 5). 661

Moreover, we have can show that, for all ∆ and v: 662

• DReach¬priv (v(P)) = [0, 3] 663

• if v(p1) > 3 or v(p1) > v(p2), it is not possible to 664

reach ℓf with a run passing through ℓpriv and therefore 665

DReachpriv
>∆ (v(P)) = DReachpriv

≤∆ (v(P)) = ∅ 666

• if v(p1) ≤ 3 or v(p1) ≤ v(p2) 667

– DReachpriv
>∆ (v(P)) = [v(p1) + ∆, v(p2)] 668

– DReachpriv
≤∆ (v(P)) = [v(p1),min(∆ + 3, v(p2))] 669

Therefore, the (≤ ∆)-FET-opacity computation problem 670

needs to synthesize the valuations such that DReachpriv
≤∆ (A) = 671

DReachpriv
>∆ (A)∪DReach¬priv (A). It may answer the valua- 672

tions of parameters and ∆ s.t. p1 = 0∧(p2 = 3∨p2 = ∆+3). 673

A. The subclass of L/U-PTAs 674

Definition 7 (L/U-PTA [HRSV02]). An L/U-PTA is a PTA 675

where the set of parameters is partitioned into lower-bound 676

parameters and upper-bound parameters, where each lower- 677

bound (resp. upper-bound) parameter pi must be such that, for 678

every guard or invariant constraint x ▷◁
∑

1≤i≤M αipi+d, we 679

have: αi > 0 implies ▷◁ ∈ {≥, >} (resp. ▷◁ ∈ {≤, <}). 680

7

ℓ0 P ℓfℓ′0

ℓ1

ℓ2

ℓ3

ℓprivℓ4

ℓ′f

x ≤ 2

x = 2
p
l
1
≤ x ≤

p
u
1
) p l

2 ≤ x ≤ pu
2)

p l
2 ≤ x ≤ pu

2) p
l
1
≤ x ≤

p
u
1
) x = 1

X \ {x} ← 0

x = 2

∨
i(p

l
i < x ≤ pu

i)

x = 1

Figure 3: Reduction for the undecidability of (weak) (≤ ∆)-
FET-opacity emptiness for L/U-PTAs (used in Theorem 6)

Example 7. The PTA in Fig. 1 is an L/U-PTA with {p1} as681

lower-bound parameter, and {p2} as upper-bound parameter.682

L/U-PTAs is the most well-known subclass of PTAs with683

some decidability results: for example, reachability-emptiness684

(“the emptiness of the valuations set for which a given loca-685

tion is reachable”), which is undecidable for PTAs, becomes686

decidable for L/U-PTAs [HRSV02]. Various other results687

were studied (e. g., [BLT09], [JLR15], [ALR22]). Concerning688

opacity, the execution-time opacity emptiness is decidable for689

L/U-PTAs [ALMS22], while the full-execution-time opacity690

emptiness becomes undecidable [ALMS22].691

Here, we show that both the (≤ ∆)-FET-opacity emptiness692

and the weak (≤ ∆)-FET-opacity emptiness problems are693

undecidable for L/U-PTAs. This is both surprising (seeing694

from the numerous decidability results for L/U-PTAs) and un-695

surprising, considering the undecidability of the FET-opacity696

emptiness for this subclass [ALMS22].697

Theorem 6. (weak) (≤ ∆)-FET-opacity emptiness is undecid-698

able for L/U-PTAs with at least 5 clocks and 4 parameters.699

Proof: We reduce from the problem of reachability-700

emptiness in constant time, which is undecidable for general701

PTAs [ALMS22, Lemma 7.1]. That is, we showed that, given702

a constant time bound T , the emptiness over the parameter703

valuations set for which a location is reachable in exactly T704

time units, is undecidable.705

Assume a PTA P with at least 2 parameters, say p1 and706

p2, and a target location ℓf . Fix T = 1. From [ALMS22,707

Lemma 7.1], it is undecidable whether there exists a parameter708

valuation for which ℓf is reachable in time 1.709

The idea of our proof is that, as in [JLR15], [ALMS22],710

we “split” each of the two parameters used in P into a lower-711

bound parameter (pl1 and pl2) and an upper-bound parameter712

(pu1 and pu2). Each construction of the form x < pi (resp.713

x ≤ pi) is replaced with x < pui (resp. x ≤ pui) while each714

construction of the form x > pi (resp. x ≥ pi) is replaced with715

x > pli (resp. x ≥ pli); x = pi is replaced with pli ≤ x ≤ pui .716

Therefore, the PTA P is exactly equivalent to our construction717

with duplicated parameters, provided pl1 = pu1 and pl2 = pu2 .718

The crux of the rest of this proof is that we will “rule out” any719

parameter valuation not satisfying these equalities, so as to use 720

directly the undecidability result of [ALMS22, Lemma 7.1]. 721

Now, consider the extension of P given in Fig. 3, containing 722

notably new locations ℓ′0, ℓ′f , ℓi for i = 1, · · · , 5 and an urgent4 723

location ℓpriv , and a number of guards as seen on the figure; 724

we assume that x is an extra clock not used in P . The guard 725

on the transition from ℓ′0 to ℓ4 stands for 2 different transitions 726

guarded with pl1 < x ≤ pu1 , and pl2 < x ≤ pu2 , respectively. 727

Let P ′ be this extension. 728

Due to urgency of ℓpriv , note that, for any ∆, the system 729

is (weakly) (≤ ∆)-FET-opaque iff it is (weakly) (≤ 0)-FET- 730

opaque. 731

Let us first make the following observations, for any param- 732

eter valuation v′: 733

1) one can only take the upper most transition directly 734

from ℓ′0 to ℓpriv at time 2, i. e., ℓ′f is always reach- 735

able in time 2 via a run visiting location ℓpriv : 2 ∈ 736

DReachpriv (v′(P ′)); 737

2) the original PTA P can only be entered whenever pl1 ≤ pu1 738

and pl2 ≤ pu2 ; going from ℓ′0 to ℓ0 takes exactly 1 time 739

unit (due to the x = 1 guard); 740

3) if ℓ′f is reachable by a public run (not passing through 741

ℓpriv), then its duration is necessarily exactly 2 (going 742

through P). 743

4) we have DReachpriv
>0 (v′(P ′)) = ∅ as any run reaching ℓ′f 744

and visiting ℓpriv can only do it immediately, due to the 745

urgency of ℓpriv . 746

5) from [ALMS22, Lemma 7.1], it is undecidable whether 747

there exists a parameter valuation for which there exists 748

a run reaching ℓf from ℓ0 in time 1, i. e., reaching ℓf 749

from ℓ′0 in time 2. 750

Let us consider the following cases. 751

1) If pl1 > pu1 or pl2 > pu2 , then due to the guards from ℓ′0 752

to ℓ0, there is no way to reach ℓ′f with a public run; since 753

ℓ′f can still be reached for some execution times (notably 754

x = 2 through the upper transition from ℓ′0 to ℓpriv), then 755

P ′ cannot be (weakly) (≤ 0)-FET-opaque. 756

2) If pl1 < pu1 or pl2 < pu2 , then one of the transitions from ℓ′0 757

to ℓ4 can be taken, and DReachpriv
≤0 (v′(P ′)) = {1, 2}. 758

Moreover, ℓ′f might be reached by a public run of du- 759

ration 2 through P . Therefore, DReach¬priv (v′(P ′)) ⊆ 760

[2, 2]. Therefore P ′ cannot be (weakly) (≤ 0)-FET- 761

opaque for any of these valuations. 762

3) If pl1 = pu1 and pl2 = pu2 , then the behavior of the 763

modified P (with duplicate parameters) is exactly the one 764

of the original P . Also, note that the transition from ℓ′0 765

to ℓ′f via ℓ4 cannot be taken. In contrast, the upper 766

transition from ℓ′0 to ℓpriv can still be taken. 767

Now, assume there exists a parameter valuation for which 768

there exists a run of P of duration 1 reaching ℓf . And, 769

as a consequence, ℓ′f is reachable, and therefore there 770

exists some run of duration 2 (including the 1 time unit 771

to go from ℓ0 to ℓ′0) reaching ℓ′f after passing through P , 772

which is public. From the above reasoning, all runs 773

4An urgent location is a location in which time cannot elapse.

8

ℓ0 ℓfPℓ′0

ℓpriv

ℓ′f
x = 0 x = 1

x = 1

x← 0
x = 0

Figure 4: Reduction for the undecidability of (weak) (≤ ∆)-
FET-opacity emptiness for PTAs (used in Theorem 7)

reaching ℓ′f have duration 2; in addition, we exhibited a774

public and a secret run; therefore the modified automaton775

P ′ is (weakly) (≤ 0)-FET-opaque for such a parameter776

valuation.777

Conversely, assume there exists no parameter valuation778

for which there exists a run of P of duration 1 reach-779

ing ℓf . In that case, P ′ is not (weakly) (≤ 0)-FET-opaque780

for any parameter valuation: DReachpriv
≤0 (v′(P ′)) = [2, 2]781

and 2 ̸∈ DReachpriv
>0 (v′(P ′)) ∪ DReach¬priv (v′(P ′)) =782

∅).783

As a consequence, there exists a parameter valuation v′ for784

which v′(P ′) is (weakly) (≤ ∆)-FET-opaque iff there exists a785

parameter valuation v for which there exists a run in v(P) of786

duration 1 reaching ℓf—which is undecidable from [ALMS22,787

Lemma 7.1].788

The undecidability of the reachability-emptiness in con-789

stant time for PTAs holds from 4 clocks and 2 parame-790

ters [ALMS22, Lemma 7.1]. Here, we duplicate the param-791

eters, and add a fresh clock x: therefore, the current result792

holds from 5 clocks and 4 parameters. We highly suspect that793

one of the clocks from [ALMS22, Lemma 7.1] (reset neither in794

our former construction nor in the current proof) can be reused795

in the current proof as “x”, reducing the minimal number of796

clocks to 4, but this remains to be shown formally.797

As the emptiness problems are undecidable, the computation798

problems are immediately intractable as well.799

Corollary 3. (weak) (≤ ∆)-FET-opacity computation prob-800

lem is unsolvable for L/U-PTAs with at least 5 clocks and801

4 parameters.802

B. The full class of PTAs803

The undecidability of the emptiness problems L/U-PTAs804

proved above immediately implies undecidability for the larger805

class of PTAs. However, we provide below an original proof,806

with a smaller number of parameters.807

Theorem 7. (weak) (≤ ∆)-FET-opacity emptiness problem808

is undecidable for general PTAs for at least 5 clocks and 2809

parameters.810

Proof: We reduce again from the problem of reachability-811

emptiness in constant time, which is undecidable for general812

PTAs [ALMS22, Lemma 7.1].813

Fix T = 1. Consider an arbitrary PTA P , with initial814

location ℓ0 and a given location ℓf . We add to P a new815

clock x (unused and therefore never reset in P), we set ℓf 816

urgent (no time can elapse) and we add the following locations 817

and transitions in order to obtain a PTA P ′, as in Fig. 4: a 818

new initial location ℓ′0, with an urgent outgoing transition to ℓ0, 819

and a transition to a new location ℓpriv enabled after 1 unit; a 820

new final location ℓ′f with incoming transitions from ℓpriv in 821

0-time and from ℓf (after 1 time unit since the system start). 822

First, due to the guard “x = 0” from ℓpriv to ℓ′f , note that, 823

for any ∆, the system is (weakly) (≤ ∆)-FET-opaque iff it is 824

(weakly) (≤ 0)-FET-opaque. Also note that, for any valuation, 825

DReachpriv
≤0 (v(P ′)) = [1, 1]. For the same reason, note that 826

DReachpriv
>0 (v(P ′)) = ∅. Second, note that, due to the guard 827

“x = 1” on the edge from ℓf and ℓ′f (with x never reset 828

on this path), DReach¬priv (v(P ′)) can at most contain [1, 1], 829

i. e., DReach¬priv (v(P ′)) ⊆ [1, 1]. 830

Now, let us show that there exists a valuation v such that 831

v(P ′) is (weakly) (≤ 0)-FET-opaque iff there exists v such 832

that ℓf is reachable in v(P) in 1 time unit. 833

⇒ Assume there exists a valuation v such that v(P ′) is (≤ 834

0)-FET-opaque (resp. weakly (≤ 0)-FET-opaque). 835

Recall that, from the construction of P ′, 836

DReachpriv
≤0 (v(P ′)) = [1, 1]. Therefore, from the 837

definition of (≤ 0)-FET-opacity (resp. weak (≤ 0)-FET- 838

opacity), there exist runs only of duration 1 (resp. there 839

exists at least a run of duration 1) reaching ℓpriv without 840

visiting ℓpriv . Since DReach¬priv (v(P ′)) ⊆ [1, 1], then 841

ℓf is reachable in exactly 1 time unit in v(P). 842

⇐ Assume there exists v such that ℓf is reachable in v(P) 843

in exactly 1 time unit. Therefore, ℓ′f can also be reached 844

in exactly 1 time unit: therefore, DReach¬priv (v(P ′)) = 845

[1, 1]. 846

Now, recall that DReachpriv
>0 (v(P ′)) = ∅ 847

and DReachpriv
≤0 (v(P ′)) = [1, 1]. Therefore, 848

DReachpriv
≤0 (v(P ′)) = DReachpriv

>0 (v(P ′)) ∪ 849

DReach¬priv (v(P ′)), which from Definition 6 850

means that v(P ′) is (≤ 0)-FET-opaque. Trivially, 851

we also have that DReachpriv
≤0 (v(P ′)) ⊆ 852

DReachpriv
>0 (v(P ′))∪DReach¬priv (v(P ′)) and therefore 853

v(P ′) is also weakly (≤ 0)-FET-opaque. 854

Therefore, there exists v such that v(P ′) is (weakly) (≤ 0)- 855

FET-opaque iff ℓf is reachable in v(P) in 1 time unit— 856

which is undecidable [ALMS22, Lemma 7.1]. As a conclusion, 857

(weak) (≤ ∆)-FET-opacity emptiness is undecidable. 858

The undecidability of the reachability-emptiness in con- 859

stant time holds from 4 clocks and 2 parameters [ALMS22, 860

Lemma 7.1]. Here, we add a fresh clock x: therefore, the 861

current result holds from 5 clocks and 4 parameters. Again, 862

we highly suspect that one of the clocks from [ALMS22, 863

Lemma 7.1] (never reset in our former construction) can be 864

reused in the current proof as “x”, but this remains to be shown 865

formally. 866

Corollary 4. (weak) (≤ ∆)-FET-opacity computation problem 867

is unsolvable for PTAs for at least 5 clocks and 2 parameters. 868

9

Table I: Summary of the results

Decision Emptiness Computation

TA Weak
√

(Theorem 2)
√

(Corollary 1)
√

(Theorem 3)
(normal)

√
(Corollary 2)

√
(Theorem 4) ?

L/U-PTA Weak
√

(Remark 3) ×(Theorem 6) ×(Corollary 3)
(normal)

√
(Remark 3) ×(Theorem 6) ×(Corollary 3)

PTA Weak
√

(Remark 3) ×(Theorem 7) ×(Corollary 4)
(normal)

√
(Remark 3) ×(Theorem 7) ×(Corollary 4)

VI. CONCLUSION AND PERSPECTIVES869

a) Conclusion: We studied here a version of execution-870

time opacity where the secret has an expiration date: that is,871

we are interested in computing the set of expiration dates of872

the secret for which the attacker is unable to deduce whether873

the secret was visited recently (i. e., before its expiration874

date) prior to the system completion; the attacker only has875

access to the model and to the execution time of the system.876

This problem is decidable for timed automata, and we can877

effectively compute the set of expiration dates for which878

the system is opaque. However, parametric versions of this879

problem, with unknown timing parameters, all turned to be880

undecidable, including for a subclass of PTAs usually known881

for its decidability results. This shows the hardness of the882

considered problem.883

b) Summary: We summarize our results in Table I. “
√

”884

denotes decidability, while “×” denotes undecidability; “?”885

denotes an open problem.886

c) Perspectives: The proofs of undecidability in Sec-887

tion V require a minimal number of clocks and parameters.888

Smaller numbers might lead to decidability.889

While the non-parametric part can be (manually) encoded890

into existing problems [ALMS22] using a TA transformation891

in order to reuse our implementation in IMITATOR [And21],892

the implementation of the parametric problems remains to be893

done. Since the emptiness problem is undecidable, this im-894

plementation can only come in the form of a semi-algorithm,895

i. e., a procedure without a guarantee of termination.896

REFERENCES897

[ABLM22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan898

Marinho. strategFTO: Untimed control for timed opacity. In899

Cyrille Artho and Peter Ölveczky, editors, FTSCS, pages 27–33.900

ACM, 2022.901

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.902

Theoretical Computer Science, 126(2):183–235, April 1994.903

[AETYM21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John904

Mullins. Bounded opacity for timed systems. Journal of905

Information Security and Applications, 61:1–13, September906

2021.907

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-908

clock automata: A determinizable class of timed automata.909

Theoretical Computer Science, 211(1-2):253–273, 1999.910

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi.911

Parametric real-time reasoning. In S. Rao Kosaraju, David S.912

Johnson, and Alok Aggarwal, editors, STOC, pages 592–601,913

New York, NY, USA, 1993. ACM.914

[AK20] Étienne André and Aleksander Kryukov. Parametric non-915

interference in timed automata. In Yi Li and Alan Liew, editors,916

ICECCS, pages 37–42, 2020.917

[ALMS22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. 918

Guaranteeing timed opacity using parametric timed model 919

checking. ACM Transactions on Software Engineering and 920

Methodology, 31(4):1–36, October 2022. 921

[ALR22] Étienne André, Didier Lime, and Olivier H. Roux. Reachability 922

and liveness in parametric timed automata. Logical Methods in 923

Computer Science, 18(1):31:1–31:41, February 2022. 924

[And21] Étienne André. IMITATOR 3: Synthesis of timing parameters 925

beyond decidability. In Rustan Leino and Alexandra Silva, 926

editors, CAV, volume 12759 of Lecture Notes in Computer 927

Science, pages 1–14. Springer, 2021. 928

[BDR08] Véronique Bruyère, Emmanuel Dall’Olio, and Jean-Francois 929

Raskin. Durations and parametric model-checking in timed au- 930

tomata. ACM Transactions on Computational Logic, 9(2):12:1– 931

12:23, 2008. 932

[BLT09] Laura Bozzelli and Salvatore La Torre. Decision problems for 933

lower/upper bound parametric timed automata. Formal Methods 934

in System Design, 35(2):121–151, 2009. 935

[Cas09] Franck Cassez. The dark side of timed opacity. In Jong Hyuk 936

Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon 937

Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, ISA, volume 938

5576 of Lecture Notes in Computer Science, pages 21–30. 939

Springer, 2009. 940

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot- 941

ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine 942

Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable 943

verification of hybrid systems. In Ganesh Gopalakrishnan and 944

Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in 945

Computer Science, pages 379–395. Springer, 2011. 946

[GMR07] Guillaume Gardey, John Mullins, and Olivier H. Roux. Non- 947

interference control synthesis for security timed automata. 948

Electronic Notes in Theoretical Computer Science, 180(1):35– 949

53, 2007. 950

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. 951

Vaandrager. Linear parametric model checking of timed au- 952

tomata. Journal of Logic and Algebraic Programming, 52- 953

53:183–220, 2002. 954

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. 955

Integer parameter synthesis for real-time systems. IEEE Trans- 956

actions on Software Engineering, 41(5):445–461, 2015. 957

[SM73] Larry Stockmeyer and Albert Meyer. Word problems requiring 958

exponential time: Preliminary report. pages 1–9, 01 1973. 959

[WZ18] Lingtai Wang and Naijun Zhan. Decidability of the initial- 960

state opacity of real-time automata. In Cliff B. Jones, Ji Wang, 961

and Naijun Zhan, editors, Symposium on Real-Time and Hybrid 962

Systems - Essays Dedicated to Professor Chaochen Zhou on the 963

Occasion of His 80th Birthday, volume 11180 of Lecture Notes 964

in Computer Science, pages 44–60. Springer, 2018. 965

[WZA18] Lingtai Wang, Naijun Zhan, and Jie An. The opacity of real- 966

time automata. IEEE Transactions on Computer-Aided Design 967

of Integrated Circuits and Systems, 37(11):2845–2856, 2018. 968

10

	Introduction
	Preliminaries
	Clocks and guards
	Parametric timed automata
	Timed automata
	Concrete semantics of TAs
	Timed automata regions

	Temporary execution time opacity problems
	Temporary-opacity

	Temporary FET-opacity in timed automata
	Temporary FET-opacity in parametric TAs
	The subclass of L/U-PTAs
	The full class of PTAs

	Conclusion and perspectives
	References

