N

N
N

HAL

open science

Expiring opacity problems in parametric timed
automata

Etienne André, Engel Lefaucheux, Dylan Marinho

» To cite this version:

Etienne André, Engel Lefaucheux, Dylan Marinho. Expiring opacity problems in parametric timed au-
tomata. 2023 27th International Conference on Engineering of Complex Computer Systems (ICECCS),

Jun 2023, Toulouse, France. pp.89-98, 10.1109/ICECCS59891.2023.00020 . hal-04151207v1

HAL Id: hal-04151207
https://hal.science/hal-04151207v1
Submitted on 4 Jul 2023 (v1), last revised 13 Mar 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04151207v1
https://hal.archives-ouvertes.fr

22

23

24

25

26

Expiring opacity problems in parametric timed
automata

Etienne André

Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030

F-93430 Villetaneuse, France

Abstract—Information leakage can have dramatic conse-
quences on the security of real-time systems. Timing leaks occur
when an attacker is able to infer private behavior depending
on timing information. In this work, we propose a definition of
expiring timed opacity w.r.t. execution time, where a system is
opaque whenever the attacker is unable to deduce the reachability
of some private state solely based on the execution time; in
addition, the secrecy is violated only when the private state was
visited “recently”, i.e., within a given time bound (or expiration
date) prior to system completion. This has an interesting parallel
with concrete applications, notably cache deducibility: it may be
useless for the attacker to know the cache content too late after
its observance. We study here expiring timed opacity problems
in timed automata. We consider the set of time bounds (or
expiration dates) for which a system is opaque and show when
they can be effectively computed for timed automata. We then
study the decidability of several parameterized problems, when
not only the bounds, but also some internal timing constants
become timing parameters of unknown constant values.

Index Terms—security, distributed systems, timed opacity,
timed automata

I. INTRODUCTION

Complex timed systems combine hard real-time constraints
with concurrency. Information leakage can have dramatic
consequences on the security of such systems. Among harmful
information leaks, the timing information leakage is the ability
for an attacker to deduce internal information depending on
timing information. In this work, we focus on timing leakage
through the total execution time, i.e., when a system works as
an almost black-box and the ability of the attacker is limited
to know the model and observe the total execution time. We
consider the setting of timed automata (TAs), which is a
popular extension of finite-state automata with clocks [AD94].

a) Context and related works: Franck Cassez proposed
in [Cas09] a first definition of fimed opacity: the system is
opaque if an attacker cannot deduce whether some set of ac-
tions was performed, by only observing a given set of observ-
able actions together with their timestamp. It is then proved
in [Cas09] that it is undecidable whether a TA is opaque, even
for the restricted class of event-recording automata [AFH99]
(a subclass of TAs). This notably relates to the undecidability
of timed language inclusion for TAs [AD94].

This work is partially supported by the ANR-NRF French-Singaporean
research program ProMiS (ANR-19-CE25-0015 / 2019 ANR NRF 0092) and
the ANR research program BisoUS.

Engel Lefaucheux
Dylan Marinho
Université de Lorraine, CNRS, Inria, LORIA
F-54000 Nancy, France

The aforementioned negative result leaves hope only if
the definition or the setting is changed, which was done in
three main lines of works. First, in [WZ18], [WZA18], the
input model is simplified to real-time automata, a severely
restricted formalism compared to TAs. Timed aspects are
only considered by interval restrictions over the total elapsed
time along transitions. Real-time automata can be seen as a
subclass of TAs with a single clock, reset at each transition. In
this setting, (initial-state) opacity becomes decidable [WZ18],
[WZAI1S].

Second, in [ALMS22], we consider a weaker attacker, who
has access only to the execution time: this is execution-time
opacity (ET-opacity)." In the setting of TAs, the execution time
denotes the time from the system start to the reachability of
a given (final) location. Therefore, given a secret location, a
TA is ET-opaque for an execution time d if there exist at
least two paths of duration d from the initial location to a
final location: one visiting the secret location, and another
one not visiting the secret location. The system is fully ET-
opaque (FET-opaque) if it is ET-opaque for all execution
times: that is, for each possible d, either no final location
is reachable, or the final location is reachable for at least
two paths, one visiting the secret location, and another one
not visiting it. These definitions of (F)ET-opacity become
decidable for TAs [ALMS22]. We studied various parametric
extensions, and notably showed that the parametric emptiness
problem (the emptiness over the parameter valuations set
for which the TA is ET-opaque) becomes decidable for a
subclass of parametric timed automata (PTAs) [AHV93] where
parameters are partitioned between lower-bound and upper-
bound parameters [HRSVO02].

Third, in [AETYM21], the authors consider a time-bounded
notion of the opacity of [Cas09], where the attacker has to
disclose the secret before an upper bound, using a partial
observability. This can be seen as a secrecy with an expiration
date. The rationale is that retrieving a secret “too late” is
useless; this is understandable, e.g., when the secret is the
value in a cache; if the cache was overwritten since, then
knowing the secret is probably useless in most situations. In
addition, the analysis is carried over a time-bounded horizon;
this means there are two time bounds in [AETYM21]: one
for the secret expiration date, and one for the bounded-time

'In [ALMS22], this notion was only referred to as “timed opacity”.

43

44

45

46

60

61

62

63

64

65

66

80

81

82

83

84

https://orcid.org/0000-0001-8473-9555
https://orcid.org/0000-0003-0875-300X
https://orcid.org/0000-0002-2548-6196
https://www.loria.science/ProMiS/

85

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

108

104

105

106

107

108

109

110

111

112

116

117

118

119

120

121

122

128

124

125

126

execution of the system. (We consider only the former one
in this work, and lift the assumption regarding the latter.)
The authors prove that this problem is decidable for TAs. A
construction and an algorithm are also provided to solve it; a
case study is verified using SPACEEX [FLGD™11].

b) Contribution: In this work, we combine both con-
cepts from [ALMS22], [AETYM21] and consider an expiring
version of FET-opacity, where the secret is subject to an
expiration date. That is, we consider that an attack is successful
only when the attacker can decide that the secret location was
visited less than A time units before the system completion.
Conversely, if the attacker exhibits an execution time d for
which it is certain that the secret location was visited, but this
location was visited strictly more than A time units prior to the
system completion, then this attack is useless, and can be seen
as a failed attack. The system is therefore expiring FET-opaque
if the set of execution times for which the private location
was visited within A time units prior to system completion
is exactly equal to the set of execution times for which the
private location was either not visited or visited > A time
units prior to system completion.

On the one hand, our attacker model is weaker
than [AETYM21], because our attacker has only access to the
execution time (and to the input model); in that sense, our at-
tacker capability is identical to [ALMS22]. On the other hand,
we lift the time-bounded horizon analysis from [AETYM?21],
allowing to analyze systems without any assumption on their
execution time; therefore, we only import from [AETYM21]
the notion of expiring secret. Also note that our formalism
is much more expressive (and therefore able to encode richer
applications) than in [WZ18], [WZA18] as we consider the full
class of TAs instead of the restricted real-time automata. We
also consider parametric extensions, not discussed in [Cas09],
[WZ18], [WZA18], [AETYM21].

We first consider ET-opacity problems for TAs. We show
that

1) it is possible to decide whether a TA is expiring FET-
opaque for a given time bound A (decision problem);

2) it is possible to decide whether a TA is expiring FET-
opaque for at least one bound A (emptiness problem);

3) it is possible to compute the set of time bounds (or
expiration dates) for which a TA is expiring FET-opaque
(computation problem), under the assumption of weak-
ness of FET-opacity (i.e., when the set of execution
times passing through the private location within A time
units prior to system completion is included in (and not
necessary equal to) the set of all execution times).

We also show that in PTAs the emptiness of the parameter
valuation sets for which the system is expiring FET-opaque is
undecidable, even for a subclass of PTAs usually well-known
for its decidability results.

¢) Outline: We recall preliminaries in Section II. We
define temporary opacity in Section III. We address problems
for TAs in Section IV, and parametric extensions in Section V.
We conclude in Section VI.

II. PRELIMINARIES

Let N, Z, Q4+, Ry, R denote the sets of non-negative
integers, integers, non-negative rational numbers, non-negative
real numbers, and real numbers, respectively. Let N> =
NU {400} and R¥ = R, U {+00}.

A. Clocks and guards

We assume a set X = {z1,...,zg} of clocks, i.e., real-
valued variables that all evolve over time at the same rate. A
clock valuation is a function p : X — R. We write 0 for the
clock valuation assigning 0 to all clocks. Given d € Ry, u+d
denotes the valuation s.t. (u+d)(z) = p(x)+d, for all z € X.
Given R C X, we define the reset of a valuation i, denoted by
[#]) R, as follows: [u|r(x) =0 if x € R, and [p|r(x) = p(z)
otherwise.

We assume a set P = {pi1,...,pn} of parameters, i.e.,
unknown constants. A parameter valuation v is a function v :
P— Q+.

A clock guard g is a constraint over X defined by a
conjunction of inequalities of the form x < d, with d € Z
and 1 € {<,<,=,>,>}. Given g, we write u = g if
the expression obtained by replacing each = with u(x) in g
evaluates to true.

B. Parametric timed automata

Parametric timed automata (PTA) extend timed automata
with parameters within guards and invariants in place of
integer constants [AHV93]. We extend PTAs with a special
location called “private location”.

Definition 1 (PTA). A PTA P is a
P=(%,L, o, Lpriv, ¢y, X, P, I, E), where:
1) X is a finite set of actions,
2) L is a finite set of locations,
3) ¢y € L is the initial location,
4) Lpriy € L is the private location,
5) £y € L is the final location,
6) X is a finite set of clocks,
7) P is a finite set of parameters,
8) I is the invariant, assigning to every ¢ € L a clock guard
1(0),
9) F is a finite set of edges e = (¢, g,a, R,{') where £,{' €
L are the source and target locations, a € ¥, R C X is a
set of clocks to be reset, and g is a clock guard.

tuple

C. Timed automata

Given a PTA P and a parameter valuation v, we denote by
v(P) the non-parametric structure where all occurrences of a
parameter p; have been replaced by v(p;). We denote as a
timed automaton any structure v(P), by assuming a rescaling
of the constants: by multiplying all constants in v(P) by the
least common multiple of their denominators, we obtain an
equivalent (integer-valued) TA, as defined in [AD94].

Example 1. Consider the PTA in Fig. 1 (inspired by [GMRO07,
Fig. 1b]), using one clock = and two parameters p; and ps. £y
is the initial location, while we assume that {; is the (only)
final location.

163

193

194

195

196

197

198

199

200

201

203

204

205

206

207

208

209

210

211

212

214

215

216

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

r <

v

—@ i

<3

Figure 1: A PTA example

1) Concrete semantics of TAs:

Definition 2 (Semantics of a TA). Given a PTA P =
(3, L, Lo, Lpriv, Uy, X, P, I, E), and a parameter valuation v,
the semantics 7, (p) of v(P) is given by the timed transition
system (TTS) (S, sg, —), with

o S={(t,p) € LxRY | pEo(I(0))},
e S0 = (807 O)’
« — consists of the discrete and (continuous) delay transi-

tion relations:

1) discrete transitions: (¢, u) S W, u),
it (L), (¢, 1) € S, and there exists
e = (¢,9,a,R,0') € E, such that ¢/ = [u]g,

and p = v(g).
2) delay transitions: (¢, ;1) + (¢, ju+d), with d € R, if
Vd' €[0,d], (6, +d') €.

Moreover we write (£,) (de) (¢, 1) for a combination of

a delay and discrete transition if Ju” : (¢, p) A ")
(', u).

Given a TA v(P) with concrete semantics (S, sg, —), we
refer to the states of S as the concrete states of v(P). A run
of v(P) is an alternating sequence of concrete states of v(P)
and pairs of edges and delays starting from the initial state
so of the form sg, (do, €0), 51, withi =0,1,..., ¢; € E,

die;
d; € R+ and s; (_e>) Si+1-

The duration between two states of a finite run p
S0, (do, €0), 81, , Sk is dur,(s;, s5) = Zigmgj—l d,,. The
duration of a finite run p : sq, (do, €0), S1, -+ , 8; 18 dur(p) =
durp(s0,8k) = Y o<j<p_1dj- We also define the duration
between two locations ¢; and ¢5 as the duration dur,(¢1, {2) =
dur,(si, ;) with p 1 5o, (do,€0), 81, 5 Si, 1S5, , 5k
where s; the first occurrence of a state with location ¢5 and s;
is the last state of p with location ¢; before s;. We choose this
definition to coincide with the definitions of opacity that we
will define later (Definition 6). Indeed, we want to make sure
that revealing a secret ({1 in this definition) is not a failure
if it is done after a given time. Thus, as soon as the system
reaches its final state (¢3), we will be interested in knowing
how long the secret has been present, and thus the last time
it was visited (s;).

Example 2. Let us go back to Example 1. Let v be
such that v(p;) = 1 and v(ps) = 2. Consider the fol-
lowing run p of v(P): (bo,xz = 0),(1.4,e2), Upriv,xz =
1.4),(0.4,e3), ({s,x = 1.8), where ey is the edge from ¢,
to {prip in Fig. 1, and es is the edge from £y, to £;y. We
write “z = 1.4” instead of “y such that p(z) = 1.4”. We have
dur(p) = 1.4+ 0.4 = 1.8 and dur,(ppiv, L5) = 0.4.

2) Timed automata regions: Let us next recall the concept
of regions and the region graph [AD94].

Given a TA A, for a clock z;, we denote by c¢; the
largest constant to which x; is compared within the guards
and invariants of A (that is, ¢; = max;({ d; | = =
d; appears in a guard or invariant of A}). Given @ € R, let
|] and fract(«) denote respectively the integral part and the
fractional part of a.

Example 3. Consider again the PTA in Fig. 1, and let v be
such that v(p;) = 2 and v(py) = 4. In the TA v(P), the clock
x is compared to the constants in {2, 3,4}. In that case, c = 4
is the largest constant to which the clock x is compared.

Definition 3 (Region equivalence). We say that two clock
valuations p and ' are equivalent, denoted p = u’, if the
following three conditions hold for any clocks x;, x;:

1) either
a) |p(x:)| = [p'(xi)] or
b) p(z;) > ¢ and p'(x;) > ¢
2) fract(p(z;)) < fract(p(z;)) iff fract(p/(x;)) <

fract(s¢ (z;))
3) fract(pu(x;)) = 0 iff fract(p'(z;)) =0

The equivalence relation = is extended to the states of 7 4:
ifs=(lpu),s = (¢,u) are two states of T4, we write s ~ s’
iff =1/ and p =~ p'.

We denote by [s] the equivalence class of s for ~. A region
is an equivalence class [s] of =. The set of all regions is
denoted R 4. Given a state s = (¢,) and d > 0, we write
s+ d to denote (¢, + d).

Definition 4 (Region graph [BDROS]). The region graph
RG4 = (R4, Fu) is a finite graph with:

e R 4 as the set of vertices

o given two regions r = [s],7’ = [s'] € R4, we have

(r,r") € F 4 if one of the following holds:

- s+ s’ € Ty for some e € E (discrete instantaneous
transition);

— if v/ is a time successor of 7: 7 % 7’ and there exists d
such that s+d € v’ and Vd' < d, s+ d' € r Ur’ (delay
transition);

— r =7’ is unbounded: s = (¢, u) with u(x;) > ¢; for
all z; (equivalent unbounded regions).

We now define a version of the region automaton based
on [BDRO8] where the only letter that can be read, ‘a’
means that one time unit has passed. Note that this automaton
is not timed. As such, it is as usual described by a tuple
(3,Q,q0, F,T) where 3 is the alphabet, () is the set of
states, qo is the initial state, F' is the set of final states and
T € (Q x X x Q) is the set of transitions.

We assume that the given automaton A possesses a clock
x, that is maintained by invariants smaller or equal to 1 and
can be reset if it is equal to 1. This clock does not affect the
behavior of the automaton, but every time it is reset, we know
that one unit of time passed. We also assume that the TA is

260

261

262

263

264

265

266

267

268

269

287

288

289

290

291

292

293

294

295

296

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

316

317

318

319

320

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

340

341

342

blocked once ¢ is reached (i.e. no transition can be taken and
no time can elapse).

Definition 5 (Region automaton [BDROS8]). The region au-
tomaton RA4 = {{a}, R4, [so], F,T} where
1) a is the only action;
2) R4 is the set of states (a state of RA4 is a region of
A);
3) [so] is the initial location (the region associated to the
initial state);
4) the set of final locations F' is the set of regions associated
to the location /,,;, where x, is not set at 1 (i.e. the set
of regions = [({pry,)] Where pu(z,) < 1)
5) (r,z,7") € Tiff (r,7") € Fa and z = a if x, was reset
in the discrete instantaneous transition corresponding to
(r,7’), and z = € otherwise.

An important property of this automaton is that the word a*
with k € N is accepted by R.A 4 iff there exists a run reaching
the final state within [k, k + 1).

III. TEMPORARY EXECUTION TIME OPACITY PROBLEMS

In this section, we formally introduce the problems we
address in this paper. On the following, let A be a TA.

A. Temporary-opacity

Given A, and a run p, we say that {p. IS
reached on the way to {; in p if p is of the form
(€07 Mo)v (d07 60)’ (Zl, /’61)7 T (zmv Mm)’ (dm7 em)’ e (zn’ :un)
for some m,n € N such that ¢,, = ¥y, €, = {5 and
V0 <i<m-—1,¢ # {;. We denote by Reach?™ (A) the set
of those runs, and refer to them as private runs. We denote by
by DReach?™™ (A) the set of all the durations of these runs.
Conversely, we say that £,,4, is avoided on the way to £y in p
if p is of the form ({g, o), (do,eo), (1, p61), - 5 (bny ton)
with £, = {7 and VO < i < n,¥; ¢ {lpriv, s} We denote
the set of those runs by Reach™?"’(A), referring to them
as public runs, and by DReach™ " (A) the set of all the
durations of its runs. _

We define Reachl'\’(A) (resp. ReachZ\'(A)) as the set
of runs p € Reach”™"(A) s.t. dur,({priv, Ly) > A (resp.
dur ,(priv, Lf) < A). We refer the runs of Reach?\’(A)
as secret runs. DReach”’) (A) (resp. DReach’éZf)(A)) is the
set of all the durations of the runs in Reach? \’(A) (resp.
Reach” "(A)).

We define below two notions of full execution timed opacity
(FET) w.r.t. a time bound A. We will compare two sets:

1) the set of execution times for which the private location
was visited at most A time units prior to system comple-
tion; and

2) the set of execution times for which either the private
location was not visited at all, or it was visited more
than A time units prior to system completion (which,
in our setting is equivalent to not visiting the private
location, in the sense that visiting it “too early” is
considered of little interest).

If both sets match, the system is (< A)-FET-opaque. If the
former is included into the latter, then the system is weakly
(< A)-FET-opaque.

Definition 6 ((< A)-FET-opacity). Given a TA A and a
bound (i.e., an expiration date for the secret) A € R
we say that A is (< A)-FET-opaque if DReach”}(A) =
DReach?’} (A) U DReach™"" (A). Moreover, we say that
A is weakly (< A)-FET-opaque if DReach”\"(A) C
DReachZ;TZv (A) U DReach™" (A).

Remark 1. Our notion of weak opacity may still leak some
information: on the one hand, if a run indeed visits the
private location < A before system completion, there exists
an equivalent run not visiting it (or visiting it earlier), and
therefore the system is opaque; but on the other hand, there
may exist execution times for which the attacker can deduce
that the private location was not visited < A before system
completion. This remains acceptable in some cases, and this
motivates us to define a weak version of (< A)-FET-opacity.
Also note that the “initial-state opacity” for real-time automata
considered in [WZ18] can also be seen as weak in the sense
that their language inclusion is also unidirectional.

Example 4. Consider again the PTA in Fig. 1; let v be such
that v(p;) = 1 and v(p2) = 2.5. Fix A = 1.

We have:

e DReach™™" (v(P)) = [0, 3]

o DReach?\'(v(P)) = [2,2.5]

e DReach”{’(v(P)) = [1,2.5]
Therefore, we say that v(P) is:

« weakly (< 1)-FET-opaque, as [1,2.5] C ([2,2.5] U [0, 3])

« not (< 1)-FET-opaque, as [1,2.5] # ([2,2.5] U [0, 3])

As introduced in Remark 1, despite the weak (< 1)-FET-
opacity of A, the attacker can deduce some information about
the visit of the private location for some execution times. For
example, if a run has a duration of 3 time units, it cannot be
a private run, and therefore the attacker can deduce that the
private location was not visited.

We define three different problems:

(Weak) (< A)-FET-opacity decision problem:

INPUT: A TA A and a bound A € R

PROBLEM: Decide whether A is (weakly) (< A)-FET-
opaque

(Weak) (< A)-FET-opacity emptiness problem:

INPUT: A TA A

PROBLEM: Decide the emptiness of the set of bounds A
such that A is (weakly) (< A)-FET-opaque

(Weak) (< A)-FET-opacity computation problem:
INPUT: A TA A

PROBLEM: Compute the maximal set D of bounds such
that A is (weakly) (< A)-FET-opaque for all A € D

Example 5. Consider again the PTA in Fig. 1; let v be
such that v(p;) = 1 and v(py) = 2.5 (as in Example 4).

343

344

345

346

347

348

349

350

351

383

384

385

386

388

389

390

392

393

394

395

396

398

399

400

402

403

404

405

406

408

409

410

411

412

413

414

415

416

417

418

419

420

Figure 2: Construction used in Theorem 1

Given A = 1, the weak (< A)-FET-opacity decision problem
asks whether v(P) is weakly (< A)-FET-opaque—the answer
is “yes” from Example 4. The weak (< A)-FET-opacity
emptiness problem is therefore “no” because the set of bounds
A such that v(P) is weakly (< A)-FET-opaque is not empty.
Finally, the weak (< A)-FET-opacity computation problem
asks to compute all the corresponding bounds: in this example,
the solution is A € R;.

Note that, considering A = oo, DReach’;Zv(A) =0
and all the execution times of runs passing by /., are in
DReach " (A). Therefore, (< co)-FET-opacity matches the
FET-opacity defined in [ALMS22]. We can therefore notice
that answering the (< oo)-FET-opacity decision problem is
decidable ([ALMS22, Proposition 5.3]). However, the empti-
ness and computation problems cannot be reduced to FET-
opacity problems from [ALMS22]. Conversely, it is possible
to answer the FET-opacity decision problem” by checking
the (< o0)-FET-opacity decision problem. Moreover, FET-
opacity computation problem?® reduces to (< A)-FET-opacity
computation: if oo € D, we get the answer.

Note that our problems are incomparable to the ones ad-
dressed in [AETYM?21] as the models used in their paper have
a bounded execution time < oo, in addition to the bounded
opacity A.

IV. TEMPORARY FET-OPACITY IN TIMED AUTOMATA

In this entire section, unless otherwise specified, we set A €
N.

Theorem 1. The (< A)-FET-opacity decision problem re-
duces to the weak (< A)-FET-opacity decision problem.

Proof: Fix a TA A and a time bound A. In this reduction,
we build a new TA A’ where secret and non-secret runs
are swapped. More precisely, we add a new clock y that
measures how much time has elapsed since the latest visit
of the private location. It is thus reset whenever we enter the

2Named “Full timed opacity decision problem” in [ALMS22]
3Named “Full timed opacity computation problem” in [ALMS22]

private location £,,,. This clock is initialized to value A +1
(which can be ensured by waiting in a new initial location
¢y for A + 1 time units before going to the original initial
location ¢ and resetting every clock but y). When reaching
the final location ¢;, one can urgently (a new clock z can
be used to force the system to move immediately) move to
a new secret location ¢}, if y > A and then to the new
final location é’f; otherwise (if y < A), the TA can go directly
to the new final location E’f. Therefore, a run that would not
be secret, as y > A is now secret and reciprocally. Then, by
testing weak (< A)-FET-opacity of both A and A’, one can
check (< A)-FET-opacity of A.

Formally, given a TA A = (3,L, 40, lpriv, {7, X, I, E)
and A € RU {400}, we build a second TA A" = (X U
{1}, L’,Eg,f;rw,ﬂ’f,XU {y,z},I', E’) where § denotes a spe-
cial action absent from X and where:

o L'= LU{th, 0.0}):

o Y0 e L\ {l;}:I'(6) =1(0); I'(4y)

Iy =@y <A+ I(0,,) =

(z=0).

o for each ((,g,a,R,{') € E, we add ({,g,a,R’,l')

to E/ where ¥ = RU {y,z} if ¢/ = 4,4, and

R’ = R U {z} otherwise. We also add the following

edges to E': {({,(y = A+ 1),4,X,4), (¢, (z =

0Ny > A)NE0.0,.), Uz = 0Ay <

A)’ ﬁ’ ®7 é})’ (477“1’1)7 (Z = 0)7 ﬁa Q)v E}) }
We give a graphical representation of our construction in
Fig. 2. There is a one-to-one correspondence between the
secret (resp. non-secret) runs ending in ¢, in A and the
non-secret (resp. secret) runs ending in £}, in A’ Given p a
run in A and p’ the corresponding run in .A’, then the duration
of p’ is equal to the duration of p plus A+ 1 (the time waited
in £5).

Recall from Definition 6 the definition of weak (< A)-
FET-opacity for P": DReach?\’'(A") € DReach?’\’(A’) U
DReach™™™ (A).

1) First consider the left-hand part “DReach” " (A’)”: these

execution times correspond to runs of A’ for which
£}, Was visited less than A (and actually 0) time units
prior to reaching é}. These runs passed the y > A
guard between £; and ¢, ., . From our construction, these
runs correspond to runs of the original A either not
passing at all by ¢,,;, (since y was never reset since
its initialization to A + 1, and therefore y > A +1 >
A), or to runs which visited ¢, more than A time

priv

units before reaching ¢;. Therefore, DReach” \"(A") =
{d+1+ A | de DReachy(A) U DReach™"" (A) }
2) Second, consider the right-hand part “D_Reachi’Z”(A’)u
DReach™™"(A’)”: the set DReach?’\’(A") is neces-
sarily empty, as any run of A" passing through £, .,
reaches E’f immediately in O-time. The execution times

from DReach™""(A’) correspond to runs of P’ not
visiting E;,m, therefore for which only the guard y <

A holds. Hence, they correspond to runs of A4 which

= (I(ff) Az = 0);
(2= 0); I'(£)) =

423

424

425

426

427

428

429

470

472

473

475

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

517

visited £y, less than A time units prior to reach-
ing £y. Therefore, DReach?'\’(A")UDReach ™" (A’) =
{d+1+A | de DReachZy (4)}
To conclude, checking that A s weakly
(< A)-FET-opaque (i.e., DReachZ}’(A’) C
DReach?’y(A') U DReachﬁp_”'“ (A’)) is equivalent to
DReach?’\’'(A) U DReach™™"(A) C DReachZ\'(A).
Moreover, from Definition 6, checking that A is weakly
(< A)-FET-opaque denotes checking DReach’gK’(A) C
DReach”’\’(A) U DReach ™" (A). Therefore, checking
that both A’ and A are weakly (< A)-FET-opaque denotes
DReach?\’'(A) = DReach?’\'(A) U DReach™"(A),
which is the definition of (< A)-FET-opacity for .A.
To conclude, A is (< A)-FET-opaque iff A and A’ are
weakly (< A)-FET-opaque.]

Theorem 2. The (weak) (< A)-FET-opacity decision problem
is decidable in NEXPTIME.

Proof: Given a TA A, we first build two TAs from A,
named A, and 4, and representing respectively the public
and secret behavior of the original TA, while each constant
is multiplied by 2. The consequence of this multiplication is
that the final location can be reached in time strictly between
t and t + 1 (with ¢ € N) by a public (resp. secret) run in
A iff the target can be reached in time 2¢ 4 1 in the TA A,
(resp. A;). Note that the correction of this statement is a direct
consequence of [BDR0O8, Lemma 5.5].

We then build the region automata RA, and RA; (of A,
and A, respectively).

RA, is a non-deterministic unary (the alphabet is restricted
to a single letter) automaton with ¢ transitions the language
of which is {a* | there is a run of duration k in P,}, and
similarly for R.As;.

We are interested in testing equality (resp. inclusion) of
those languages for deciding the (resp. weak) (< A)-FET-
opacity decision problem.

[SM73, Theorem 6.1] establishes that language equality of
unary automata is NP-complete and the same proof implies
that inclusion is in NP. As the region automata are exponen-
tial, we get the result.

|

Remark 2. In [ALMS22], we established that the (< +o00)-
FET-opacity decision problem is in 3EXPTIME. Our result
thus extends our former results in three ways: by including the
parameter A, by reducing the complexity and by considering
as well the weak notion of FET-opacity.

Theorem 3. The weak (< A)-FET-opacity computation prob-
lem is solvable.

Proof: In a first time, we consider weak temporary
opacity (i. e., without any bound on the secret expiration date).
First, we test whether A is weakly (< +400)-FET-opaque
thanks to Theorem 2. If it is, then by definition (and mono-
tonicity) of weak temporary opacity, A is weakly (< A)-
FET-opaque for all A € N, If it is not, then there exists

a non-opaque duration ¢. ¢ can be computed as a smallest
word differentiating the two exponential automata described
in Theorem 2. Hence, ¢ is at most doubly exponential. We test
(< A)-FET-opaque for all A < t as, due to the construction of
the counter example, A is not (< A)-FET-opaque for A > t.
This synthesizes our set as there are finitely many values to
test.

|

Corollary 1. The weak (< A)-FET-opacity emptiness problem
is decidable.

Proof: According to Theorem 3, the weak (< A)-FET-
opacity computation problem is solvable. Therefore, to ask
the emptiness problem, one can compute the set of bounds
ensuring the weak (< A)-FET-opacity of the TA and check
its emptiness. []

In contrast to weak (< A)-FET-opacity computation, we
only show below that (non-weak) weak (< A)-FET-opacity
emptiness is decidable; the computation problem remains
open.

Theorem 4. The (< A)-FET-opacity emptiness problem is
decidable.

Proof: Given a TA A, using Theorem 3, we first compute
the set of bounds A such that A is weakly (< A)-FET-opaque.
As (< A)-FET-opacity requires weak (< A)-FET-opacity, if
the computed set is finite, then we only need to check the
bounds of this set for (< A)-FET-opacity and thus synthesize
all the bounds achieving (< A)-FET-opacity.

If this set is infinite however, by the proof of Theorem 3, any
bound in N*° works. To achieve (< A)-FET-opacity we only
need to detect when the secret durations are included in the
non-secret ones. As the set of non-secret durations decrease
when A increases, there is a valuation of A achieving (< A)-
FET-opacity iff the TA is (< oo)-FET-opaque. The latter can
be decided with Theorem 2. [|

Corollary 2. The (< A)-FET-opacity decision problem is
decidable.

Theorem 5. All aforementioned results with A € N also hold
for A S RJ’_.

Proof: Given a TA A and A € Ry \N, we will show that
A is (weak) (< A)-FET-opaque iff it is (weak) (< [A] + 3)-
FET-opaque. Constructing the TA A’ where every constant is
doubled, we thus have that A is (weak) (< A)-FET-opaque iff
A’ is (weak) (< A’)-FET-opaque where A’ = 2A if A € N
and A’ = 2|A] 4 1 otherwise. The previous results of this
section applying on A’, they can be transposed to A.

We now move to the proof that A is (weak) (< A)-FET-
opaque iff it is (weak) (< |A] + 1)-FET-opaque. Let A €
Ry \ N such that A is (weak) (< A)-FET-opaque and let
A= [A] + 3.

Given a run p € Reach”\'(A), let t,(p) be the time
at which p visits for the last time the private location. We
denote by V,.;v(p) the set {t,(p)} if t,(p) € N and the

596

597

598

599

600

601

602

603

604

607

620

621

622

623

624

625

626

627

628

629

630

632

633

635

interval ([t,(p)], [tp(p)] + 1) otherwise. By definition of
the region automaton, one can create runs going through the
same path as p in the region automaton of A4 but reaching
the private location at any point within V), (p). Similarly,
if t¢(p) = dur(p) is the duration of p until the final
location, we denote F'(p) the set {ts(p)} if ty(p) € N
and the interval ([t¢(p)], |tf(p)] + 1) otherwise. The set
of durations of runs that follow the same path as p in
the region automaton and which belong to Reach?\"(A) is
F(p)N[0, max, gur(p)=dur(p) Vpriv(p'))+A], which is either
F(p) or the interval (|tf(p)], |tf(p)] + fract(A)]. We denote
this set of durations Priva(p). _

Similarly, given a run p € Reach?’\’(A) reaching the
final location at time t¢(p), we can again rely on the region
automaton to build a set of durations Puba (p) describing the
durations of runs that follow the same path as p in the region
automaton and that reach the final location more than A after
entering the private location. This set is either of the form
{t;(p)} if tr(p) € N, (tp(p)] + fract(A), [t7(p)| + 1) or

(t5(p)); L5 (p)] +1).

Assume first that A4 is (< A)-FET-opaque. As the set of
durations reaching the final location is an union of inter-
vals with integer bounds [BDROS, Proposition 5.3] and as
A is (< A)-FET-opaque, the set DReach?”\’(A) and the
set DReach”’{’(A) U DReach™""(A) describe the same
union of intervals with integer bounds. Let ¢ be a du-
ration within those sets. Then we will show that ¢ €
DReach? ,(A) and t € DReach?’\;(A) U DReach™" " (A).
Note that if ¢ € DReach ™ (A) the latter statement is
directly obtained, we will thus ignore this case in the fol-
lowing. By definition of DReach®’\’(A) and DReach” \’(A),
there thus exists a run p,.;, and a run pp,,, such that
t € Priva(ppriv) and t € Puba(ppup). Moreover, we
can assume that those runs satisfy that Priva(ppriv) and
Puba(ppup) do not depend on the bound A (ie. they
are equal to F(pprip) and F(ppyp) respectively). Indeed, if

such runs did not exist, the set DReach”\’(A) or the set

DReach? ' (A)UDReach™" (A) would have [t +fract(A)
as one of its bounds. As a consequence, DReachiZ”(A) u
DReach™"(A) = DReach?’},(A) U DReach™™"*"(A) and
DReach? \'(A) = DReach? \;(A). Thus A is (< A")-FET-
opaque.

Assume now that A is weak (< A)-FET-opaque. We
consider first the case where A > A’. There we have by def-
inition Reach?\)(A) C ReachZ\’(A) and Reach?'\'(A) C
Reach?’}’,(A), thus A is weak (< A’)-FET-opaque.

Now assume that A < A’. The same reasoning as for
the non-weak version mostly applies. As the set of du-
rations reaching the final location is an union of inter-
vals with integer bounds [BDROS, Proposition 5.3] and as
A is weak (< A)-FET-opaque, the set DReach?’\’(A) U
DReach™ " (A) describe the same union of intervals
with integer bounds. By the same reasoning as before,
DReach?’\’(A) U DReach™ "(A) = DReach?J(A) U
DReach™™"(A). Moreover, given t € DReach?}’(A),

there exists ppri such that ¢ € Privas(ppriv). Note that
either Privas(ppriv) = Priva(ppriv) and is thus included
in DReach?’’(A) U DReach™"""(A) or Priva:(ppriv) =
(161 (pprio) s 15 (ppriv)) + fract(A)] and Priva (ppriv) —
([t (ppriv)]s [ts(ppriv)] + fract(A)]. As the latter is included
in DReach?{ (A)U DReach™"™(A) which only has integer
bounds, then the former is included in it as well. |

V. TEMPORARY FET-OPACITY IN PARAMETRIC TAS

We are now interested in the synthesis (or the existence)
of parameter valuations ensuring that a system is (< A)-FET-
opaque. We define the following problems, where we ask for
parameter valuation(s) v and for valuations of A s.t. v(P) is
(< A)-FET-opaque.

(weak) (< A)-FET-opacity emptiness problem:

INPUT: A PTA P

PROBLEM: Decide whether the set of parameter valua-
tions v and valuations of A such that v(P) is (weakly)
(< A)-FET-opaque for A is empty

(weak) (< A)-FET-opacity computation problem:
INPUT: A PTA P

PROBLEM: Synthesize the set of parameter valuations v
and valuations of A such that v(P) is (weakly) (< A)-
FET-opaque for A.

Remark 3. A “(< A)-FET-opacity decision problem” over
PTAs is not defined; it aims to decide whether, given a
parameter valuation v and a bound A, a PTA is (< A)-FET-
opaque: it can directly reduce to the problem over a TA (which
is decidable, Corollary 2).

Example 6. Consider again the PTA P in Fig. 1.

For this PTA, the answer to the (< A)-FET-opacity empti-
ness problem is that their exists such a valuation (e.g., the
valuation given for Example 5).

Moreover, we have can show that, for all A and v:

o DReach™™ (v(P)) = [0, 3]

o if v(p1) > 3 or v(p1) > v(p2), it is not possible to
reach £y with a run passing through £, and therefore
DReach?\'(v(P)) = DReach? \’(v(P)) = 0

e if v(p1) <3 orv(pr) < v(ps)

— DReach?'\'(v(P)) = [v(p1) + A, v(p2)]
- DReacthv(v(P)) = [v(p1), min(A + 3, v(p2))]

Therefore, the (< A)-FET-opacity computation problem
needs to synthesize the valuations such that DReach?’\’ (A) =
DReach? ' (A) U DReach™"" (A). It may answer the valua-
tions of parameters and A s.t. p; = 0A (p2 = 3Vpy = A+3).

A. The subclass of L/U-PTAs

Definition 7 (L/U-PTA [HRSVO02]). An L/U-PTA is a PTA
where the set of parameters is partitioned into lower-bound
parameters and upper-bound parameters, where each lower-
bound (resp. upper-bound) parameter p; must be such that, for
every guard or invariant constraint >y, ., -, 0ipi +d, we
have: a; > 0 implies > € {>, >} (resp. 1 € {<, <}).

636

638

639

641

642

643

644

646

647

648

649

650

657

658

659

660

661

662

664

665

666

667

668

681

682

683

684

685

686

687

688

689

690

692

693

695

696

697

698

699

Figure 3: Reduction for the undecidability of (weak) (< A)-
FET-opacity emptiness for L/U-PTAs (used in Theorem 6)

Example 7. The PTA in Fig. 1 is an L/U-PTA with {p;} as
lower-bound parameter, and {p>} as upper-bound parameter.

L/U-PTAs is the most well-known subclass of PTAs with
some decidability results: for example, reachability-emptiness
(“the emptiness of the valuations set for which a given loca-
tion is reachable”), which is undecidable for PTAs, becomes
decidable for L/U-PTAs [HRSVO02]. Various other results
were studied (e. g., [BLT09], [JLR15], [ALR22]). Concerning
opacity, the execution-time opacity emptiness is decidable for
L/U-PTAs [ALMS22], while the full-execution-time opacity
emptiness becomes undecidable [ALMS?22].

Here, we show that both the (< A)-FET-opacity emptiness
and the weak (< A)-FET-opacity emptiness problems are
undecidable for L/U-PTAs. This is both surprising (seeing
from the numerous decidability results for L/U-PTAs) and un-
surprising, considering the undecidability of the FET-opacity
emptiness for this subclass [ALMS22].

Theorem 6. (weak) (< A)-FET-opacity emptiness is undecid-
able for L/U-PTAs with at least 5 clocks and 4 parameters.

Proof: We reduce from the problem of reachability-
emptiness in constant time, which is undecidable for general
PTAs [ALMS22, Lemma 7.1]. That is, we showed that, given
a constant time bound 7', the emptiness over the parameter
valuations set for which a location is reachable in exactly T’
time units, is undecidable.

Assume a PTA P with at least 2 parameters, say p; and
p2, and a target location ¢;. Fix T" = 1. From [ALMS22,
Lemma 7.1], it is undecidable whether there exists a parameter
valuation for which £ is reachable in time 1.

The idea of our proof is that, as in [JLR15], [ALMS22],
we “split” each of the two parameters used in P into a lower-
bound parameter (p! and pl) and an upper-bound parameter
(pY and p%). Each construction of the form = < p; (resp.
x < p;) is replaced with = < p}' (resp. x < pi') while each
construction of the form x > p; (resp. x > p;) is replaced with
z > pé (resp. © > pl); x = p; is replaced with pé <z < pi
Therefore, the PTA P is exactly equivalent to our construction
with duplicated parameters, provided p} = p¥% and pb = p¥.
The crux of the rest of this proof is that we will “rule out” any

parameter valuation not satisfying these equalities, so as to use
directly the undecidability result of [ALMS22, Lemma 7.1].

Now, consider the extension of P given in Fig. 3, containing
notably new locations £g, £, {; fori =1,--- .5 and an urgent*
location /,,4,, and a number of guards as seen on the figure;
we assume that x is an extra clock not used in P. The guard
on the transition from £, to ¢4 stands for 2 different transitions
guarded with p! < z < p¥, and p} < = < pY, respectively.
Let P’ be this extension.

Due to urgency of /., note that, for any A, the system
is (weakly) (< A)-FET-opaque iff it is (weakly) (< 0)-FET-
opaque.

Let us first make the following observations, for any param-
eter valuation v’

1) one can only take the upper most transition directly
from ¢ to {,., at time 2, i.e., ’f is always reach-
able in time 2 via a run visiting location £p.,: 2 €
DReach?™ (v'(P"));

2) the original PTA P can only be entered whenever p} < p¥
and ph < pY¥; going from £} to £ takes exactly 1 time
unit (due to the x = 1 guard);

3) if K} is reachable by a public run (not passing through
¢priv), then its duration is necessarily exactly 2 (going
through P). .

4) we have DReach®)" (v'(P’)) = 0 as any run reaching ',
and visiting £,,;, can only do it immediately, due to the
urgency of £y .

5) from [ALMS22, Lemma 7.1], it is undecidable whether
there exists a parameter valuation for which there exists
a run reaching ¢y from ¢y in time 1, i.e., reaching ¢
from ¢ in time 2.

Let us consider the following cases.

1) If p} > p¥ or pb > p¥, then due to the guards from /),
to ¢y, there is no way to reach E} with a public run; since
Z} can still be reached for some execution times (notably
x = 2 through the upper transition from ¢j, to £,,,), then
P’ cannot be (weakly) (< 0)-FET-opaque.

2) If p} < p¥ or ph < pY, then one of the transitions from £,
to {4 can be taken, and DReach? " (v'(P’)) = {1,2}.
Moreover, é} might be reached by a public run of du-
ration 2 through P. Therefore, DReach ™™™ (v/(P')) C
[2,2]. Therefore P’ cannot be (weakly) (< 0)-FET-
opaque for any of these valuations.

3) If pb = p} and p, = pY, then the behavior of the
modified P (with duplicate parameters) is exactly the one
of the original P. Also, note that the transition from £,
to Z’f via ¢4 cannot be taken. In contrast, the upper
transition from £f to £,,;, can still be taken.

Now, assume there exists a parameter valuation for which
there exists a run of P of duration 1 reaching ;. And,
as a consequence, é} is reachable, and therefore there
exists some run of duration 2 (including the 1 time unit
to go from /g to £;) reaching ', after passing through P,
which is public. From the above reasoning, all runs

4An urgent location is a location in which time cannot elapse.

800

801

802

803

804

805

806

807

808

809

810

812

813

814

40

Figure 4: Reduction for the undecidability of (weak) (< A)-
FET-opacity emptiness for PTAs (used in Theorem 7)

reaching E’f have duration 2; in addition, we exhibited a
public and a secret run; therefore the modified automaton
P’ is (weakly) (< 0)-FET-opaque for such a parameter
valuation.

Conversely, assume there exists no parameter valuation
for which there exists a run of P of duration 1 reach-
ing £;. In that case, P’ is not (weakly) (< 0)-FET-opaque
for any parameter valuation: DReach” " (v/(P’)) = [2,2]
and 2 ¢ DReach?" (v'(P')) U DReach™™ (v/(P')) =
0).

As a consequence, there exists a parameter valuation v’ for
which v'(P’) is (weakly) (< A)-FET-opaque iff there exists a
parameter valuation v for which there exists a run in v(P) of
duration 1 reaching £ ;/—which is undecidable from [ALMS22,
Lemma 7.1].

The undecidability of the reachability-emptiness in con-
stant time for PTAs holds from 4 clocks and 2 parame-
ters [ALMS22, Lemma 7.1]. Here, we duplicate the param-
eters, and add a fresh clock z: therefore, the current result
holds from 5 clocks and 4 parameters. We highly suspect that
one of the clocks from [ALMS22, Lemma 7.1] (reset neither in
our former construction nor in the current proof) can be reused
in the current proof as “z”, reducing the minimal number of
clocks to 4, but this remains to be shown formally. [|

As the emptiness problems are undecidable, the computation
problems are immediately intractable as well.

Corollary 3. (weak) (< A)-FET-opacity computation prob-
lem is unsolvable for L/U-PTAs with at least 5 clocks and
4 parameters.

B. The full class of PTAs

The undecidability of the emptiness problems L/U-PTAs
proved above immediately implies undecidability for the larger
class of PTAs. However, we provide below an original proof,
with a smaller number of parameters.

Theorem 7. (weak) (< A)-FET-opacity emptiness problem
is undecidable for general PTAs for at least 5 clocks and 2
parameters.

Proof: We reduce again from the problem of reachability-
emptiness in constant time, which is undecidable for general
PTAs [ALMS22, Lemma 7.1].

Fix T = 1. Consider an arbitrary PTA P, with initial
location ¢y and a given location ;. We add to P a new

clock x (unused and therefore never reset in P), we set {;
urgent (no time can elapse) and we add the following locations
and transitions in order to obtain a PTA P’, as in Fig. 4: a
new initial location £, with an urgent outgoing transition to ¢,
and a transition to a new location ¢, enabled after 1 unit; a
new final location é’f with incoming transitions from £,,;, in
0O-time and from £y (after 1 time unit since the system start).
First, due to the guard “x = 0” from £, to é’f, note that,
for any A, the system is (weakly) (< A)-FET-opaque iff it is
(weakly) (< 0)-FET-opaque. Also note that, for any valuation,
DReach” " (v(P’)) = [1,1]. For the same reason, note that
DReach”y" (v(P')) = 0. Second, note that, due to the guard
“z = 17 on the edge from (; and ¢ (with = never reset
on this path), DReach™?"™ (v(P’)) can at most contain [1,1],
i.e., DReach™ ™ (v(P")) C [1,1].

Now, let us show that there exists a valuation v such that
v(P’) is (weakly) (< 0)-FET-opaque iff there exists v such
that ¢; is reachable in v(P) in 1 time unit.

= Assume there exists a valuation v such that v(P’) is (<
0)-FET-opaque (resp. weakly (< 0)-FET-opaque).
Recall that, from the construction of 20
DReach” " (v(P")) = [1,1]. Therefore, from the
definition of (< 0)-FET-opacity (resp. weak (< 0)-FET-
opacity), there exist runs only of duration 1 (resp. there
exists at least a run of duration 1) reaching ¢,,.;, without
visiting £, Since DReach™ " (v(P')) C [1,1], then
¢y is reachable in exactly 1 time unit in v(P).

< Assume there exists v such that ¢ is reachable in v(P)
in exactly 1 time unit. Therefore, K} can also be reached
in exactly 1 time unit: therefore, DReach ™™ (v(P’)) =

[1,1]. .

Now, recall that DReach?" (v(P’)) = 0
and DReachZ" (v(P")) = [1,1]. Therefore,
DReacth)w.(v(’P’)) = DReach?" (v(P")) U
DReach™™(v(P’)), which from Definition 6

means that v(P’) is (< 0)-FET-opaque. Trivially,
we also have that DReach? " (v(P’)) C

DReach?’y" (v(P'))U DReach™ ™ (v(P’)) and therefore
v(P’) is also weakly (< 0)-FET-opaque.

Therefore, there exists v such that v(P’) is (weakly) (< 0)-
FET-opaque iff {; is reachable in v(P) in 1 time unit—
which is undecidable [ALMS22, Lemma 7.1]. As a conclusion,
(weak) (< A)-FET-opacity emptiness is undecidable.

The undecidability of the reachability-emptiness in con-
stant time holds from 4 clocks and 2 parameters [ALMS22,
Lemma 7.1]. Here, we add a fresh clock x: therefore, the
current result holds from 5 clocks and 4 parameters. Again,
we highly suspect that one of the clocks from [ALMS22,
Lemma 7.1] (never reset in our former construction) can be
reused in the current proof as “x”, but this remains to be shown

formally. u

Corollary 4. (weak) (< A)-FET-opacity computation problem
is unsolvable for PTAs for at least 5 clocks and 2 parameters.

818

819

820

821

822

823

824

825

826

827

828

855

856

857

858

859

861

862

863

864

866

867

868

869

887

888

889

890

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

Table I: Summary of the results

Decision Emptiness Computation

TA Weak +/(Theorem 2) +/(Corollary 1) \/ (Theorem 3)
(normal) | +/(Corollary 2) | +/(Theorem 4) ?

L/U-PTA Weak \/ (Remark 3) X (Theorem 6) X (Corollary 3)

(normal) | +/(Remark 3) X (Theorem 6) X (Corollary 3)

PTA Weak +/(Remark 3) X (Theorem 7) X (Corollary 4)

(normal) \/ (Remark 3) X (Theorem 7) X (Corollary 4)

VI. CONCLUSION AND PERSPECTIVES

a) Conclusion: We studied here a version of execution-
time opacity where the secret has an expiration date: that is,
we are interested in computing the set of expiration dates of
the secret for which the attacker is unable to deduce whether
the secret was visited recently (i.e., before its expiration
date) prior to the system completion; the attacker only has
access to the model and to the execution time of the system.
This problem is decidable for timed automata, and we can
effectively compute the set of expiration dates for which
the system is opaque. However, parametric versions of this
problem, with unknown timing parameters, all turned to be
undecidable, including for a subclass of PTAs usually known
for its decidability results. This shows the hardness of the
considered problem.

b) Summary: We summarize our results in Table I. “\/”
denotes decidability, while “x” denotes undecidability; “?”
denotes an open problem.

c) Perspectives: The proofs of undecidability in Sec-
tion V require a minimal number of clocks and parameters.
Smaller numbers might lead to decidability.

While the non-parametric part can be (manually) encoded
into existing problems [ALMS22] using a TA transformation
in order to reuse our implementation in IMITATOR [And21],
the implementation of the parametric problems remains to be
done. Since the emptiness problem is undecidable, this im-
plementation can only come in the form of a semi-algorithm,
i.e., a procedure without a guarantee of termination.

REFERENCES

Etienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan
Marinho. strategFTO: Untimed control for timed opacity. In
Cyrille Artho and Peter Olveczky, editors, FTSCS, pages 27-33.
ACM, 2022.

Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, April 1994.
Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John
Mullins. Bounded opacity for timed systems. Journal of
Information Security and Applications, 61:1-13, September
2021.

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-
clock automata: A determinizable class of timed automata.
Theoretical Computer Science, 211(1-2):253-273, 1999.
Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi.
Parametric real-time reasoning. In S. Rao Kosaraju, David S.
Johnson, and Alok Aggarwal, editors, STOC, pages 592-601,
New York, NY, USA, 1993. ACM.

Etienne André and Aleksander Kryukov. Parametric non-
interference in timed automata. In Yi Li and Alan Liew, editors,
ICECCS, pages 37-42, 2020.

[ABLM22]

[AD94]

[AETYM21]

[AFH99]

[AHV93]

[AK20]

10

[ALMS22]

[ALR22]

[And21]

[BDROS]

[BLT09]

[Cas09]

[FLGDT11]

[GMRO7]

[HRSV02]

[JLR15]

[SM73]

[WZ18]

[WZA18]

Etienne André, Didier Lime, Dylan Marinho, and Jun Sun.
Guaranteeing timed opacity using parametric timed model
checking. ACM Transactions on Software Engineering and
Methodology, 31(4):1-36, October 2022.

Etienne André, Didier Lime, and Olivier H. Roux. Reachability
and liveness in parametric timed automata. Logical Methods in
Computer Science, 18(1):31:1-31:41, February 2022.

Etienne André. IMITATOR 3: Synthesis of timing parameters
beyond decidability. In Rustan Leino and Alexandra Silva,
editors, CAV, volume 12759 of Lecture Notes in Computer
Science, pages 1-14. Springer, 2021.

Véronique Bruyere, Emmanuel Dall’Olio, and Jean-Francois
Raskin. Durations and parametric model-checking in timed au-
tomata. ACM Transactions on Computational Logic, 9(2):12:1—
12:23, 2008.

Laura Bozzelli and Salvatore La Torre. Decision problems for
lower/upper bound parametric timed automata. Formal Methods
in System Design, 35(2):121-151, 2009.

Franck Cassez. The dark side of timed opacity. In Jong Hyuk
Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon
Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, ISA, volume
5576 of Lecture Notes in Computer Science, pages 21-30.
Springer, 2009.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-
ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine
Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable
verification of hybrid systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in
Computer Science, pages 379-395. Springer, 2011.

Guillaume Gardey, John Mullins, and Olivier H. Roux. Non-
interference control synthesis for security timed automata.
Electronic Notes in Theoretical Computer Science, 180(1):35—
53, 2007.

Thomas Hune, Judi Romijn, Mariélle Stoelinga, and Frits W.
Vaandrager. Linear parametric model checking of timed au-
tomata. Journal of Logic and Algebraic Programming, 52-
53:183-220, 2002.

Aleksandra Jovanovi¢, Didier Lime, and Olivier H. Roux.
Integer parameter synthesis for real-time systems. /IEEE Trans-
actions on Software Engineering, 41(5):445-461, 2015.

Larry Stockmeyer and Albert Meyer. Word problems requiring
exponential time: Preliminary report. pages 1-9, 01 1973.
Lingtai Wang and Naijun Zhan. Decidability of the initial-
state opacity of real-time automata. In Cliff B. Jones, Ji Wang,
and Naijun Zhan, editors, Symposium on Real-Time and Hybrid
Systems - Essays Dedicated to Professor Chaochen Zhou on the
Occasion of His 80th Birthday, volume 11180 of Lecture Notes
in Computer Science, pages 44—60. Springer, 2018.

Lingtai Wang, Naijun Zhan, and Jie An. The opacity of real-
time automata. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11):2845-2856, 2018.

918

926
927

931

935

965

967
968

	Introduction
	Preliminaries
	Clocks and guards
	Parametric timed automata
	Timed automata
	Concrete semantics of TAs
	Timed automata regions

	Temporary execution time opacity problems
	Temporary-opacity

	Temporary FET-opacity in timed automata
	Temporary FET-opacity in parametric TAs
	The subclass of L/U-PTAs
	The full class of PTAs

	Conclusion and perspectives
	References

