Expiring opacity problems in parametric timed automata
Engel Lefaucheux, Étienne André, Dylan Marinho

To cite this version:
Engel Lefaucheux, Étienne André, Dylan Marinho. Expiring opacity problems in parametric timed automata. 2023. hal-04151207

HAL Id: hal-04151207
https://hal.science/hal-04151207
Preprint submitted on 4 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Expiring opacity problems in parametric timed automata

Étienne André
Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030
F-93430 Villetaneuse, France

Engel Lefaucheux
Université de Lorraine, CNRS, Inria, LORIA
F-54000 Nancy, France

Abstract—Information leakage can have dramatic consequences on the security of real-time systems. Timing leaks occur when an attacker is able to infer private behavior depending on timing information. In this work, we propose a definition of expiring timed opacity w.r.t. execution time, where a system is opaque whenever the attacker is unable to deduce the reachability of some private state solely based on the execution time; in addition, the secrecy is violated only when the private state was visited “recently”, i.e., within a given time bound (or expiration date) prior to system completion. This has an interesting parallel with concrete applications, notably cache deducibility: it may be useless for the attacker to know the cache content too late after its observance. We study here expiring timed opacity problems in timed automata. We consider the set of time bounds (or expiration dates) for which a system is opaque and show when they can be effectively computed for timed automata. We then study the decidability of several parameterized problems, when not only the bounds, but also some internal timing constants become timing parameters of unknown constant values.

Index Terms—security, distributed systems, timed opacity, timed automata

I. INTRODUCTION

Complex timed systems combine hard real-time constraints with concurrency. Information leakage can have dramatic consequences on the security of such systems. Among harmful information leaks, the timing information leakage is the ability for an attacker to deduce internal information depending on timing information. In this work, we focus on timing leakage through the total execution time, i.e., when a system works as an almost black-box and the ability of the attacker is limited to know the model and observe the total execution time. We consider the setting of timed automata (TAs), which is a popular extension of finite-state automata with clocks [AD94].

a) Context and related works: Franck Cassez proposed in [Cas09] a first definition of timed opacity: the system is opaque if an attacker cannot deduce whether some set of actions was performed, by only observing a given set of observable actions together with their timestamp. It is then proved in [Cas09] that it is undecidable whether a TA is opaque, even for the restricted class of event-recording automata [AFH99] (a subclass of TAs). This notably relates to the undecidability of timed language inclusion for TAs [AD94].

This work is partially supported by the ANR-NRF French-Singaporean research program ProMoS (ANR-19-CE25-0015 / 2019 ANR NRF 0092) and the ANR research program BisoUS.

The aforementioned negative result leaves hope only if the definition or the setting is changed, which was done in three main lines of works. First, in [WZ18], [WZA18], the input model is simplified to real-time automata, a severely restricted formalism compared to TAs. Timed aspects are only considered by interval restrictions over the total elapsed time along transitions. Real-time automata can be seen as a subclass of TAs with a single clock, reset at each transition. In this setting, (initial-state) opacity becomes decidable [WZ18], [WZA18].

Second, in [ALMS22], we consider a weaker attacker, who has access only to the execution time: this is execution-time opacity (ET-opacity).

In the setting of TAs, the execution time denotes the time from the system start to the reachability of a given (final) location. Therefore, given a secret location, a TA is ET-opaque for an execution time \(d \) if there exist at least two paths of duration \(d \) from the initial location to a final location: one visiting the secret location, and another one not visiting the secret location. The system is fully ET-opaque (FET-opaque) if it is ET-opaque for all execution times: that is, for each possible \(d \), either no final location is reachable, or the final location is reachable for at least two paths, one visiting the secret location, and another one not visiting it. These definitions of (F)ET-opacity become decidable for TAs [ALMS22]. We studied various parametric extensions, and notably showed that the parametric emptiness problem (the emptiness over the parameter valuations set for which the TA is ET-opaque) becomes decidable for a subclass of parametric timed automata (PTAs) [AHV93] where parameters are partitioned between lower-bound and upper-bound parameters [HRSV02].

Third, in [AETYM21], the authors consider a time-bounded notion of the opacity of [Cas09], where the attacker has to disclose the secret before an upper bound, using a partial observability. This can be seen as a secrecy with an expiration date. The rationale is that retrieving a secret “too late” is useless; this is understandable, e.g., when the secret is the value in a cache; if the cache was overwritten since, then knowing the secret is probably useless in most situations. In addition, the analysis is carried over a time-bounded horizon; this means there are two time bounds in [AETYM21]: one for the secret expiration date, and one for the bounded-time

1In [ALMS22], this notion was only referred to as “timed opacity”.
execution of the system. (We consider only the former one in this work, and lift the assumption regarding the latter.)

The authors prove that this problem is decidable for TAs. A construction and an algorithm are also provided to solve it; a case study is verified using SpaceEx [FLGD+11].

b) Contribution: In this work, we combine both concepts from [ALMS22], [AETYM21] and consider an expiring version of FET-opacity, where the secret is subject to an expiration date. That is, we consider that an attack is successful only when the attacker can decide that the secret location was visited less than Δ time units before the system completion. Conversely, if the attacker exhibits an execution time d for which it is certain that the secret location was visited, but this location was visited strictly more than Δ time units prior to the system completion, then this attack is useless, and can be seen as a failed attack. The system is therefore expiring FET-opaque if the set of execution times for which the private location was visited within Δ time units prior to system completion is exactly equal to the set of execution times for which the private location was either not visited or visited $> \Delta$ time units prior to system completion.

On the other hand, our attacker model is weaker than [AETYM21], because our attacker has only access to the execution time (and to the input model); in that sense, our attacker capability is identical to [ALMS22]. On the other hand, we lift the time-bounded horizon analysis from [AETYM21], allowing to analyze systems without any assumption on their execution time; therefore, we only import from [AETYM21] the notion of expiring secret. Also note that our formalism is much more expressive (and therefore able to encode richer applications) than in [WZ18], [WZA18] as we consider the full class of TAs instead of the restricted real-time automata. We also consider parametric extensions, not discussed in [Cas09], [WZ18], [WZA18], [AETYM21].

We first consider ET-opacity problems for TAs. We show that

1) it is possible to decide whether a TA is expiring FET-opaque for a given time bound Δ (decision problem);
2) it is possible to decide whether a TA is expiring FET-opaque for at least one bound Δ (emptiness problem);
3) it is possible to compute the set of time bounds (or expiration dates) for which a TA is expiring FET-opaque (computation problem), under the assumption of weakness of FET-opacity (i.e., when the set of execution times passing through the private location within Δ time units prior to system completion is included in (and not necessary equal to) the set of all execution times).

We also show that in PTAs the emptiness of the parameter valuation sets for which the system is expiring FET-opaque is undecidable, even for a subclass of PTAs usually well-known for its decidability results.

c) Outline: We recall preliminaries in Section II. We define temporary opacity in Section III. We address problems for TAs in Section IV, and parametric extensions in Section V. We conclude in Section VI.

II. Preliminaries

Let \mathbb{N}, \mathbb{Z}, \mathbb{Q}_+, \mathbb{R}_+, \mathbb{R} denote the sets of non-negative integers, integers, non-negative rational numbers, non-negative real numbers, and real numbers, respectively. Let $\mathbb{N}^\infty = \mathbb{N} \cup \{+\infty\}$ and $\mathbb{R}^\infty = \mathbb{R}_+ \cup \{+\infty\}$.

A. Clocks and guards

We assume a set $X = \{x_1, \ldots, x_H\}$ of clocks, i.e., real-valued variables that all evolve over time at the same rate. A clock valuation is a function $\mu : X \rightarrow \mathbb{R}_+$. We write ∂ for the clock valuation assigning 0 to all clocks. Given $d \in \mathbb{R}_+$, $\mu + d$ denotes the valuation s.t. $\mu(x) + d$ for all $x \in X$. Given $R \subseteq X$, we define the reset of a valuation μ, denoted by $[\mu]_R$, as follows: $[\mu]_R(x) = 0$ if $x \in R$, and $[\mu]_R(x) = \mu(x)$ otherwise.

We assume a set $P = \{p_1, \ldots, p_M\}$ of parameters, i.e., unknown constants. A parameter valuation v is a function $v : P \rightarrow \mathbb{R}_+$. A clock guard g is a constraint over X defined by a conjunction of inequalities of the form $x \leq d$, with $d \in \mathbb{R}_+$ and $\infty \in \{<, \leq, =, \geq, >\}$. Given g, we write $\mu \models g$ if the expression obtained by replacing each x with $\mu(x)$ in g evaluates to true.

B. Parametric timed automata

Parametric timed automata (PTA) extend timed automata with parameters within guards and invariants in place of integer constants [AHV93]. We extend PTAs with a special location called “private location”.

Definition 1 (PTA). A PTA \mathcal{P} is a tuple $\mathcal{P} = (\Sigma, L, \ell_0, \ell_{\text{priv}}, \ell_f, X, \mathbb{P}, I, E)$, where:

1) Σ is a finite set of actions,
2) L is a finite set of locations,
3) $\ell_0 \in L$ is the initial location,
4) $\ell_{\text{priv}} \in L$ is the private location,
5) $\ell_f \in L$ is the final location,
6) X is a finite set of clocks,
7) \mathbb{P} is a finite set of parameters,
8) I is the invariant, assigning to every $\ell \in L$ a clock guard $I(\ell)$,
9) E is a finite set of edges $e = (\ell, g, a, R, \ell')$ where $\ell, \ell' \in L$ are the source and target locations, $a \in \Sigma$, $R \subseteq X$ is a set of clocks to be reset, and g is a clock guard.

C. Timed automata

Given a PTA \mathcal{P} and a parameter valuation v, we denote by $v(\mathcal{P})$ the non-parametric structure where all occurrences of a parameter p_i have been replaced by $v(p_i)$. We denote as a timed automaton any structure $v(\mathcal{P})$, by assuming a rescaling of the constants: by multiplying all constants in $v(\mathcal{P})$ by the least common multiple of their denominators, we obtain an equivalent (integer-valued) TA, as defined in [AD94].

Example 1. Consider the PTA in Fig. 1 (inspired by [GMR07, Fig. 1b]), using one clock x and two parameters p_1 and p_2. ℓ_0 is the initial location, while we assume that ℓ_f is the (only) final location.
1) Concrete semantics of TAs:

Definition 2 (Semantics of a TA). Given a PTA \(P = (\Sigma, L, l_0, l_{\text{priv}}, \ell, X, \mathbb{P}, I, E) \), and a parameter valuation \(v \), the semantics \(T_v(P) \) of \(v(P) \) is given by the timed transition system (TTS) \((\mathbb{S}, s_0, \rightarrow)\), with

\[\mathbb{S} = \{(\ell, \mu) \in L \times \mathbb{R}_{+}^| \mu | v(I(\ell))\}, \]

\[s_0 = (\ell_0, 0), \]

\[\rightarrow \text{ consists of the discrete and (continuous) delay transition relations:} \]

1) discrete transitions: \((\ell, \mu) \xrightarrow{e} (\ell', \mu') \), if \((\ell, \mu), (\ell', \mu') \in \mathbb{S} \), and there exists \(e = (\ell, g, a, R, \ell') \in E \), such that \(\mu' = [\mu]_R \), and \(\mu \models v(g) \).

2) delay transitions: \((\ell, \mu) \xrightarrow{d} (\ell, \mu + d) \), with \(d \in \mathbb{R}_{+} \), if

\[\forall d' \in [0, d], (\ell, \mu + d') \in \mathbb{S}. \]

Moreover we write \((\ell, \mu) \xrightarrow{(d,e)} (\ell', \mu') \) for a combination of a delay and discrete transition if \(\exists \mu'' : (\ell, \mu) \xrightarrow{\mu''} (\ell', \mu'') \xrightarrow{e} (\ell', \mu') \).

Given a TA \(v(P) \) with concrete semantics \((\mathbb{S}, s_0, \rightarrow)\), we refer to the states of \(\mathbb{S} \) as the concrete states of \(v(P) \). A run of \(v(P) \) is an alternating sequence of concrete states of \(v(P) \) and pairs of edges and delays starting from the initial state \(s_0 \) of the form \(s_0, (d_0, c_0), s_1, \ldots \) with \(i = 0, 1, \ldots, c_i \in E, d_i \in \mathbb{R}_{+} \) and \(s_i \xrightarrow{(d_i,c_i)} s_{i+1} \).

The duration between two states of a finite run \(\rho : s_0, (d_0, c_0), s_1, \ldots, s_k \) is \(\text{dur}_\rho(s_0, s_k) = \sum_{m=0}^{k} d_m \). The duration of a finite run \(\rho : s_0, (d_0, c_0), s_1, \ldots, s_i \) is \(\text{dur}(\rho) = \text{dur}_\rho(s_0, s_k) = \sum_{0 \leq j < k} d_j \). We also define the duration between two locations \(\ell_1 \) and \(\ell_2 \) as \(\text{dur}(\ell_1, \ell_2) = \text{dur}_\rho(s_1, s_2) \) with \(\rho : s_0, (d_0, c_0), s_1, \ldots, s_i, \ldots, s_j, \ldots, s_k \), where \(s_j \) is the first occurrence of a state with location \(\ell_2 \) and \(s_i \) is the last state of \(\rho \) with location \(\ell_1 \) before \(s_j \). We choose this definition to coincide with the definitions of opacity that we will define later (Definition 6). Indeed, we want to make sure that revealing a secret \(\ell_1 \) (in this definition) is not a failure if it is done after a given time. Thus, as soon as the system reaches its final state \(\ell_2 \), we will be interested in knowing how long the secret has been present, and thus the last time it was visited \((s_i) \).

Example 2. Let us go back to Example 1. Let \(v \) be such that \(v(p_1) = 1 \) and \(v(p_2) = 2 \). Consider the following run \(\rho \) of \(v(P) : (\ell_0, x = 0), (1.4, e_2), (\ell_{\text{priv}}, x = 1.4), (0.4, e_3), (\ell_f, x = 1.8) \), where \(e_2 \) is the edge from \(\ell_0 \) to \(\ell_{\text{priv}} \) in Fig. 1, and \(e_3 \) is the edge from \(\ell_{\text{priv}} \) to \(\ell_f \). We write \("x = 1.4" \) instead of \(\mu \) such that \(\mu(x) = 1.4 \). We have \(\text{dur}(\rho) = 1.4 + 0.4 = 1.8 \) and \(\text{dur}_\rho(\ell_{\text{priv}}, \ell_f) = 0.4 \).

2) Timed automata regions: Let us next recall the concept of regions and the region graph [AD94].

Given a TA \(A \), for a clock \(x_i \), we denote by \(c_i \) the largest constant to which \(x_i \) is compared within the guards and invariants of \(A \) (that is, \(c_i = \max_{x_i}(\{ d_i \mid x \gg d_i \text{ appears in a guard or invariant of } A \}) \)). Given \(\alpha \in \mathbb{R} \), let \(\lfloor \alpha \rfloor \) and \(\text{frac}(\alpha) \) denote respectively the integral part and the fractional part of \(\alpha \).

Example 3. Consider again the PTA in Fig. 1, and let \(v \) be such that \(v(p_1) = 2 \) and \(v(p_2) = 4 \). In the TA \(v(P) \), the clock \(x \) is compared to the constants in \(\{2, 3, 4\} \). In that case, \(c = 4 \) is the largest constant to which the clock \(x \) is compared.

Definition 3 (Region equivalence). We say that two valuation \(\mu \) and \(\mu' \) are equivalent, denoted \(\mu \equiv \mu' \), if the following three conditions hold for any clocks \(x_i, x_j \):

1) either
 a) \([\mu(x_i)] = [\mu'(x_i)] \) or
 b) \(\mu'(x_i) > c_i \) and \(\mu'(x_i) > c_i \)
2) \(\text{frac}(\mu(x_i)) \leq \text{frac}(\mu'(x_i)) \) iff \(\text{frac}(\mu(x_i)) \leq \text{frac}(\mu'(x_i)) \)
3) \(\text{frac}(\mu(x_i)) = 0 \) iff \(\text{frac}(\mu'(x_i)) = 0 \)

The equivalence relation \(\approx \) is extended to the states of \(T_A \):

\[s \approx s' \text{ iff } s = (\ell, \mu) \text{ and } s' = (\ell', \mu') \text{ are two states of } T_A, \text{ and we write } s \approx s' \text{ if } \ell = \ell' \text{ and } \mu \equiv \mu'. \]

We denote by \([s]\) the equivalence class of \(s\) for \(\approx\). A region \(R\) is an equivalence class \([s]\) of \(\approx\). The set of all regions is denoted \(R_A\). Given a state \(s = (\ell, \mu) \) and \(d \geq 0 \), we write \(s + d \) to denote \((\ell, \mu + d)\).

Definition 4 (Region graph \(RG_A = (R_A, F_A)\)). The region graph \(RG_A = (R_A, F_A)\) is a finite graph with:

- \(R_A\) as the set of vertices
- given two regions \(r = [s], r' = [s'] \in R_A \), we have \((r, r') \in F_A\) if one of the following holds:
 - \(s \xrightarrow{e} s' \in T_A\) for some \(e \in E \) (discrete instantaneous transition);
 - if \(r' \) is a time successor of \(r \) and there exists \(d \) such that \(s + d \in r' \) and \(\forall d' < d, s + d' \in r \cup r' \) (delay transition);
 - \(r = r' \) is unbounded: \(s = (\ell, \mu) \) with \(\mu(x_i) > c_i \) for all \(x_i \) (equivalent unbounded regions).

We now define a version of the region automaton based on [BDR08] where the only letter that can be read, ‘a’ means that one time unit has passed. Note that this automaton is not timed. As such, it is as usual described by a tuple \((\Sigma, Q, q_0, F, T)\) where \(\Sigma\) is the alphabet, \(Q\) is the set of states, \(q_0\) is the initial state, \(F\) is the set of final states and \(T \subseteq (Q \times \Sigma \times Q)\) is the set of transitions.

We assume that the given automaton \(A \) possesses a clock \(x_a \) that is maintained by invariants smaller or equal to 1 and can be reset if it is equal to 1. This clock does not affect the behavior of the automaton, but every time it is reset, we know that one unit of time passed. We also assume that the TA is
Definition 5 (Region automaton [BDR08]). The region automaton $\mathcal{R}_A = \{a : \mathcal{R}_A, [s_0], F, T\}$ where
1) a is the only action;
2) \mathcal{R}_A is the set of states (a state of \mathcal{R}_A is a region of A);
3) $[s_0]$ is the initial location (the region associated to the initial state);
4) the set of final locations F is the set of regions associated to the location ℓ_{priv} where x_a is not set at 1 (i.e. the set of regions $r = (\ell_{\text{priv}}, \mu)$ where $\mu(x_a) < 1$)
5) $(r, z, r') \in T$ iff $(r, r') \in \mathcal{F}_A$ and $z = a$ if x_a was reset in the discrete instantaneous transition corresponding to (r, r'), and $z = \varepsilon$ otherwise.

An important property of this automaton is that the word a^k with $k \in \mathbb{N}$ is accepted by \mathcal{R}_A iff there exists a run reaching the final state within $[k, k + 1)$.

III. Temporary Execution Time opacity problems
In this section, we formally introduce the problems we address in this paper. On the following, let A be a TA.

A. Temporary-opacity
Given A, and a run ρ, we say that ℓ_{priv} is reached on the way to ℓ_f in ρ if ρ is of the form $(\ell_0, \mu_0), (\ell_0, e_0), (\ell_1, \mu_1), \ldots, (\ell_m, e_m), (\ell_m, e_n), \ldots (\ell_n, \mu_n)$ for some $m, n \in \mathbb{N}$ such that $\ell_m = \ell_{\text{priv}}, \ell_n = \ell_f$ and $\forall 0 \leq i \leq m - 1, \ell_i \neq \ell_f$. We denote by $\text{Reach}_{\text{priv}}^\rho(A)$ the set of those runs, and refer to them as private runs. We denote by $\text{DReach}_{\text{priv}}^\rho(A)$ the set of all the durations of these runs.

Conversely, we say that ℓ_{priv} is avoided on the way to ℓ_f in ρ if ρ is of the form $(\ell_0, \mu_0), (\ell_0, e_0), (\ell_1, \mu_1), \ldots, (\ell_n, \mu_n)$ with $\ell_n = \ell_f$ and $\forall 0 \leq i < n, \ell_i \notin \{\ell_{\text{priv}}, \ell_f\}$. We denote the set of those runs by $\text{Reach}_{\text{priv}}(A)$, referring to them as public runs, and by $\text{DReach}_{\text{priv}}(A)$ the set of all the durations of its runs.

We define $\text{Reach}_{\Delta}^{\text{priv}}(A)$ (resp. $\text{Reach}_{\leq \Delta}^{\text{priv}}(A)$) as the set of runs $\rho \in \text{Reach}_{\text{priv}}^{\rho}(A)$ s.t. $\text{dur}_{\rho}(\ell_{\text{priv}}, \ell_f) > \Delta$ (resp. $\text{dur}_{\rho}(\ell_{\text{priv}}, \ell_f) \leq \Delta$). We refer the runs of $\text{Reach}_{\leq \Delta}^{\text{priv}}(A)$ as secret runs. $\text{DReach}_{\Delta}^{\rho}(A)$ (resp. $\text{DReach}_{\leq \Delta}^{\rho}(A)$) is the set of all the durations of the runs in $\text{Reach}_{\Delta}^{\rho}(A)$ (resp. $\text{Reach}_{\leq \Delta}^{\rho}(A)$).

We define below two notions of full execution timed opacity (FET) w.r.t. a time bound Δ. We will compare two sets:
1) the set of execution times for which the private location was visited at most Δ time units prior to system completion; and
2) the set of execution times for which either the private location was not visited at all, or it was visited more than Δ time units prior to system completion (which, in our setting is equivalent to not visiting the private location, in the sense that visiting it “too early” is considered of little interest).

If both sets match, the system is $(\leq \Delta)$-FET-opaque. If the former is included into the latter, then the system is weakly $(\leq \Delta)$-FET-opaque.

Definition 6 ($(\leq \Delta)$-FET-opacity). Given a TA A and a bound (i.e., an expiration date for the secret) $\Delta \in \mathbb{R}_\geq$, we say that A is $(\leq \Delta)$-FET-opaque if $\text{DReach}_{\text{priv}}^{\rho}(A) = \text{DReach}_{\leq \Delta}^{\rho}(A) \cup \text{DReach}_{\text{priv}}^{\rho}(A)$. Moreover, we say that A is weakly $(\leq \Delta)$-FET-opaque if $\text{DReach}_{\text{priv}}^{\rho}(A) \subseteq \text{DReach}_{\leq \Delta}^{\rho}(A) \cup \text{DReach}_{\text{priv}}^{\rho}(A)$.

Remark 1. Our notion of weak opacity may still leak some information: on the one hand, if a run indeed visits the private location $\leq \Delta$ before system completion, there exists an equivalent run not visiting it (or visiting it earlier), and therefore the system is opaque; but on the other hand, there may exist execution times for which the attacker can deduce that the private location was not visited before system completion. This remains acceptable in some cases, and this motivates us to define a weak version of $(\leq \Delta)$-FET-opacity. Also note that the “initial-state opacity” for real-time automata considered in [WZ18] can also be seen as weak in the sense that their language inclusion is also unidirectional.

Example 4. Consider again the PTA in Fig. 1; let v be such that $v(p_1) = 1$ and $v(p_2) = 2.5$. Fix $\Delta = 1$.

We have:
- $\text{DReach}_{\text{priv}}^{\rho}(v(P)) = [0, 3]
- \text{DReach}_{\text{priv}}^{\rho}(v(P)) = [2, 2.5]
- \text{DReach}_{\leq \Delta}^{\rho}(v(P)) = [1, 2.5]

Therefore, we say that $v(P)$ is:
- weakly (≤ 1)-FET-opaque, as $[1, 2.5] \subseteq [(2, 2.5) \cup [0, 3)]$
- not (≤ 1)-FET-opaque, as $[1, 2.5] \neq [(2, 2.5) \cup [0, 3)]$

As introduced in Remark 1, despite the weak (≤ 1)-FET-opacity of A, the attacker can deduce some information about the visit of the private location for some execution times. For example, if a run has a duration of 3 time units, it cannot be a private run, and therefore the attacker can deduce that the private location was not visited.

We define three different problems:

(Weak) $(\leq \Delta)$-FET-opacity decision problem:
INPUT: A TA A and a bound $\Delta \in \mathbb{R}_\geq$
PROBLEM: Decide whether A is (weakly) $(\leq \Delta)$-FET-opaque

(Weak) $(\leq \Delta)$-FET-opacity emptiness problem:
INPUT: A TA A
PROBLEM: Decide the emptiness of the set of bounds Δ such that A is (weakly) $(\leq \Delta)$-FET-opaque

(Weak) $(\leq \Delta)$-FET-opacity computation problem:
INPUT: A TA A
PROBLEM: Compute the maximal set D of bounds such that A is (weakly) $(\leq \Delta)$-FET-opaque for all $\Delta \in D$

Example 5. Consider again the PTA in Fig. 1; let v be such that $v(p_1) = 1$ and $v(p_2) = 2.5$ (as in Example 4).
Given $\Delta = 1$, the weak $(\leq \Delta)$-FET-opacity decision problem asks whether $v(\mathcal{P})$ is weakly $(\leq \Delta)$-FET-opaque—the answer is “yes” from Example 4. The weak $(\leq \Delta)$-FET-opacity emptiness problem is therefore “no” because the set of bounds Δ such that $v(\mathcal{P})$ is weakly $(\leq \Delta)$-FET-opaque is not empty. Finally, the weak $(\leq \Delta)$-FET-opacity computation problem asks to compute all the corresponding bounds: in this example, the solution is $\Delta \in \mathbb{R}_+$.

Note that, considering $\Delta = \infty$, $DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}) = \emptyset$ and all the execution times of runs passing by ℓ_{priv} are in $DReach^{\text{priv}}_{> \Delta}(\mathcal{A})$. Therefore, $(\leq \infty)$-FET-opacity matches the FET-opacity defined in [ALMS22]. We can therefore notice that answering the $(\leq \infty)$-FET-opacity decision problem is decidable ([ALMS22, Proposition 5.3]). However, the emptiness and computation problems cannot be reduced to FET-opacity problems from [ALMS22]. Conversely, it is possible to answer the FET-opacity decision problem2 by checking the $(\leq \infty)$-FET-opacity decision problem. Moreover, FET-opacity computation problem3 reduces to $(\leq \Delta)$-FET-opacity computation: if $\infty \in \mathbb{D}$, we get the answer to the opposite.

Note that our problems are incomparable to the ones addressed in [AETYM21] as the models used in their paper have a bounded execution time $< \infty$, in addition to the bounded opacity Δ.

IV. TEMPORARY FET-OPTICITY IN Timed Automata

In this entire section, unless otherwise specified, we set $\Delta \in \mathbb{N}$.

Theorem 1. The $(\leq \Delta)$-FET-opacity decision problem reduces to the weak $(\leq \Delta)$-FET-opacity decision problem.

Proof: Fix a TA \mathcal{A} and a time bound Δ. In this reduction, we build a new TA \mathcal{A}' where secret and non-secret runs are swapped. More precisely, we add a new clock y that measures how much time has elapsed since the latest visit of the private location. It is thus reset whenever we enter the

$$y = \Delta + 1 - z$$

private location ℓ_{priv}. This clock is initialized to value $\Delta + 1$ (which can be ensured by waiting in a new initial location ℓ_0' for $\Delta + 1$ time units before going to the original initial location ℓ_0 and resetting every clock but y). When reaching the final location ℓ_f, one can urgently (a new clock z can be used to force the system to move immediately) move to a new secret location ℓ_{priv}' if $y > \Delta$ and then to the new final location ℓ_{f}', otherwise (if $y \leq \Delta$), the TA can go directly to the new final location ℓ_{f}'. Therefore, a run that would not be secret, as $y > \Delta$ is now secret and reciprocally. Then, by testing weak $(\leq \Delta)$-FET-opacity of both \mathcal{A} and \mathcal{A}', one can check $(\leq \Delta)$-FET-opacity of \mathcal{A}.

Formally, given a TA $\mathcal{A} = (\Sigma, L, \ell_0, \ell_{\text{priv}}, \mathcal{X}, I, E)$ and $\Delta \in \mathbb{R} \cup \{+\infty\}$, we build a second TA $\mathcal{A}' = (\Sigma \cup \{z\}, L', \ell_0', \ell_{\text{priv}}', \mathcal{X} \cup \{y, z\}, I', E')$ where z denotes a special action absent from Σ and where:

- $L' = L \cup \{\ell_0', \ell_{\text{priv}}', \ell_f'\}$;
- $\forall \ell \in L \setminus \{\ell_f\}, I'() = I()$; $I'() = (I() \wedge z = 0)$;
- $I'(\ell_{\text{priv}}') = (y \leq \Delta + 1)$; $I'(\ell_{\text{priv}}') = (z = 0)$;
- $\forall \ell, g, a, R, \ell' \in E'$, we add (ℓ, g, a, R', ℓ') to E' where $R' = R \cup \{y, z\}$ if $\ell' = \ell_{\text{priv}}'$ and $R' = R \cup \{z\}$ otherwise. We also add the following edges to E':

$$\ell_{\text{priv}}'(y = \Delta + 1), \ell_{\text{priv}}'(y = 0 \wedge y \leq \Delta), \ell_{\text{priv}}'(z = 0 \wedge y \leq \Delta), \ell_{\text{priv}}'(z = 0), \ell_{\text{priv}}'(z = 0 \wedge y \leq \Delta), \ell_{\text{priv}}'(y = 0).$$

We give a graphical representation of our construction in Fig. 2. There is a one-to-one correspondence between the secret (resp. non-secret) runs ending in ℓ_{priv} in \mathcal{A} and the non-secret (resp. secret) runs ending in ℓ_{priv}' in \mathcal{A}'. Given a run in \mathcal{A} and ρ' the corresponding run in \mathcal{A}', then the duration of ρ' is equal to the duration of ρ plus $\Delta + 1$ (the time waited in ℓ_0).

Recall from Definition 6 the definition of weak $(\leq \Delta)$-FET-opacity for \mathcal{P}': $DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}') \subseteq DReach^{\text{priv}}_{> \Delta}(\mathcal{A}') \cup DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}')$.

1) First consider the left-hand part “$DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}')$”: these execution times correspond to runs of \mathcal{A}' for which ℓ_{priv}' was visited less than Δ (and actually 0) time units prior to reaching ℓ_{f}'. These runs passed the $y > \Delta$ guard between ℓ_f and ℓ_{priv}. From our construction, these runs correspond to runs of the original \mathcal{A} either not passing at all by ℓ_{priv} (since y was never reset since its initialization to $\Delta + 1$, and therefore $y \geq \Delta + 1$), or to runs which visited ℓ_{priv} more than Δ time units before reaching ℓ_f. Therefore, $DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}') = \{d + 1 + \Delta \mid d \in DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}) \cup DReach^{\text{priv}}_{> \Delta}(\mathcal{A})\}$.

2) Second, consider the right-hand part “$DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}') \cup DReach^{\text{priv}}_{> \Delta}(\mathcal{A}')$”: the set $DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}')$ is necessarily empty, as any run of \mathcal{A}' passing through ℓ_{priv}' reaches ℓ_{f}' immediately in 0-time. The execution times from $DReach^{\text{priv}}_{\leq \Delta}(\mathcal{A}')$ correspond to runs of \mathcal{P}' not visiting ℓ_{priv}', therefore for which only the guard $y \leq \Delta$ holds. Hence, they correspond to runs of \mathcal{A} which

2Named “Full timed opacity decision problem” in [ALMS22]

3Named “Full timed opacity computation problem” in [ALMS22]
visited ℓ_{priv} less than Δ time units prior to reaching t_f. Therefore, $D\text{Reach}^{\text{priv}}_{\leq \Delta}(A') \cup D\text{Reach}^{-\text{priv}}_{\leq \Delta}(A') = \left\{ d + 1 + \Delta \mid d \in D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) \right\}$

To conclude, checking that A' is weakly ($\leq \Delta$)-FET-opaque (i.e., $D\text{Reach}^{\text{priv}}_{\leq \Delta}(A') \cup D\text{Reach}^{-\text{priv}}_{\leq \Delta}(A')$) is equivalent to $D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) \cup D\text{Reach}^{-\text{priv}}_{\leq \Delta}(A)$.

Moreover, from Definition 6, checking that A is weakly ($\leq \Delta$)-FET-opaque denotes checking $D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) \subseteq D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) \cup D\text{Reach}^{-\text{priv}}_{\leq \Delta}(A)$. Therefore, checking that both A' and A are weakly ($\leq \Delta$)-FET-opaque denotes $D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) = D\text{Reach}^{\text{priv}}_{\leq \Delta}(A) \cup D\text{Reach}^{-\text{priv}}_{\leq \Delta}(A)$, which is the definition of ($\leq \Delta$)-FET-opacity for A.

To conclude, A is ($\leq \Delta$)-FET-opaque iff A and A' are weakly ($\leq \Delta$)-FET-opaque.

Theorem 2. The (weak) ($\leq \Delta$)-FET-opacity decision problem is decidable in NEXPTIME.

Proof: Given a TA A, we first build two TAs from A, named A_p and A_s and representing respectively the public and secret behavior of the original TA, while each constant is multiplied by 2. The consequence of this multiplication is that the final location can be reached in time strictly between t and $t + 1$ (with $t \in \mathbb{N}$) by a public (resp. secret) run in A iff the target can be reached in time $2t + 1$ in the TA A_p (resp. A_s). Note that the correction of this statement is a direct consequence of [BDR08, Lemma 5.5].

We then build the region automata $\mathcal{R}A_p$ and $\mathcal{R}A_s$ (of A_p and A_s respectively).

$\mathcal{R}A_p$ is a non-deterministic unary (the alphabet is restricted to a single letter) automaton with ε transitions the language of which is $\{a^k \mid \text{there is a run of duration } k \text{ in } P_p\}$, and similarly for $\mathcal{R}A_s$.

We are interested in testing equality (resp. inclusion) of those languages for deciding the (resp. weak) ($\leq \Delta$)-FET-opacity decision problem.

[SM73, Theorem 6.1] establishes that language equality of unary automata is NP-complete and the same proof implies that inclusion is in NP. As the region automata are exponential, we get the result.

Remark 2. In [ALMS22], we established that the ($\leq +\infty$)-FET-opacity decision problem is in 3EXPTIME. Our result thus extends our former results in three ways: by including the parameter Δ, by reducing the complexity and by considering as well the weak notion of FET-opacity.

Theorem 3. The weak ($\leq \Delta$)-FET-opacity computation problem is solvable.

Proof: In a first time, we consider weak temporary opacity (i.e., without any bound on the secret expiration date). First, we test whether A is weakly ($\leq +\infty$)-FET-opacity thanks to Theorem 2. If it is, then by definition (and monotonicity) of weak temporary opacity, A is weakly ($\leq \Delta$)-FET-opaque for all $\Delta \in \mathbb{N}^\infty$. If it is not, then there exists a non-opaque duration t. t can be computed as a smallest word differentiating the two exponential automata described in Theorem 2. Hence, t is at most doubly exponential. We test ($\leq \Delta$)-FET-opaque for all $\Delta < t$ as, due to the construction of the counter example, A is not ($\leq \Delta$)-FET-opaque for $\Delta \geq t$.

This synthesizes our set as there are finitely many values to test.

Corollary 1. The weak ($\leq \Delta$)-FET-opacity emptiness problem is decidable.

Proof: According to Theorem 3, the weak ($\leq \Delta$)-FET-opacity computation problem is solvable. Therefore, to ask the emptiness problem, one can compute the set of bounds ensuring the weak ($\leq \Delta$)-FET-opacity of the TA and check its emptiness.

In contrast to weak ($\leq \Delta$)-FET-opacity computation, we only show below that (non-weak) weak ($\leq \Delta$)-FET-opacity emptiness is decidable; the computation problem remains open.

Theorem 4. The ($\leq \Delta$)-FET-opacity emptiness problem is decidable.

Proof: Given a TA A, using Theorem 3, we first compute the set of bounds Δ such that A is weakly ($\leq \Delta$)-FET-opaque. As ($\leq \Delta$)-FET-opacity requires weak ($\leq \Delta$)-FET-opacity, if the computed set is finite, then we only need to check the bounds of this set for ($\leq \Delta$)-FET-opacity and thus synthesize all the bounds achieving ($\leq \Delta$)-FET-opacity.

If this set is infinite however, by the proof of Theorem 3, any bound in \mathbb{N}^∞ works. To achieve ($\leq \Delta$)-FET-opacity we only need to detect when the secret durations are included in the non-secret ones. As the set of non-secret durations decrease when Δ increases, there is a valuation of Δ achieving ($\leq \Delta$)-FET-opacity iff the TA is ($\leq \infty$)-FET-opaque. The latter can be decided with Theorem 2.

Corollary 2. The ($\leq \Delta$)-FET-opacity decision problem is decidable.

Theorem 5. All aforementioned results with $\Delta \in \mathbb{N}$ also hold for $\Delta \in \mathbb{R}_+$.

Proof: Given a TA A and $\Delta \in \mathbb{R}_+ \setminus \mathbb{N}$, we will show that A is (weak) ($\leq \Delta$)-FET-opaque iff it is (weak) ($\leq |\Delta| + \frac{1}{2}$)-FET-opaque. Constructing the TA A' where every constant is doubled, we thus have that A is (weak) ($\leq \Delta$)-FET-opaque iff A' is (weak) ($\leq \Delta'$)-FET-opaque where $\Delta' = 2|\Delta|$ if $\Delta \in \mathbb{N}$ and $\Delta' = |\Delta| + 1$ otherwise. The previous results of this section applying on A', they can be transposed to A.

We now move to the proof that A is (weak) ($\leq \Delta$)-FET-opaque iff it is (weak) ($\leq |\Delta| + \frac{1}{2}$)-FET-opaque. Let $\Delta \in \mathbb{R}_+ \setminus \mathbb{N}$ such that A is (weak) ($\leq \Delta$)-FET-opaque and let $\Delta' = |\Delta| + \frac{1}{2}$.

Given a run $\rho \in \text{Reach}^{\text{priv}}_{\leq \Delta}(A)$, let $t_\rho(\rho)$ be the time at which ρ visits for the last time the private location. We denote by $V_{\text{priv}}(\rho)$ the set $\{t_\rho(\rho)\}$ if $t_\rho(\rho) \in \mathbb{N}$ and the
interval $\{[t_f(p)], [t_f(p)] + 1\}$ otherwise. By definition of the region automaton, one can create runs going through the same path as p in the region automaton of A but reaching the private location at any point within $V_{priv}(p)$. Similarly, if $t_f(p) = dur(p)$ is the duration of p until the final location, we denote $F(p)$ the set $\{t_f(p)\}$ if $t_f(p) \in \mathbb{N}$ and the interval $([t_f(p)], [t_f(p)] + 1)$ otherwise. The set of durations of runs that follow the same path as p in the region automaton and which belong to $DReach^{\leq \Delta}_{\leq \Delta}(A)$ is $F(p) \cap [0, \max_{\rho', \text{dur} (\rho') = \text{dur}(p)}(V_{priv}(p')) + \Delta]$, which is either $F(p)$ or the interval $([t_f(p)], [t_f(p)] + \text{frac}(\Delta))$. We denote this set of durations $Priv_{\Delta}(p)$.

Similarly, given a run $r \in Reach^{priv}_{\Delta}(A)$ reaching the final location at time $t_f(r)$, we can again rely on the region automaton to build a set of durations $Pub_{\Delta}(p)$ describing the durations of runs that follow the same path as p in the region automaton and that reach the final location more than Δ after entering the private location. This set is either of the form $\{t_f(p)\}$ if $t_f(p) \in \mathbb{N}$, $([t_f(p)] + \text{frac}(\Delta), [t_f(p)] + 1)$ or $([t_f(p)], [t_f(p)] + 1)$. Assume first that A is $\leq \Delta$-FET-opaque. As the set of durations reaching the final location is an union of intervals with integer bounds [BDR08, Proposition 5.3] and as A is $\leq \Delta$-FET-opaque, the set $DReach^{priv}_{\leq \Delta}(A)$ and the set $DReach^{\geq \Delta}_{\geq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$ describe the same union of intervals with integer bounds. Let t be a duration within those sets. Then we will show that if $t \in DReach^{\geq \Delta}_{\geq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$, then there exists a run r_{priv} and a run r_{pub} such that $t \in Priv_{\Delta}(r_{priv})$ and $t \in Pub_{\Delta}(r_{pub})$. Moreover, we can assume that those runs satisfy that $Priv_{\Delta}(r_{priv})$ and $Pub_{\Delta}(r_{pub})$ do not depend on the bound Δ (i.e., they are equal to $F(r_{priv})$ and $F(r_{pub})$ respectively). Indeed, if such runs did not exist, the set $DReach^{\geq \Delta}_{\geq \Delta}(A)$ or the set $DReach^{\leq \Delta}_{\leq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$ would have $\{t\} + \text{frac}(\Delta)$ as one of its bounds. As a consequence, $DReach^{\geq \Delta}_{\geq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A) = DReach^{\leq \Delta}_{\leq \Delta}(A)$ and $DReach^{\leq \Delta}_{\leq \Delta}(A) = DReach^{\leq \Delta}_{\leq \Delta}(A)$. Thus A is $\leq \Delta'$-FET-opaque.

Assume now that A is weak $\leq \Delta$-FET-opaque. We consider first the case where $\Delta \geq \Delta'$. There we have by definition $Reach^{\leq \Delta}_{\leq \Delta}(A) \subseteq Reach^{\leq \Delta}_{\leq \Delta}(A)$ and $Reach^{\leq \Delta}_{\leq \Delta}(A) \subseteq Reach^{\leq \Delta}_{\leq \Delta}(A)$, thus A is weak $\leq \Delta$-FET-opaque.

Now assume that $\Delta < \Delta'$. The same reasoning as for the non-weak version mostly applies. As the set of durations reaching the final location is an union of intervals with integer bounds [BDR08, Proposition 5.3] and as A is weak $\leq \Delta$-FET-opaque, the set $DReach^{\geq \Delta}_{\geq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$ describe the same union of intervals with integer bounds. By the same reasoning as before, $DReach^{\geq \Delta}_{\geq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A) = DReach^{\leq \Delta}_{\leq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$. Moreover, given $t \in DReach^{\leq \Delta}_{\leq \Delta}(A)$, there exists ρ_{priv} such that $t \in Priv_{\Delta}(\rho_{priv})$. Note that either $Priv_{\Delta}(\rho_{priv}) = Priv_{\Delta}(\rho'_{priv})$ and is thus included in $DReach^{\leq \Delta}_{\leq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$ or $Priv_{\Delta}(\rho_{priv}) = ([t_f(\rho_{priv})], [t_f(\rho'_{priv})] + \text{frac}(\Delta))$ and $Priv_{\Delta}(\rho_{priv}) = ([t_f(\rho_{priv})], [t_f(\rho'_{priv})] + \text{frac}(\Delta))$. As the latter is included in $DReach^{\leq \Delta}_{\leq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$ which only has integer bounds, then the former is included in it as well.

V. TEMPORARY FET-opacity in Parametric TAs

We are now interested in the synthesis (or the existence) of parameter valuations ensuring that a system is $\leq \Delta$-FET-opaque. We define the following problems, where we ask for parameter valuation(s) v and for valuations of Δ s.t. $v(\Delta)$ is $(\leq \Delta)$-FET-opaque.

(weak) $(\leq \Delta)$-FET-opacity emptiness problem:

INPUT: A PTA \mathcal{P}

PROBLEM: Decide whether the set of parameter valuations v and valuations of Δ such that $v(\Delta)$ is (weakly) $(\leq \Delta)$-FET-opaque for Δ is empty.

(weak) $(\leq \Delta)$-FET-opacity emptiness problem:

INPUT: A PTA \mathcal{P}

PROBLEM: Synthesize the set of parameter valuations v and valuations of Δ such that $v(\Delta)$ is (weakly) $(\leq \Delta)$-FET-opaque for Δ.

Remark 3. A “$(\leq \Delta)$-FET-opacity decision problem” over PTAs is not defined; it aims to decide whether, given a parameter valuation v and a bound Δ, a PTA is $(\leq \Delta)$-FET-opaque: it can directly reduce to the problem over a TA (which is decidable. Corollary 2).

Example 6. Consider again the PTA \mathcal{P} in Fig. 1.

For this PTA, the answer to the $(\leq \Delta)$-FET-opacity emptiness problem is that their exists such a valuation (e.g., the valuation given for Example 5).

Moreover, we have can show that, for all Δ and v:

- $DReach^{\leq \Delta}(v(\Delta)) = [0, 3]$ if $v(p_1) > 3 > v(p_2)$, it is not possible to reach t_f with a run passing through t_{priv} and therefore $DReach^{\leq \Delta}(v(\Delta)) = DReach^{\leq \Delta}(v(\Delta)) = \emptyset$
- if $v(p_1) < 3$ or $v(p_1) \leq v(p_2)$
 - $DReach^{\leq \Delta}(v(\Delta)) = [v(p_1) + \Delta, v(p_2)]$
 - $DReach^{\leq \Delta}(v(\Delta)) = [v(p_1), \min(\Delta + 3, v(p_2))]

Therefore, the $(\leq \Delta)$-FET-opacity emptiness problem needs to synthesize the valuations such that $DReach^{\leq \Delta}_{\leq \Delta}(A) = DReach^{\leq \Delta}_{\leq \Delta}(A) \cup DReach^{\leq \Delta}_{\leq \Delta}(A)$. It may answer the valuations of parameters and Δ s.t. $p_1 = 0 \land p_2 = 3 \lor p_2 = \Delta + 3$.

A. The subclass of L/U-PTAs

Definition 7 (L/U-PTA [HRSV02]). An L/U-PTA is a PTA where the set of parameters is partitioned into lower-bound parameters and upper-bound parameters, where each lower-bound (resp. upper-bound) parameter p_i must be such that, for every guard or invariant constraint $x \leq \sum_{1 \leq i \leq M} \alpha_i p_i + d$, we have: $\alpha_i > 0$ implies $x \in \{\leq, <\}$. (resp. $\alpha_i \in \{\geq, >\}$.)

Example 7. The PTA in Fig. 1 is an L/U-PTA with \(\{ p_1 \} \) as lower-bound parameter, and \(\{ p_2 \} \) as upper-bound parameter.

L/U-PTAs is the most well-known subclass of PTAs with some decidability results: for example, reachability-emptiness ("the emptiness of the valuations set for which a given location is reachable"), which is undecidable for PTAs, becomes decidable for L/U-PTAs [HRSV02]. Various other results were studied (e.g., [BLT09], [JLR15], [ALR22]). Concerning opacity, the execution-time opacity emptiness is decidable for L/U-PTAs [ALMS22], while the full-execution-time opacity emptiness becomes undecidable [ALMS22].

Here, we show that both the (\(\leq \Delta \))-FET-opacity emptiness and the weak (\(\leq \Delta \))-FET-opacity emptiness problems are undecidable for L/U-PTAs. This is both surprising (seeing from the numerous decidability results for L/U-PTAs) and unsurprising, considering the undecidability of the FET-opacity emptiness for this subclass [ALMS22].

Theorem 6. (weak) (\(\leq \Delta \))-FET-opacity emptiness is undecidable for L/U-PTAs with at least 5 clocks and 4 parameters.

Proof: We reduce from the problem of reachability-emptiness in constant time, which is undecidable for general PTAs [ALMS22, Lemma 7.1]. That is, we showed that, given a constant time bound \(T \), the emptiness over the parameter valuations set for which a location is reachable in exactly \(T \) time units, is undecidable.

Assume a PTA \(P \) with at least 2 parameters, say \(p_1 \) and \(p_2 \), and a target location \(\ell_f \). Fix \(T = 1 \). From [ALMS22, Lemma 7.1], it is undecidable whether there exists a parameter valuation for which \(\ell_f \) is reachable in time 1.

The idea of our proof is that, as in [JLR15], [ALMS22], we "split" each of the two parameters used in \(P \) into a lower-bound parameter \(p_1^u \) and \(p_2^u \) and an upper-bound parameter \(p_1^l \) and \(p_2^l \). Each construction of the form \(x < p_i \) (resp. \(x \leq p_i \)) is replaced with \(x < p_i^u \) (resp. \(x \leq p_i^u \)) while each construction of the form \(x > p_i \) (resp. \(x \geq p_i \)) is replaced with \(x > p_i^l \) (resp. \(x \geq p_i^l \)); \(x = p_i \) is replaced with \(p_i^l \leq x \leq p_i^u \).

Therefore, the PTA \(P \) is exactly equivalent to our construction with duplicated parameters, provided \(p_1^l = p_1^u \) and \(p_2^l = p_2^u \). The crux of the rest of this proof is that we will "rule out" any parameter valuation not satisfying these equalities, so as to use directly the undecidability result of [ALMS22, Lemma 7.1].

Now, consider the extension of \(P \) given in Fig. 3, containing notably new locations \(\ell_0', \ell_f', \ell_i \) for \(i = 1, \ldots, 5 \) and an urgent\footnote{An urgent location is a location in which time cannot elapse.} location \(\ell_{priv} \), and a number of guards as seen on the figure; we assume that \(x \) is an extra clock not used in \(P \). The guard on the transition from \(\ell_0' \) to \(\ell_1 \) stands for 2 different transitions guarded with \(p_1^l < x \leq p_1^u \) and \(p_2^l < x \leq p_2^u \), respectively.

Let \(P' \) be this extension.

Due to urgency of \(\ell_{priv} \), note that, for any \(\Delta \), the system is (weakly) (\(\leq \Delta \))-FET-opaque iff it is (weakly) (\(\leq \Delta \))-FET-opaque.

Let us first make the following observations, for any parameter valuation \(v' \):

1) one can only take the upper most transition directly from \(\ell_0' \) to \(\ell_{priv} \) at time 2, i.e., \(\ell_f' \) is always reachable in time 2 via a run visiting location \(\ell_{priv} \): \(2 \in DReach_{\ell_{priv}}(v'(P')) \);
2) the original PTA \(P \) can only be entered whenever \(p_1^l \leq p_1^u \) and \(p_2^l \leq p_2^u \); going from \(\ell_0 \) to \(\ell_0 \) takes exactly 1 time unit (due to the \(x = 1 \) guard);
3) if \(\ell_f' \) is reachable by a public run (not passing through \(\ell_{priv} \)), then its duration is necessarily exactly 2 (going through \(P \)).
4) we have \(DReach_{\ell_{priv}}^\nu(v'(P')) = \emptyset \) as any run reaching \(\ell_f' \) and visiting \(\ell_{priv} \) can only do it immediately, due to the urgency of \(\ell_{priv} \).
5) from [ALMS22, Lemma 7.1], it is undecidable whether there exists a parameter valuation for which there exists a run reaching \(\ell_f \) from \(\ell_0 \) in time 1, i.e., reaching \(\ell_f \) from \(\ell_0' \) in time 2.

Let us consider the following cases.

1) If \(p_1^l > p_1^u \) or \(p_2^l > p_2^u \), then due to the guards from \(\ell_0' \) to \(\ell_0 \), there is no way to reach \(\ell_f' \) with a public run; since \(\ell_f' \) can still be reached for some execution times (notably \(x = 2 \) through the upper transition from \(\ell_0' \) to \(\ell_{priv} \)), then \(P' \) cannot be (weakly) (\(\leq \Delta \))-FET-opaque.
2) If \(p_1^l < p_1^u \) or \(p_2^l < p_2^u \), then one of the transitions from \(\ell_0' \) to \(\ell_4 \) can be taken, and \(DReach_{\leq 0}^\nu(v'(P')) = \{ 1, 2 \} \). Moreover, \(\ell_f' \) might be reached by a public run of duration 2 through \(P \). Therefore, \(DReach_{\leq 2}^\nu(v'(P')) \subseteq [2, 2] \). Therefore \(P' \) cannot be (weakly) (\(\leq \Delta \))-FET-opaque for any of these valuations.
3) If \(p_1^l = p_1^u \) and \(p_2^l = p_2^u \), then the behavior of the modified PTA (with duplicate parameters) is exactly the one of the original PTA. Also, note that the transition from \(\ell_0' \) to \(\ell_f' \) via \(\ell_4 \) cannot be taken. In contrast, the upper transition from \(\ell_0' \) to \(\ell_{priv} \) can still be taken.

Now, assume there exists a parameter valuation for which there exists a run of \(P \) of duration 1 reaching \(\ell_f' \). And, as a consequence, \(\ell_f' \) is reachable, and therefore there exists some run of duration 2 (including the 1 time unit to go from \(\ell_0 \) to \(\ell_0' \) reaching \(\ell_f' \) after passing through \(P \), which is public. From the above reasoning, all runs
Figure 4: Reduction for the undecidability of (weak) \((\leq \Delta)\)-FET-opacity emptiness for PTAs (used in Theorem 7)

reaching \(\ell_f\) have duration 2; in addition, we exhibited a public and a secret run; therefore the modified automaton \(\mathcal{P}'\) is (weakly) \((\leq 0)\)-FET-opaque for such a parameter valuation.

Conversely, assume there exists no parameter valuation for which there exists a run of \(\mathcal{P}\) of duration 1 reaching \(\ell_f\). In that case, \(\mathcal{P}'\) is not (weakly) \((\leq 0)\)-FET-opaque for any parameter valuation: \(DReach_{\leq 0}^{\mathcal{P}}(v(\mathcal{P}')) = [2, 2]\) and \(2 \not\in DReach_{>0}^{\mathcal{P}}(v(\mathcal{P}')) \cup DReach_{prv}^{\mathcal{P}}(v(\mathcal{P}')) = \emptyset\).

As a consequence, there exists a parameter valuation \(v'\) for which \(v'(\mathcal{P}')\) is (weakly) \((\leq \Delta)\)-FET-opaque iff there exists a parameter valuation \(v\) for which there exists a run in \(v(\mathcal{P})\) of duration 1 reaching \(\ell_f\)—which is undecidable from [ALMS22, Lemma 7.1].

The undecidability of the reachability-emptiness in constant time for PTAs holds from 4 clocks and 2 parameters [ALMS22, Lemma 7.1]. Here, we duplicate the parameters, and add a fresh clock \(x\): therefore, the current result holds from 5 clocks and 4 parameters. We highly suspect that one of the clocks from [ALMS22, Lemma 7.1] (reset neither in our former construction nor in the current proof) can be reused in the current proof as “\(x\)”, reducing the minimal number of clocks to 4, but this remains to be shown formally.

As the emptiness problems are undecidable, the computation problems are immediately intractable as well.

Corollary 3. (weak) \((\leq \Delta)\)-FET-opacity computation problem is unsolvable for L/U-PTAs with at least 5 clocks and 4 parameters.

B. The full class of PTAs

The undecidability of the emptiness problems L/U-PTAs proved above immediately implies undecidability for the larger class of PTAs. However, we provide below an original proof, with a smaller number of parameters.

Theorem 7. (weak) \((\leq \Delta)\)-FET-opacity emptiness problem is undecidable for general PTAs for at least 5 clocks and 2 parameters.

Proof: We reduce again from the problem of reachability-emptiness in constant time, which is undecidable for general PTAs [ALMS22, Lemma 7.1].

Fix \(T = 1\). Consider an arbitrary PTA \(\mathcal{P}\), with initial location \(\ell_0\) and a given location \(\ell_f\). We add to \(\mathcal{P}\) a new clock \(x\) (unused and therefore never reset in \(\mathcal{P}\)), we set \(\ell_f\) urgent (no time can elapse) and we add the following locations and transitions in order to obtain a PTA \(\mathcal{P}'\), as in Fig. 4: a new initial location \(\ell_0'\), with an urgent outgoing transition to \(\ell_0\), and a transition to a new location \(\ell_{prv}\) enabled after 1 unit; a new final location \(\ell_f'\) with incoming transitions from \(\ell_{prv}\) in 0-time and from \(\ell_f\) (after 1 time unit since the system start).

First, due to the guard “\(x = 0\)" from \(\ell_{prv}\) to \(\ell_f'\), note that, for any \(\Delta\), the system is (weakly) \((\leq \Delta)\)-FET-opaque iff it is (weakly) \((\leq 0)\)-FET-opaque. Also note that, for any valuation, \(DReach_{\leq 0}^{\mathcal{P}}(v(\mathcal{P}')) = [1, 1]\). For the same reason, note that \(DReach_{prv}^{\mathcal{P}}(v(\mathcal{P}')) = \emptyset\). Second, note that, due to the guard “\(x = 1\)" on the edge from \(\ell_f\) and \(\ell_f'\) (with \(x\) never reset on this path), \(DReach_{prv}^{\mathcal{P}}(v(\mathcal{P}'))\) can at most contain \([1, 1]\). Therefore, from the construction of \(\mathcal{P}'\), \(DReach_{\leq 0}^{prv}(v(\mathcal{P}')) = [1, 1]\).

Now, let us show that there exists a valuation \(v\) such that \(v(\mathcal{P}')\) is (weakly) \((\leq 0)\)-FET-opaque iff there exists \(v\) such that \(\ell_f\) is reachable in \(v(\mathcal{P})\) in 1 time unit.

\[\Rightarrow\] Assume there exists a valuation \(v\) such that \(v(\mathcal{P}')\) is \((\leq 0)\)-FET-opaque (resp. weakly \((\leq 0)\)-FET-opaque).

Recall that, from the construction of \(\mathcal{P}'\), \(DReach_{\leq 0}^{prv}(v(\mathcal{P}')) = [1, 1]\). Therefore, from the definition of \((\leq 0)\)-FET-opacity (resp. weak \((\leq 0)\)-FET-opacity), there exist runs only of duration 1 (resp. there exist at least a run of duration 1) reaching \(\ell_{prv}\) without visiting \(\ell_{prv}\). Since \(DReach_{prv}(v(\mathcal{P}')) \subseteq [1, 1]\), then \(\ell_f\) is reachable in exactly 1 time unit in \(v(\mathcal{P})\).

\[\Leftarrow\] Assume there exists \(v\) such that \(\ell_f\) is reachable in \(v(\mathcal{P})\) in exactly 1 time unit. Therefore, \(\ell_f'\) can also be reached in exactly 1 time unit: therefore, \(DReach_{prv}(v(\mathcal{P}')) = [1, 1]\). Now, recall that \(DReach_{\leq 0}^{prv}(v(\mathcal{P}')) = \emptyset\) and \(DReach_{\leq 0}^{prv}(v(\mathcal{P}')) = [1, 1]\). Therefore, \(DReach_{\leq 0}^{prv}(v(\mathcal{P}')) = DReach_{\leq 0}^{prv}(v(\mathcal{P}')) \cup DReach_{\leq 0}^{prv}(v(\mathcal{P}'))\), which from Definition 6 means that \(v(\mathcal{P}')\) is \((\leq 0)\)-FET-opaque. Trivially, we also have that \(DReach_{prv}(v(\mathcal{P}')) \subseteq DReach_{prv}(v(\mathcal{P}'))\) and therefore \(v(\mathcal{P}')\) is also weakly \((\leq 0)\)-FET-opaque.

Therefore, there exists \(v\) such that \(v(\mathcal{P}')\) is (weakly) \((\leq 0)\)-FET-opaque iff \(\ell_f\) is reachable in \(v(\mathcal{P})\) in 1 time unit—which is undecidable [ALMS22, Lemma 7.1]. As a conclusion, (weak) \((\leq \Delta)\)-FET-opacity emptiness is undecidable.

The undecidability of the reachability-emptiness in constant time holds from 4 clocks and 2 parameters [ALMS22, Lemma 7.1]. Here, we add a fresh clock \(x\): therefore, the current result holds from 5 clocks and 4 parameters. Again, we highly suspect that one of the clocks from [ALMS22, Lemma 7.1] (never reset in our former construction) can be reused in the current proof as “\(x\)”, but this remains to be shown formally.

Corollary 4. (weak) \((\leq \Delta)\)-FET-opacity computation problem is unsolvable for PTAs for at least 5 clocks and 2 parameters.
VI. Conclusion and perspectives

a) Conclusion: We studied here a version of execution-time opacity where the secret has an expiration date: that is, we are interested in computing the set of expiration dates of the system for which the attacker is unable to deduce whether the secret was visited recently (i.e., before its expiration date) prior to the system completion; the attacker only has access to the model and to the execution time of the system. This problem is decidable for timed automata, and we can effectively compute the set of expiration dates for which the system is opaque. However, parametric versions of this problem, with unknown timing parameters, all turned to be undecidable, including for a subclass of PTAs usually known for its decidability results. This shows the hardness of the considered problem.

b) Summary: We summarize our results in Table 1. “√” denotes decidability, while “×” denotes undecidability; “?” denotes an open problem.

c) Perspectives: The proofs of undecidability in Section V require a minimal number of clocks and parameters. Smaller numbers might lead to decidability.

While the non-parametric part can be (manually) encoded into existing problems [ALMS22] using a TA transformation in order to reuse our implementation in IMITATOR [And21], the implementation of the parametric problems remains to be done. Since the emptiness problem is undecidable, this implementation can only come in the form of a semi-algorithm, i.e., a procedure without a guarantee of termination.

Table I: Summary of the results

<table>
<thead>
<tr>
<th>Decision</th>
<th>Emptiness</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>(normal)</td>
<td>√ (Theorem 2)</td>
</tr>
<tr>
<td>L/U-PTA</td>
<td>(normal)</td>
<td>√ (Remark 3)</td>
</tr>
<tr>
<td>PTA</td>
<td>(normal)</td>
<td>√ (Remark 3)</td>
</tr>
</tbody>
</table>

VI. Conclusion and perspectives

a) Conclusion: We studied here a version of execution-time opacity where the secret has an expiration date: that is, we are interested in computing the set of expiration dates of the system for which the attacker is unable to deduce whether the secret was visited recently (i.e., before its expiration date) prior to the system completion; the attacker only has access to the model and to the execution time of the system. This problem is decidable for timed automata, and we can effectively compute the set of expiration dates for which the system is opaque. However, parametric versions of this problem, with unknown timing parameters, all turned to be undecidable, including for a subclass of PTAs usually known for its decidability results. This shows the hardness of the considered problem.

b) Summary: We summarize our results in Table 1. “√” denotes decidability, while “×” denotes undecidability; “?” denotes an open problem.

c) Perspectives: The proofs of undecidability in Section V require a minimal number of clocks and parameters. Smaller numbers might lead to decidability.

While the non-parametric part can be (manually) encoded into existing problems [ALMS22] using a TA transformation in order to reuse our implementation in IMITATOR [And21], the implementation of the parametric problems remains to be done. Since the emptiness problem is undecidable, this implementation can only come in the form of a semi-algorithm, i.e., a procedure without a guarantee of termination.

VI. Conclusion and perspectives

a) Conclusion: We studied here a version of execution-time opacity where the secret has an expiration date: that is, we are interested in computing the set of expiration dates of the system for which the attacker is unable to deduce whether the secret was visited recently (i.e., before its expiration date) prior to the system completion; the attacker only has access to the model and to the execution time of the system. This problem is decidable for timed automata, and we can effectively compute the set of expiration dates for which the system is opaque. However, parametric versions of this problem, with unknown timing parameters, all turned to be undecidable, including for a subclass of PTAs usually known for its decidability results. This shows the hardness of the considered problem.

b) Summary: We summarize our results in Table 1. “√” denotes decidability, while “×” denotes undecidability; “?” denotes an open problem.

c) Perspectives: The proofs of undecidability in Section V require a minimal number of clocks and parameters. Smaller numbers might lead to decidability.

While the non-parametric part can be (manually) encoded into existing problems [ALMS22] using a TA transformation in order to reuse our implementation in IMITATOR [And21], the implementation of the parametric problems remains to be done. Since the emptiness problem is undecidable, this implementation can only come in the form of a semi-algorithm, i.e., a procedure without a guarantee of termination.

REFERENCES

