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Abstract: 15 

Reliable accounting of freshwater resources is key to managing hydrologic risk and 16 

balancing freshwater allocations for ecosystems and society. However, recent claims have 17 

argued that the global hydrometric network is not keeping pace with monitoring needs. Here we 18 

examine this question globally and reveal that over the past four decades the number of 19 

streamgaging stations reporting to global, open datasets has been declining. In the U.S., a 20 

declining trend was reversed by the turn of the century, but high volatility at the river basin scale 21 

threatens continued monitoring in over a quarter of the river basins of the conterminous U.S. We 22 

propose to prioritize streamgaging rescue by identifying watersheds that heavily rely on 23 

hydrologic data to support freshwater biodiversity conservation, and to manage flood or water 24 

scarcity risk to human populations. We contend that actions at different institutional levels are 25 

needed to secure the accumulation of long-term data needed for sustainable water management.26 
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Main text: 27 

Humans have long recognized the importance of tracking the pulse of the Earth’s water 28 

resources, dating at least five millennia ago when Ancient Egyptians started monitoring peak 29 

river stage to anticipate agricultural yield and risk to floodplain infrastructure 1. Streamgaging 30 

technology has improved dramatically since then, and networks of stations obtaining continuous 31 

records of stage and discharge are now fundamental to water information systems (WIS) 2. These 32 

hydrometric networks are critical for allocating resources to support human and ecosystem water 33 

needs (often via diversions or flow releases below dams), and for forecasting flood and drought 34 

risk to societies 2. In particular, the accumulation of long-term hydrologic data is needed to 35 

evaluate hydroclimatic trends, to quantify flow regime alteration and associated flow-ecology 36 

relationships, and to decrease statistical uncertainty in flood and drought predictions. For 37 

instance, insufficient WIS may hinder effective implementation of environmental flows during 38 

extended periods of supraseasonal drought 3. Similarly, flood risk management also depends on 39 

WIS. Since 1980, extreme flood events worldwide have claimed over 215,000 human lives, and 40 

in North America alone, 215 lives have been lost and $4.1 billion in property damages have been 41 

caused annually by inland flooding 4. Without advanced WIS and high-precision forecasting, 42 

these figures would be even larger—the U.S. Advanced Hydrologic Prediction Service, 43 

supported by satellite data and by >8,000 streamgaging stations across the nation, saves an 44 

estimated $240 million per year in reduced flood losses 5. More recently, streamgages were 45 

instrumental in reducing life and property losses during the exceptional 2017 Atlantic hurricane 46 

season (with storm surge associated with Hurricanes Harvey, Irma, and Maria); as well as during 47 

California’s recent floods for managing the Oroville Dam crisis in real time 6. As climate change 48 

forces water managers and policy makers to grabble with increasing hydrologic uncertainty and 49 
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magnitude of extreme weather events 7,8, WIS will become increasingly important for supporting 50 

adaptive local decisions and environmental policy objectives.  51 

Nevertheless, there is some evidence that the global hydrometric network has been 52 

shrinking over the last three decades 9,10. Global streamgaging efforts are difficult to evaluate 53 

because most national water authorities do not make data on hydrometric infrastructure publicly 54 

available 9. However, initiatives like the Global Runoff Data Centre, which under the auspices of 55 

the World Meteorological Organization curates the largest international repository of 56 

streamgaging data, provide the opportunity to appraise trends in data availability over time. As a 57 

national-scale example, the United States Geological Survey (USGS) National Water 58 

Information System (NWISWeb) is the primary online database for stream discharge and water 59 

level observations 11,12, a centralized system that allows for quantifying temporal trends in the 60 

number of active streamgaging stations, and the types and quality of data being recorded in the 61 

country. Here we combined analyses on the data reported by the Global Runoff Data Centre and 62 

the USGS National Water Information System to examine the evidence for the deteriorating state 63 

of WIS. Based on our findings, we make policy recommendations to strengthen WIS 64 

strategically, globally and in the United States. 65 

Trends in streamgaging data availability 66 

The data set from the WMO Global Runoff Data Centre comprises 9,472 past and active 67 

stations in 158 countries, of which 7,238 stations in 133 countries reported daily discharge data. 68 

Temporal variation in the number of reporting stations in a given country may be caused by 69 

changes in the hydrometric network, changes in data sharing policies, and/or lags in data 70 

reporting—indicating variation in access to streamgaging data regardless of the cause. We found 71 

that the total number of reporting stations peaked in 1979 and sharply declined thereafter (Fig. 72 
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1). After classifying stations by age class (length of the discharge record, in years), we observed 73 

that the decline was expressed largely by stations with records shorter than 30 years (Fig. 1). 74 

From 1979 to 2010 (selected to allow for lags in country reporting), 3,119 gages with <15 years 75 

of discharge record and 2,055 gages with 15-30 years of data ceased reporting streamflow (Fig. 76 

1). Aging of the ‘surviving’ stations explained the slight increase in the older age classes (777 77 

stations over 30 years old); however, the overall trend showed a negative balance between new 78 

and non-reporting stations. 79 

Evidence from the United States suggests a bimodal trend in the number of gaging 80 

stations, surpassing the threshold of 8,000 active stations in the late-1960s and again in the 81 

mid-2010s (Fig. 2). This pattern mimicked fluctuations in the number of relatively young 82 

stations (i.e. those with discharge record lengths ranging between 15 and 30 years; Fig. 2), and is 83 

likely explained by shifts in USGS funding. Around 1970, the USGS Cooperative Water 84 

Program (now the Cooperative Matching Funds) was not able to keep up with inflation, leaving 85 

an increasing percentage of funding responsibility to the cooperating agencies (R. Mason, pers. 86 

comm.). In 2000, the USGS National Streamflow Information Program (now Federal Priority 87 

Streamgages) was started, providing increased funding for the streamgaging network and 88 

explaining the inflection point in the net number of active stations. In addition, the total number 89 

of stations with records >50 years has more than doubled since 1980 (from 1247 to 2638 90 

stations), and has kept increasing at a stable rate over the last two decades. However, analyses at 91 

the river basin scale (Hydrological Unit Code 6) delivered a more nuanced perspective. 92 

Time-series models on 70 years of streamgaging data (1947-2016) show decreasing trends in the 93 

number of active streamgages for 21% of the analyzed river basins, and even river basins with 94 

non-negative trends present important fluctuations in streamgaging over time due to station 95 
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turnover (Supplementary Figure 1; see changes in active and deactivated streamgages over time 96 

in shiny.sesync.org/apps/gages). As a consequence, over one-quarter (29%) of the analyzed river 97 

basins in the conterminous U.S. have >50% probability of having their gage network density 98 

halved by 2022 (Fig. 3), that is, by the end of the current USGS Water Science strategic plan. 99 

Importantly, these ‘imperiled’ river basins are widely distributed across major hydrologic 100 

regions, and overlap spatially with areas of high water scarcity risk (48 %), high flood risk (31 101 

%), and high fish diversity (38 %) (Fig. 3). Water scarcity and flood risk overlap in 9 imperiled 102 

river basins dispersed throughout most of the U.S., from the Southwest (Upper Colorado-103 

Dolores) to the Mid Atlantic (Long Island) (Fig. 4). Three of these critical river basins 104 

(Albemarle-Chowan, Lower Ohio, Yazoo) also support highly diverse fish faunas (measured as 105 

endemism weighted richness/unit) (Fig. 3). This indicates that declines in flow monitoring may 106 

compromise human responsiveness to water challenges and the ability to manage freshwater 107 

biodiversity simultaneously. 108 

Declining funding, shifting priorities 109 

The trends observed in the GRDC data set are likely caused by a combination of 110 

weakening infrastructure and data sharing policies, two threats that make global water data ‘a 111 

newly endangered species’ 10. Although hydrometric networks continue to be relatively dense 112 

and largely operative in Europe, North America, Japan, South Africa, and Australasia, important 113 

monitoring gaps remain in areas such as central Asia, the Arctic, and large swaths of Africa 9,13. 114 

Substantial decreases (>25%) in operational capacity have been reported from Russia and the 115 

former Soviet states over the last three decades 10. In many countries, stations tend to be spatially 116 

clustered and short-lived because data collection is contingent on development projects. Limited 117 

funding and shifting government priorities also limit streamgaging capacity in developing and 118 
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developed countries alike 9,14,15. For example, almost one-third of gages in Zimbabwe provide 119 

unreliable data due to decreasing funding for streamgage monitoring and maintenance 16. 120 

Similarly, budgetary reductions in the 1990s led to a substantial shrinking of the gaging network 121 

in Canada 17. Although some countries exclusively fund and operate their WIS at the national 122 

level, many others depend on co-funding from regional and local partners 15. This collaborative 123 

approach expands agency over hydrometric infrastructure and monitoring, but may increase 124 

vulnerability to economic recessions and shifting priorities if there is little strategic oversight and 125 

commitment to long-term gage operation.  126 

The United States exemplifies the challenge of volatile funding for hydrometric 127 

networks. Two decades ago, the U.S. Congress warned in a report of the declining number of 128 

gages despite increased demand for basic streamflow information. Subsequent investigations 129 

repeatedly called for an upgrade of the network 14,15, but years later long-term stations are still 130 

being lost and the number of gages with ≥30 years of data has not increased since the 1990s 131 

(Fig. 2). Moreover, budgetary cuts now faced by the U.S. Geological Survey (USGS) will further 132 

burden the nation’s WIS. The FY 2019 U.S. federal budget request 18 would cut USGS funding 133 

by 20% (from $1.08 billion to $860 million), and would affect several Water Resources 134 

programs (-23% funding), including the Groundwater and Streamflow Information Program that 135 

oversees the country’s streamgaging network. This would further diminish the agency’s ability to 136 

strengthen the hydrometric network and apply cost-effective monitoring and record maintenance. 137 

The truncation of valuable, long-term data may increase the vulnerability of socio-environmental 138 

systems to hydroclimatic extremes (floods and droughts). Additionally, a weaker WIS may limit 139 

the government’s ability to meet its responsibilities under several federal laws. For instance, 140 

discharge data are instrumental for setting instream-flow requirements to conserve species listed 141 
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under the Endangered Species Act 19,20, and for estimating pollutant loads to waterbodies to 142 

comply with the Clean Water Act 21,22. 143 

Creative solutions 144 

Here, we propose a set of measures at the political, institutional, and technological levels 145 

to increase the coverage, reliability, and accessibility of the global WIS: 146 

Protect and rescue gages strategically, at the river basin scale. The marginal benefit of 147 

ensuring the survival of a gage depends on the value of the monitoring data it provides, but also 148 

on the number, and ultimately the fate, of other gages operating in the same river basin. 149 

However, such factors are rarely considered in strategic plans such as the U.S. Geological 150 

Survey’s Federal Priority Streamgages program. We performed this forward-looking exercise in 151 

the U.S., and demonstrate with an interactive map (shiny.sesync.org/apps/gages) how dynamic 152 

visualization of monitoring efforts and needs can support strategic prioritization at the river basin 153 

scale (i.e., the prioritization of streamgaging in river basins with high flood risk, water scarcity, 154 

biodiversity value, and gage loss probability). Because flow monitoring is likely to decline in 155 

areas with high monitoring needs, this compromises human responsiveness to future water 156 

challenges. Therefore, funding for gages in these basins should be prioritized over other basins. 157 

We recommend performing similar ‘Population Viability Analyses’ of monitoring infrastructure 158 

wherever data allows, further evaluating gages based on their representation of the stream 159 

network 23. 160 

Create non-traditional funding opportunities. A wide range of public agencies contribute 161 

to funding national hydrometric networks, but involvement of non-governmental partners is both 162 

sporadic and largely negligible. For example, 850 partner agencies contribute to monitoring flow 163 

in the United States, but ‘other partners’ (including NGOs and the private sector) only funded 164 
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8% of the stations in FY 2016 (D. Yeskis, USGS, pers. comm.). Given the relatively modest cost 165 

of maintaining a gage (estimated at $16,310/year; D. Yeskis, USGS, pers. comm.), local 166 

partnerships with cities, small and midsize businesses, homeowner associations, or non-for-profit 167 

organizations, could be emphasized via Cooperative Matching Funds to protect important gages 168 

from going offline. At a larger scale, cooperation with counties and regional insurance 169 

companies could be established with the goal of maintaining or increasing gage density in flood- 170 

and drought-prone areas. In the U.S. alone, the federally-run National Flood Insurance Program 171 

has close to 5 million individual policies totaling $1.23 trillion under coverage. If only one-tenth 172 

of one percent of the $3.52 billion generated in premiums was invested in monitoring, 215 gages 173 

could be saved annually; a number exceeding the 206 stations that have been discontinued 174 

recently due to funding shortfall. This investment would increase the accuracy of flood zones 175 

and Flood Insurance Rate Maps, decreasing in turn the cost of risk-based insurance premiums for 176 

homeowners 24,25. 177 

Design modular systems that can be readily scaled. When facing the question of 178 

decreasing gage ‘mortality’ (by securing imperiled gages) vs. rescuing old or installing new 179 

gages, agencies should generally choose gage protection, as truncated time series and station 180 

turnover limit statistical inference even when gage numbers remain constant. However, in some 181 

cases it may be desirable to support a complementary, temporary monitoring infrastructure that 182 

accrues little maintenance costs and can be activated at will 26. In regions like the U.S. sunbelt, 183 

where water allocations for human use and ecosystems are increasingly at odds 27, 184 

drought-activated stations would allow for more accurate tracking and enforcement of water 185 

allocations during periods of acute water stress, when human and ecosystem water needs are 186 

greatest. Such a system would have benefited California during its recent multi-year drought, 187 
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when freshwater ecosystem impacts were exacerbated by the absence of gages in approximately 188 

half of the state’s watersheds containing critical aquatic habitat3. In countries such as Spain and 189 

Australia, where a single state office administers surface and groundwater rights 3, temporary 190 

systems could supplement the existing WIS to account for surface-groundwater interactions (e.g., 191 

return flows from groundwater pumping) during periods of extreme low flows. 192 

Build capacity in developing countries. International development agencies should fund 193 

projects aimed at meeting streamgaging density levels recommended by the WMO 2. In May 194 

2017, the World Bank approved funding for the ‘National Hydrology Project for India’, a $350M 195 

endeavor that will finance a new WIS for India, including streamflow and groundwater 196 

monitoring infrastructure to enable a web-based, real-time flood forecast system. This 197 

nationwide project builds on two successful basin-scale projects previously funded by the World 198 

Bank, which decreased flood early warnings from hours to days and saved lives and minimized 199 

flood damages valued in $17-65M/year. Increasing streamgaging density in developing countries 200 

entails challenges related to the size, remoteness, and political context of many under-monitored 201 

areas. However, similar initiatives could benefit many African countries—directly, via improved 202 

water resource management; and indirectly, by reducing the systematic over-design of water 203 

projects due to missing or unreliable hydrologic data 10. 204 

Leverage technological progress. Space-based methods like radar altimetry for large 205 

river stage, and mass-conserved flow law inversion (McFLI) techniques, may transform the 206 

hydrologic sciences in the future 28. Yet, streams are highly dynamic over time, and remote 207 

sensing products need to be validated with field measurements 13. Therefore, initiatives that 208 

promote global hydrologic data collection, curation, and sharing will be increasingly valuable as 209 

they enable an expanding range of basic research questions and hydrological applications. For 210 
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example, the Consortium of Universities for the Advancement of Hydrologic Science integrates 211 

global data from diverse sources (government, universities, citizen science) and makes it publicly 212 

available under a universal format (‘HydroClient’). We expect that financial incentives will 213 

continue to be an effective way of encouraging participants to follow open data guidelines 9,10, 214 

particularly when data commercialization hinders agencies from providing unrestricted access to 215 

water information. 216 

Concluding remarks 217 

In this Analysis, we highlight recent declining trends in streamgaging data availability in 218 

the U.S. and globally. We urge governments to strengthen hydrometric networks strategically, so 219 

that anticipated declines in streamgaging capacities are averted, particularly where humans and 220 

ecosystems require water data the most. We further encourage freshwater scientists, 221 

practitioners, and decision makers to promote a global, open-access WIS that enables tracking 222 

the pulse of the Earth’s water resources into the future. 223 

 224 

Methods: 225 

Streamgaging historical data 226 

Data from global streamgaging efforts was obtained from the Global Runoff Data Center 227 

(GRDC) data set (http://www.bafg.de/GRDC, accessed on January 10, 2018). A gage was 228 

considered active if its daily discharge records were reported to GRDC that year. 229 

Historical streamflow data for all streamgage stations of the United States were compiled 230 

from the USGS National Water Information System (NWIS) using the ‘dataRetrieval’ R package 231 

29 on January 10, 2018. Mean daily discharge data were downloaded for the period January 1854 232 

to December 2016. Periods for which river discharge records were estimated rather than 233 
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measured (e.g., due to gage malfunction) were excluded from the analysis. In total, discharge 234 

data were compiled for nearly 23,000 stations. For each year, a streamgage was classified as 235 

‘active’ if it recorded discharge for at least 180 days during that year, and as ‘inactive’ if it did 236 

not. This criterion did not include seasonally operated gages — which constitute ~5% of the total 237 

number of gages in the USGS hydrometric network (not shown) — to allow for estimating the 238 

potential shift from year-round data collection to seasonal operation. We then computed the 239 

number of active stations in each of the 352 river basins (Hydrological Unit Code or HUC 6) of 240 

the National Water Boundary Dataset (WBD), every year from 1854 to 2016, using the 241 

geographic location of the gaging station reported in the NWIS.  242 

Water scarcity 243 

We represented water scarcity for each river basin of the conterminous United States using 244 

the county-level Normalized Deficit Cumulated (NDC) 30. The NDC is equal to the maximum 245 

cumulative deficit between average daily water demand in 2010 and local daily renewable 246 

supply from to 1949 to 2010, divided by the average annual rainfall volume (county area x 247 

average depth of precipitation) in that county. This index does not include as renewable supply 248 

exogenous sources of water such as rivers and canals flowing through each county, or water 249 

transfers from outside. By only including endogenous sources of renewable water (i.e., runoff 250 

and groundwater recharge from precipitation in that county), this metric reflects the reliance of 251 

each county on outside sources (e.g., withdrawal from runoff originating outside the county) and 252 

on non-renewable local sources of water (e.g., groundwater with slow recharge). Moreover, by 253 

using the maximum cumulative deficit over the entire study period rather than the maximum 254 

yearly deficit (which is reset at the beginning of each year), this index captures the potential 255 

long-term impact of continued overconsumption of water and multiyear droughts. Finally, by 256 
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computing the ratio of water deficit to annual rainfall volume, NDC is normalized across climate 257 

regions to relate each county’s deficit to its available renewable endogenous water budget. 258 

We computed the HUC6-specific NDC from county-level NDC by first intersecting 259 

counties and river basins (HUC6), as administrative boundaries rarely follow watershed 260 

boundaries. We then computed NDC for each HUC6, as: 261 

 262 

ு௎஼଺ܥܦܰ = 1തܴு௎஼଺ × ෍ ஼௢௨௡௧௬ܥܦܰ × തܴ஼௢௨௡௧௬ × ஼௢௨௡௧௬ܽ݁ݎܽ ݈ܽݐ݋ு௎஼଺ି஼௢௨௡௧௬ ௜௡௧௘௥௦௘௖௧௜௢௡ܶܽ݁ݎܣ
ே ௖௢௨௡௧௬ ௜௡ ு௎஼଺
஼௢௨௡௧௬ୀଵ  

 263 

, where തܴ is the average annual rainfall (mm) for each HUC 6 calculated using daily 264 

gridded meteorological data for the period 1949-2010 31.  265 

By aggregating NDC across counties intersecting with a given river basin based on 266 

proportional area located in that basin, our main assumptions were that water deficit is 267 

distributed uniformly throughout each county, and that NDC is cumulative across counties (i.e., 268 

that maximum water deficit can be added up across county boundaries). Given that NDC is based 269 

on the maximum daily water deficit in each county, the maximum water deficit in a given county 270 

may not occur the same day in other counties in the same basin. In such a case, our NDCHUC6 271 

would overestimate the actual maximum water deficit for the basin. Nevertheless, because 272 

agricultural patterns and climate are relatively homogenous within river basins across multiple 273 

counties (average HUC6 area: 24,000 km2), this metric adequately reflects relative water scarcity 274 

patterns among regions in the United States. 275 

Flood risk 276 
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We calculated flood risk in the conterminous United States as the percentage of the total 277 

human population that lives within the 100-year flood zone. To compute flood risk, 2010 census 278 

block level population data were intersected with 100-year flood zone polygons from the 279 

National Flood Hazard Layer (NFHL), a digital database containing all flood hazard mapping 280 

data from the Federal Emergency Management Agency’s National Flood Insurance Program 281 

(FEMA NFIP). Census-block population data was used because of its high resolution (average 282 

and median area of a census block: 0.74 km2 and 0.02 km2, respectively), and its ability to 283 

spatially discriminate between settled areas and waterways or uninhabited floodplains. Despite 284 

its high resolution, the section of census blocks overlapping flood zones often did not include 285 

any housing. Therefore, we calculated the number of people living in a flood zone as the product 286 

of the census-block population size and the percentage of the census block urbanized area 287 

(calculated from 2011 National Land Cover Data) overlapping the 100-year flood zone (Zone A 288 

from the NFHL). When a census block did not contain any urban land cover (LC), we computed 289 

the product of census block population and percentage of census block total area intersecting a 290 

flood zone. The population in each census block living in an area for which a flood hazard study 291 

exists was computed the same way. Finally, the percentage of the population in each river basin 292 

living in a 100-year flood zone equals to the total population living in a 100-year flood zone 293 

across all census blocks of a river basin divided by the total population living in an area for 294 

which a flood hazard study exists. When a census block straddled the boundary between two 295 

river basins, the population living in a flood zone within each basin was proportional to the area 296 

of the census block overlapping the basin. For each HUC6, flood risk was therefore computed as 297 

follows: 298 

 299 
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Flood riskୌ୙େ଺ = ෍ ஼஼ୀ௖௘௡௦௨௦ ௕௟௢௖௞௦ ௪௜௧௛௜௡ ு௎஼଺ݕ݀ݑݐݏ ݀ݎܽݖℎܽ ݀݋݋݈݂ ℎݐ݅ݓ ܽ݁ݎܽ ݊݅ ݃݊݅ݒ݈݅ ݊݋݅ݐ݈ܽݑ݌݋஼ܲ݁݊݋ݖ ݀݋݋݈݂ ℎ݅݊ݐ݅ݓ ݃݊݅ݒ݈݅ ݊݋݅ݐ݈ܽݑ݌݋ܲ  

       300 

       , where: 301 

 302 

Flood riskHUC6 = 303 

∑ ೅೚೟ೌ೗ ೌೝ೐ೌ ೢ೔೟೓೔೙ ಹೆ಴ల಴೅೚೟ೌ೗ ೌೝ೐ೌ಴ ×ು೚೛ೠ೗ೌ೟೔೚೙಴×ೆೝ್ೌ೙ ೌೝ೐ೌ ೢ೔೟೓೔೙ ೑೗೚೚೏ ೥೚೙೐಴೅೚೟ೌ೗ ೠೝ್ೌ೙ ೌೝ೐ೌ಴ಿ ್೗೚೎ೖೞ ೢ೔೟೓ ೠೝ್ೌ೙ ಽ಴಴సభ∑ ೅೚೟ೌ೗ ೌೝ೐ೌ ೢ೔೟೓೔೙ ಹೆ಴ల಴೅೚೟ೌ೗ ೌೝ೐ೌ಴ ×ು೚೛ೠ೗ೌ೟೔೚೙಴×ೆೝ್ೌ೙ ೌೝ೐ೌ ೢ೔೟೓ ಷಶಾಲ ೞ೟ೌ೟ೠೞ಴೅೚೟ೌ೗ ೠೝ್ೌ೙ ೌೝ೐ೌ ಴ಿ ್೗೚೎ೖೞ ೢ೔೟೓ ೠೝ್ೌ೙ ಽ಴಴సభ +304 

 ∑ ೅೚೟ೌ೗ ೌೝ೐ೌ ೢ೔೟೓೔೙ ಹೆ಴ల಴೅೚೟ೌ೗ ೌೝ೐ೌ಴ ×ು೚೛ೠ೗ೌ೟೔೚೙಴×ಲೝ೐ೌ ೢ೔೟೓೔೙ ೑೗೚೚೏ ೥೚೙೐಴೅೚೟ೌ೗ ೌೝ೐ೌ಴ಿ ್೗೚೎ೖೞ ೢ೔೟೓ ೙೚ ೠೝ್ೌ೙ ಽ಴಴సభ∑ ೅೚೟ೌ೗ ೌೝ೐ೌ ೢ೔೟೓೔೙ ಹೆ಴ల಴೅೚೟ೌ೗ ೌೝ೐ೌ಴ ×ು೚೛ೠ೗ೌ೟೔೚೙಴×ಲೝ೐ೌ ೢ೔೟೓ ಷಶಾಲ ೞ೟ೌ೟ೠೞ಴೅೚೟ೌ೗  ೌೝ೐ೌ ಴ಿ ್೗೚೎ೖೞ ೢ೔೟೓ ೙೚ ೠೝ್ೌ೙ ಽ಴಴సభ  305 

 306 

Fish biodiversity metrics 307 

We compiled a dataset of the distribution of freshwater fish at the subbasin level (HUC8) 308 

throughout the conterminous United States based on the NatureServ and ancillary local and 309 

regional sources, and then computed the endemism weighted richness/unit (EWU) for each river 310 

sub-basin, following (2): 311 

 312 

EWUHUC8 = Sum of each species’ Endemism Unit       , where:  313 

 314 

Endemism Unit = 1 / Number of HUC8s where the species is present 315 

 316 

Accordingly, the most endemic species in a HUC8 has an Endemism Unit = 1. EWUHUC8 317 

were then aggregated at the river basin level (HUC6) by averaging sub-basin level EWU within 318 

each river basin. 319 

 320 
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Time-series analysis of gage ‘population’ dynamics 321 

Finally, we analyzed streamgaging dynamics within each HUC6 using statistical 322 

time-series models, namely univariate, first-order, autoregressive or AR(1) models, using the 323 

‘MARSS’ R package 32. Autoregressive models are frequently used in Population Viability 324 

Analysis to estimate probabilities of hitting critical decline thresholds, or ‘quasiextinction’ 32,33. 325 

Here we similarly applied this concept to streamgage ‘populations’ within each HUC6. In its 326 

simplest form (i.e., without considering exogenous covariates or density-dependent effects), an 327 

AR(1) model can be expressed as: 328 

 329 

 xi,t = xi,t-1 + ui + wi,t 330 

 331 

, where xi,t is the number of gages active in HUC6 i at time step t, u represents their 332 

long-term trend (akin to a species intrinsic growth rate), and wi,t represents the process error, or 333 

the stochastic component that affects the gage population from one time step to the next one 334 

(assumed to be drawn from a normal distribution with a mean of 0 and variance q).  335 

We estimated u and q based on observed streamgaging data over the last 70 years (1947-336 

2016), and we then used these coefficients to compute the probability that a gage population 337 

would hit a 50% decline threshold within the following 6 years (‘decline risk’) [after 32]. Model 338 

residuals were examined via the autocorrelation function. Only the 228 river basins (HUC6) with 339 

a median number >10 gages over the period 1947-2012 were considered for this analysis. 340 

Because the relative influence of losing a gage in low-density basins is higher than in 341 

high-density basins, this approach provides a conservative estimate of gaging decline risks. We 342 
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chose the forecast to be 6 years long because that time horizon coincides with the end of the 343 

current USGS Water Science strategic plan 2012-2022 34. 344 

Data availability 345 

 All data that support the findings of this study are available from the corresponding 346 

author upon request. Data from the U.S. analyses can be directly downloaded from: 347 

https://shiny.sesync.org/apps/gages. See Supplementary Table 1 for data sources. 348 
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Figure legends 439 

Fig. 1. Global trends in streamgaging stations reporting to the World Meteorological 440 

Organization’s Global Runoff Data Centre. We classified stations by age class (length of the 441 

discharge record, in years). The number of reporting stations peaked in 1979 and decreased 442 

sharply thereafter. Comparisons to 2010 (white vertical line) accounts for lags in data reporting, 443 

but trends to present-day are shown. 444 

Fig. 2. Trends in the number of active streamgaging stations in the USGS hydrometric 445 

network. We classified stations by age class (length of the daily discharge record, in years). The 446 

total number of active streamgages peaked twice, in the late-1960s and in the mid-2010s. 447 

Fig. 3. Streamgaging decline risk and socio-environmental monitoring needs in the United 448 

States (see interactive map here: shiny.sesync.org/apps/gages). We represent U.S. conterminous 449 

river basins (Hydrological Unit Code 6) under streamgage decline risk, inferred via time-series 450 

analysis of USGS streamgaging history. Water scarcity was measured as Normalized Cumulative 451 

Deficit, NDC; flood risk to human populations was measured as % of population living within a 452 

100-year flood zone; and fish biodiversity was measured as endemism weighted richness. In the 453 

inset maps, basins with >50% probability of having their gage network density halved by year 454 

2022 are striped. Around 48% of the ‘imperiled’ river basins experience water scarcity, 31% of 455 

them are under high flood risk, and 38% harbor high fish diversity (endemism weighted 456 

richness/unit). See Methods for details.  457 

Fig. 4. Spatial distribution of streamgaging decline risk in the United States (see interactive 458 

map here: shiny.sesync.org/apps/gages). We represent the U.S. conterminous river basins 459 

(Hydrological Unit Code 6) under streamgage decline risk (‘imperiled’ basins), inferred via 460 

time-series analysis of USGS streamgaging history; under flood risk to human populations (% of 461 
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population living within a 100-year flood zone); and under water scarcity risk (measured as the 462 

maximum long-term imbalance between water demand and endogenous supply or Normalized 463 

Cumulative Deficit, NDC). See Methods for details, and Supplementary Figure 2 for raw decline 464 

risk values. 465 
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