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Abstract—Development of unmanned aerial systems (UAS),
made of an unmanned aerial vehicle (UAV) and equipment
such as a ground station, has increased tremendously in recent
years. This has made more pressing the need for new design
methodologies that provide a reliable and thorough safety as-
sessment throughout the entire design process. The European
specific operations risk assessment (SORA) document provides
recommended operational safety objectives (OSO) to achieve.
The current paper lays groundwork to comply with OSOs
pertaining to UAS flight procedures. Key criteria for modeling
such procedures are identified and lead to the choice of the
AltaRica DataFlow (ADF) language. The Cecilia Workshop is
used to model three real-life UAS emergency flight procedures.
Custom components developed for this model are presented while
discussing the process of modeling a formal procedure from
an informal text source. A safety analysis is performed on the
resulting model by computing minimal cut sets on an undesired
procedure outcome. The results are then reviewed, providing
feedback to increase the procedures’ safety gain.

Index Terms—AltaRica, MBSA, OSO, SORA, UAS, UAV

ADF AltaRica Dataflow
CC Command & Control

EASA European Union Aviation Safety Agency
F/CTL Flight Controller
OSO Operational Safety Objectives
RC Radio Control

SORA Specific Operations Risk Assessment
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle

I. INTRODUCTION

Safety is a key issue in the field of aeronautics. In terms
of regulations, the ARP4754 and ARP4761 are well-known
reference documents for safety assessment process of large-
scale airborne systems such as planes and helicopters. Closely
related to safety is the domain of security. Security is an
equally important aspect of a system’s design and operation,
notably to provide acceptable levels of risk management.
However, addressing malicious interference or intrusion is a
domain of its own, and our work is focused on managing safety
rather than security. While the proposed methodology might be

extended to address security concerns, we leave that path open
for others to pursue. With the Specific Operations Risk Assess-
ment (SORA), the European Union Authority for Air Safety
(EASA) provides designers and safety experts with guidelines
on UAS design, including safety assessment [1] for a limited
range of UAS and their applications. Operational procedures
describe the expected flow of actions to be taken by both
the UAV and the ground crew under specific circumstances
(e.g., UAV preparations, take-off, loss of an engine, loss of
communications). Modeling such procedures and verifying
their validity is a recurring requirement of multiple safety
objectives defined in the SORA. For UAS, these procedures
are usually described in text form within a flight manual. The
propagation of a failure from one procedure to another may
be difficult to assess on such informal descriptions.

Safety assessment can benefit from the emergence of model-
based safety analysis (MBSA) to solve this issue. The latter
leverages the model-based paradigm in order to facilitate
safety assessment processes that were historically relying on
fault tree analyses (FTA) and failure modes and effect analyses
(FMEA). Our goal is thus to lay the groundworks for new
approaches leveraging model-based methodologies to facilitate
the safety assessment of UAS emergency procedures.

The remainder of the current paper is organized as follows.
Section II provides a concise overview of the SORA and a
select few safety objectives from which stems the need for
modeling and analyzing operational procedures. Section III
presents our choice of the AltaRica language based on previ-
ously identified criteria. Section IV introduces our approach
to modeling procedures on three simple examples, from which
we draw lessons in section V. Section VI surveys related work.
Section VII concludes the paper and outlines future work.

II. THE SORA
A. General presentation

EASA classifies UAS operations into three categories. The
larger and faster the drone, or the denser the area it will be
flying near to, the more stringent the safety requirements.



In increasing order of requested safety, these categories are
‘Open’, ‘Specific’ and ‘Certified.’ ‘Certified’ UAS operations
are considered to be risky enough to require safety processes
derived from the ones applied to commercial aircrafts. ‘Open’
operations cover use-cases such as small-scale entertainment
quadcopters. ‘Specific’ UAS operations fall short of both
previous categories. They are too large or heavy to be au-
thorized for use without a detailed safety analysis, but too
small to justify the complex procedures entailed by a full-
scale aeronautical certification process. It is for this category
of operations that the SORA provides recommendations on
how to perform safety assessments.

To this end, the SORA defines various Operational Safety
Objectives (OSOs) to be taken into account by safety experts.
The OSOs can be refined into several sub-criteria. For instance
OSO#7 addresses UAS inspection and can be refined into two
criteria, covering the inspection procedures and the training
of the inspecting crew respectively. Each criterion can be
complied with at up to three levels (denoted High, Medium and
Low) of integrity (or safety gain) and assurance (or confidence
in the claimed safety gain).

B. The OSOs of interest
In order to ease comprehension, we propose an alpha-

decimal notation to point to specific descriptions of an OSO.
It uses the following pattern: Oi-X-Cj-Y-(x), where:

• i is an integer referring the OSO number;
• X is either I for the integrity levels, or A for the assurance

levels of the relevant OSO;
• j is an integer referring to OSO i’s criterion number;
• Y is either L, M, H, or a combination thereof, for the

level of compliance of the considered OSO;
• (x) is an optional index referring to a further subdivision

of this criterion as used in the SORA
The SORA defines specific OSOs covering UAS proce-

dures. More precisely, the OSOs 8, 14 and 21 require that
Operational procedures are defined, validated and adhered
to, pertaining respectively to technical issues with the UAS,
human error and adverse operating conditions. OSO 11 states
that Procedures are in-place to handle the deterioration of
external systems supporting UAS operations [1].

The integrity level of these objectives is evaluated against
three distinct criteria.

• O8-I-C1: the procedures must cover a minimal set of
scenarios (the reader is referred to [1] for the list of all
covered scenarios).

• O8-I-C2: procedure simplicity, which in turn makes them
less error-prone.

• O8-I-C3: human errors must be considered in the defini-
tion and execution of the procedures; a higher compliance
level requires clear procedures with contingencies for
human errors, as well as crew training.

The three levels of assurance of these OSOs are increasingly
stringent in terms of procedure validation.

• O8-A-C1-L: no validation required except for emergency
procedures.

• O8-A-C1-M: validation according to relevant standards,
and proof of emergency and contingency procedures via
test flights or simulation.

• O8-A-C1-H: flight tests are conservative, proofs are val-
idated by a competent third-party.

C. Definition of a procedure

This subsection presents the model of procedure considered
in the article. While they do not explicitly detail their structure
of a procedure, the authors of [2] model their procedure
according to the following guidelines, which we have taken
for our models.

Procedure structure A procedure begins with an event (e.g.,
the occurrence of a fault, or an actor’s intervention such as the
pilot deciding to take off). This event is followed by a directed
acyclic graph of tasks, representing the execution of actions
by actors of the procedure. We consider that procedures must
end in one of at least two outcomes. These represent at a strict
minimum the impact of the procedure’s success or failure on
the global scenario.

Procedure behavior Starting from the event, tasks can be
performed in a sequence, branch off of each other in a parallel
or conditional way or merge into a single branch.

D. Relevant criteria

Not all the criteria described in section II-B are immedi-
ately applicable to our study. Since our approach is to lay
some groundworks for the modeling and safety assessment
of operational UAS procedures, concepts pertaining to crew
training (O8-I-C3-H) or checklists (O8-I-C3-L-(b)) are outside
the scope of this paper. While the concept of procedure
complexity (O8-I-C2-L,M,H) is certainly relevant in the global
safety assessment, we keep this avenue open for future work.
The core of our study is for the modeling of operational
procedures, thus on description O8-I-C1-(a), with a focus on
flight procedures, i.e. listings O8-I-C1-(a)-(4) to O8-I-C1-(a)-
(7). In terms of assurance, we chose to concentrate on the
simulation of operation procedures as a mean to verify their
efficiency, as per O8-A-C1-M-(b)-(2).

As a consequence, we propose the following criteria a
suitable procedure modeling tool should have:

Procedure structure: a procedure can be modeled according
to the structure defined in II-C. It must be possible to model
several procedures within the same model (i.e. several distinct
events, task and outcome sections) (O8-I-C1-L-(a)). Procedure
models should have the ability to allocate tasks to the various
actors in a procedure so that later work might be done on that
topic (O8-I-C3-L-(a)).

Procedure behavior: a procedure can be modeled according
to the behavior defined in II-C. It must be possible to account
for the dependency between various events. Events other than
the initiating events must fireable to alter the execution state
of the procedure tasks.

Error propagation: the modeling framework should be
able to represent the occurrence, propagation and possibly
mitigation of errors within a procedure. Note that an error



must be understood as an incorrect output of a procedure task
that differs from procedure-triggering events (O8-I-C3-M).

Safety assessment: finally, the modeling framework should
offer a formalism that may be leveraged to perform safety
analyses, namely computing minimal cut sets for undesired
final states (O8-A-C1-M-(b)-(2)).

III. ALTARICA DATAFLOW

There are various languages that are able to model pro-
cedures. Business process diagrams (BPD), of which the
international standard BPMN [3] is the most known, are such
an example. BPMN offers a wide variety of components to
model diverse procedure structures and behaviors. However,
[4] highlights how the lack of semantic verification tools
can lead to multiple errors given the shift in the application
domain from business processes to flight procedures. BPMN
also provides means to represent the propagation of messages
between procedures, and provides visual cues to separate
actors of a procedure. A limitation of these constructions is
that they have no underlying formalism [5]. Attempts have
been made to associate BPMN with more formal languages in
order to enable formal safety analyses based on Petri nets [4],
[6]. However, these transformations are still largely unproven
and suffer from combinatorial explosion [6].

Another option is the formal language AltaRica Data-Flow
(ADF) that can be compiled to Petri nets or finite state
machines [7]. It has been implemented in various industrially
mature tools such as Cecilia Workshop (Satodev), Simfia
(EADS Apsys) and Safety Designer (Dassault System) [8].
ADF has been instrumental in genuine industrial applications
as presented in [9], [10].

Modeling procedures falls within ADF’s capabilities. Lever-
aging the Cecilia Workshop’s possibility of creating custom
components, complex procedure structure and behavior can be
modeled. Mechanisms such as tags can be used in order to al-
locate ownership while event dependency can be implemented
using the built-in synchronization. The Cecilia Workshop also
offers users the possibility to perform safety analyses in the
form of fault tree, minimal cut sets or sequence generation.

Based on an early draft of SORA, the authors of [2] propose
a model of a multi-actor collision avoidance scenario. They
define and connect ADF components that represent the various
tasks. The three-tiered execution performance of a given task
is determined by that of the previous task, as well as by the
state of a required resource component. Observers connected
to specific task components represent undesired events that
might lead to an unsafe situation. These observers are then
used to compute minimal cut sets and provide safety feedback.

The authors of [2] plan to further their work in other
concept of operations. However they only model a single
procedure, and do not consider modeling several concurrent
procedures. As such they do not tackle the issue of error
propagation across multiple procedures. The current paper
proposes a complementary approach where multi-procedure
models are handled to assess the safety impact of procedures

on one another and the global scenario. To our knowledge, no
published work uses ADF to model procedures in such a way.

IV. MODELING REAL-LIFE UAS PROCEDURES

Our use case consists in a few operational procedures lifted
from a fixed wing UAS’s flight manual [11]. These procedures
have been modeled using Cecilia Workshop. The following
subsections present the use case and three procedures used
for illustration purposes. The ADF components we created
and the rationale for modeling procedures are also presented.

A. Use case

1) General presentation: The procedures we modeled have
been designed for a small, fixed-wing UAV typically flying
at 80 km.h−1. The drone can be controlled manually by
the operator, via Radio Contol (RC) or Command & Control
(CC) communication channels. If CC are available, the drone’s
autopilot may be manually changed by the pilot to one of the
following six flight modes:

• TAKEOFF: the UAV is hand-launched and flies to the
predefined flight altitude;

• FPLN: the UAV flies the predefined flight plan;
• SELECTED: the UAV flies according to the speed, alti-

tude and bearing settings specified by the pilot;
• GOHOME: the UAV flies to a predefined home point and

circles it when arrived;
• LANDING: the UAV flies the landing approach (it does

not land on its own);
• SAFEIMPACT: the UAV flies a low-speed descending

geo-centered spiral in order to hit the ground with mini-
mal energy.

2) Ordering outcomes: To assess the contribution of errors
to the global risk, we need to formalize the outcome of a
procedure. Based on our use case’s flight manual, we have
identified five possible outcomes for a flight procedure:

• Resume (R): flight operations may resume as they were
before the procedure was initiated;

• Go home (G): the UAV goes to and circles the home
point where the pilot may decide whether to resume or
terminate the flight;

• Land (L): the pilot performs a forced landing;
• Safe impact (S): the UAV performs a low-energy ground

collision;
• Crash (C): the UAV crashes uncontrollably.
We define a severity order denoted l < r standing for

outcome r is more severe than l. In our example, a previous
safety assessment concluded that R < G < L < S < C.
The minimal outcome is R, as no meaningful safety reduction
occurs. The maximal outcome is C as it represents the most
severe outcome identified by the SORA, i.e. a crash outside
of a predefined ground buffer or a fly-away.

3) Example procedures: The extract of our model presented
in this paper covers three of our flight manual’s emergency
procedures. In our flight manual, operational procedures are
referred to by the name of their triggering fault or event.



• AP Fault: the auto-pilot is faulty; it reboots automatically
while the UAV’s on-board flight manager engages the
SAFEIMPACT flight mode. If the auto-pilot recovers, the
flight manager gives the control of the UAV back to the
auto-pilot and engages the GOHOME flight mode, ending
the procedure.

• CC COMM LOSS: command and control communications
are lost (radio controls are not affected); the UAV enters
GOHOME at an altitude no lower than 50 meters, climb-
ing if necessary. The pilot is expected to monitor the
trajectory by video. Once overflying the HOME point,
the UAV sends a landing warning to the pilot. Once the
pilot can see his UAV, he switches to manual control and
lands the UAV himself.

• F/CTL FAULT (RUDDER): the rudder controller encoun-
ters a fault; the UAV sends an emergency landing warning
to the pilot, who switches to manual control, and corrects
the trajectory for the missing control surface using eleva-
tors as an alternative control surface. He decides whether
to attempt an emergency landing on a suitable area or to
engage the SAFEIMPACT flight mode.

B. Quick reminder on Altarica Dataflow

A system modeled with ADF is a set of interconnected
components. The behavior of these components is based on
the following elements : flow variables, the inputs and outputs
that are used to interface the component with its environment;
state variables, the internal variables that can encode the
component’s functional or dysfunctional state (e.g., failure
modes); events, the elements used to trigger the transitions
between the component’s states.

The component’s functional and/or dysfunctional behavior
is defined by the following relations between states, flows and
events. Transitions encode the possible state evolution. A given
transition is fired when its guard (a condition over the values of
the state and flow variables) is true and its associated event is
triggered. Upon being fired, the associated action is performed,
consisting in an assignment of state variables (e.g., a failure
transition might change a component’s state variable from
nominal to failed). Assertions encode the constraints between
the possible values of flow and state variables. This is typically
used to compute the value of an output flow variable based on
the values of state and input flow variables.

C. Modeling the elements of a procedure

1) Structure of a procedure: Our procedure models can be
divided into the following sections:

• Initiating event: a single event component initiating the
procedure. This component is described in IV-C3.

• Task graph: a directed acyclic graph of task and logic
components, representing the execution of procedure
tasks. These components are described in IV-C4 and
IV-C5.

• Outcome determination: this section determines the out-
come of individual procedures, and then determines the

(a) Event component. (b) Inactive event (c) Active event

Fig. 1: Visuals of the event component.

global outcome of all relevant procedures. This process
is explained in IV-C6.

2) Enumerated types: In order to model varying levels of
performance and different procedure outcomes, we defined
two enumerated types. Both of those enumerations have an
empty element called na (for Not Applicable).

The component status (CS) type: {nom, part, fail}. It
represents the level of performance of a given component or
task, in descending order of adequacy. nom stands for nominal,
part for partial loss and fail for total loss. This enumeration is
lifted from [2], we have only renamed the enumeration values
and the type for easier reference.

The procedure status (PS) type: {resume, resume part,
gohome, gohome part, land, land part, safeimpact, safeim-
pact part, crash}. We propose this enumeration in order
to describe the possible outcomes to an operational flight
procedure. It is based on the outcomes defined in IV-A2.

Four additional outcomes (suffixed with part) represent
a degraded version of the original suffixed outcome. re-
sume part might represent a scenario where the operation is
resumed, albeit in a degraded mode (e.g., reduced maximum
speed) where resume would have optimistic and gohome
pessimistic. The crash part outcome does not exist as crash
already is the worst possible outcome.

The order relation using the previous < operator becomes
R < Rd < G < Gd < L < Ld < S < Sd < C, where the
subscript d points to the degraded alternative of the relevant
outcome.

3) Event component: Event components represent a specific
event that may occur in the system. The presented model only
contains emergency procedures, although event components
may also represent nominal events. It is important to note
that these components can be activated during the simulation.
By default, they are deactivated (the event does not occur),
and can each be activated (thus injecting the event in the
system) independently from other event components. Event
components have one state variable and one output flow
variable:

• The Boolean state variable event triggered represents
whether the event has been triggered.

• The CS output O is equal to nom when the event
is triggered, and na when it is not (this allows task
components to compute the appropriate outcome).

Event components (figure 1a) have only one transition, trig-
ger event, that changes event triggered from false to true. The
component is grayed out when not triggered (figure 1b), and
red when it is triggered (figure 1c).

4) Task component: Task components represent an action
performed by an actor. We extended the task component



defined in [2] to handle the additional CS value na and to
which we added a third transition. Task components have one
state variable, two input flow variables and one output flow
variable:

• The CS state variable perf status represents how well the
task can be performed internally.

• The CS input I represents the status of the previous
execution of a task component.

• The CS input R represents the status of the resource the
task component depends on for its own execution.

• The CS output O represents the current task’s execution
status.

Fig. 2: Task component (flow variable names added for con-
venience).

The component task’s output is based on its state variable,
the status of previous executions and its required resource.

• If I is na, so is O (this represents the non-activation).
• Otherwise, if either I , R or perf status are fail, so is O.
• Otherwise, if both the component’s internal state and its

resource are nom, then O is equal to I .
• Otherwise, O is equal to part.
Task components have three transitions :
• partial fail: partial failure of the component, perf status

changes from nom to part
• total fail: total failure of the component, perf status

changes from nom to fail or from part to fail
Figures 3 and 4 show the visuals of our task components

during simulation. The gray background indicates that the
task is inactive. Green, orange and red backgrounds indicate
an active task whose output is respectively nom, part and
fail. A single diagonal slash indicates that the component’s
perf status is part, while a cross means it is fail. No slash
indicates perf status is nom.

Some tasks described in our flight manual appear in multiple
procedures. As a result, our models include several compo-
nents representing a same task, but that are formally distinct
from ADF’s point of view. In order to ensure that all the
components representing a same task fail simultaneously and
in the same way, we used ADF’s synchronization feature.
Our model thus includes several synchronization events, that
trigger all component events modeling the same task.

Resource components have no input, and output a CS type
that connects to task components’ R input. Resource com-

(a) nom (b) part (c) fail

Fig. 3: Simulation visuals of the inactive task component with
decreasing perf status.

(a) O = nom (b) O = part (c) O = fail

Fig. 4: Simulation visuals of the task component where
perf status = nom, with a decreasing output variable.

ponents have the same transition types as task components.
Those transitions determine the output value of the resource
components.

5) Conditional activation components: Similarly to [2], we
have added components to represent the conditional activation
of a branch of our model.

The diamond-shaped condition component represents a
condition to be evaluated. This component has an input I
connected to a previous task, and an input A connected to
a Boolean value. If A is true, I’s value is transmitted to the
condition component’s first output, while its second output
receives the value na, and conversely.

The value of A is controlled by a Boolean switch component
which users can alter during the simulation to represent differ-
ent scenarios. A green switch outputs true while a red switch
outputs false. These components can be used to represent
mutually exclusive branches in a procedure such as in figure
5.

Fig. 5: Conditional structure representing whether an operation
can be resumed or should be interrupted.

The conditional merge component (logical OR gate symbol)
is designed to be used with a condition component. It takes
as inputs the two branches that stemmed from a condition
component (figure 6). The output it produces is equal to the
execution state of the branch that was activated (na if the
procedure is not active).

Fig. 6: Conditional structure representing the UAV ensuring it
is at a proper altitude.

6) Outcome determination components: Some task compo-
nents in our model represent the R, G, L, S or C outcomes of
IV-A2 (called outcome task components). As such, they carry
additional information compared to other task components
since they introduce a possible outcome for the considered



(a) Minimum (b) Maximum

Fig. 7: PS type comparison components.

procedure. A converter component converts the CS output of
such components to the PS type, formally carrying information
about both the type of outcome and its status.

In order to process those PS type values, it was necessary to
have components computing minimum and maximum values
of a PS pair. Both have two PS type inputs, I1 and I2, and one
PS type output O. For both components, if I1 is na, then O =
I2, and conversely. Otherwise, our components respectively
output the minimum and maximum of I1 and I2 according to
the order relation of IV-C2.

D. Modeling procedures

We here present the ADF models of the three procedures
detailed in IV-A3.

1) AP Fault (figure 8): In this procedure, there are two
main branches being performed in parallel.

In the top branch, the auto-pilot performs an auto-reset im-
mediately after the fault occurs. Meanwhile, the UAV automat-
ically engages the SAFEIMPACT flight mode (S component),
hence the parallel branching that occurs in the procedure.

Should the auto-pilot recover successfully, our flight manual
indicates that the UAV sends a warning message to the ground
pilot (Warning component), switches to the automatic control
mode (CM auto) and engages the GOHOME flight mode (G).
Even though the flight manual describes those three actions in
a sequence, we chose to branch the warning task away from
the control and flight mode tasks. It seemed to us that a simple
warning task should not be blocking for such higher priority
tasks since they were performed by the UAV itself and not the
pilot, whose awareness thus is not critical to the execution of
the procedure.

In this procedure, we have two tasks that can lead to a
procedure outcome: G and S. As shown in figure 8, those
components are connected to converters so that the procedure’s
outcome may be computed.

2) CC COMM Loss (figure 9): The trigger event for this
procedure is the loss of CC communications. Here, the pro-

Fig. 8: ADF model of the AP Fault procedure.

Fig. 9: ADF model of the CC Comm Loss procedure.

cedure branches off conditionally based on whether the UAV
is below 50 meters. If it is, a corrective task is performed
to climb, otherwise nothing specific to this branch happens.
The conditional branches then merge back together. The UAV
engages the GOHOME flight mode and warns the pilot, who
then manually lands the UAV. Once again, we modeled the
warning task on a parallel branch as we considered it non
blocking. Losing CC is immediately noticeable by the pilot
(no more flight data on the console), and once the UAV flies
around the home point, the pilot may decide on his own to
take manual control of the UAV.

3) F/CTL Fault (rudder) (figure 10): When the rudder con-
troller encounters a fault, the UAV sends an emergency landing
warning to the pilot. Unlike in the previous two procedures,
this warning has been considered blocking as the detection of
a rudder fault by the pilot from the ground while the UAV
is in auto-pilot might be non-trivial. The pilot switches to
manual control, and corrects the trajectory for the missing
control surface using the elevators. The pilot’s decision to
attempt a forced landing or engage the SAFEIMPACT mode
is represented by a conditional branching in the model.

4) Determination of outcomes: In order to perform safety
analyses, we must first determine the outcome of the proce-
dures individually and then determine how all the activated
procedure’s outcomes merge together.

We consider that the outcome of an individual procedure is
determined by the successfully or partially executed outcome
task of least severity. Should there be no outcome task whose
execution was at least partially successful, we consider the
procedure results in a crash. This behavior was modeled using
the minimum component, as can be seen in figure 11.

To determine the global outcome of our scenario, i.e. of all
activated procedures, we have adopted a pessimistic approach.
Namely, among all activated procedures (those whose PS
output is different from na), we chose the one of highest
severity as the global outcome. This behavior was modeled
using the maximum component as seen in figure 12. The
top procedure successfully executes both the GOHOME and
SAFEIMPACT outcome tasks, which we determined ends the
procedure in the GOHOME outcome. The bottom procedure
only engages (and successfully executes) the LAND outcome
task. Since G < L, the scenario ends with the L outcome.

Fig. 10: ADF model of the F/CTL Fault (rudder) procedure.



Fig. 11: Computing the outcome of the AP Fault procedure.

V. DISCUSSION

A. Computing minimal cut sets for the Crash outcome

Using the Cecilia, we computed minimal cut sets of orders
1 to 5 for the undesired Crash outcome. Results indicate there
are 19 cut sets of the 2nd order and 13 of the 3rd order. There
are no 1st, 4th or 5th order cut sets. There are trivially no 1st

order cut sets as any procedure requires at least one fault to
be activated and another fault to fail completely.

Among our minimal sequences, some near duplicates
appear, where the partial and total losses of a
resource are found with another fault in two distinct
sequences. For instance, we have the following:
{’AP_Fault_partial’, ’FM_Manager.total_failure’}

{’AP_Fault_total’, ’FM_Manager.total_failure’}

The loss of the auto-pilot, event partial, triggers the
AP Fault procedure. Since that procedure does not take into
account the severity of the auto-pilot fault, the worst is
assumed in both cases, leading to this pessimistic result. There
are 8 such near-duplicates of the 2nd order and 5 of the 3rd

order. This nearly systematic occurrence highlights the fact
that the granularity of the model isn’t adequately matched with
the definition of the procedures. A more in-depth knowledge
would allow safety experts to conclude on this specific point.

As shown in table I, the AP Fault procedure only has two
2nd order minimal cut sets, due to its parallel nature. The
benefits of this structure are made even clearer when compared
to the CC comm loss and F/CTL fault (rudder) procedures’
nine 2nd order minimal sequences, due to the larger number
of single points of failure in their structure.

As a consequence, most of AP fault’s minimal cut sets
are of the 3rd order, which CC comm loss and F/CTL fault
(rudder) have significantly less of. Adding parallel branching

Fig. 12: Computing the outcome of the AP Fault procedure.

Order of cut set
Initiating fault 1 2 3 4 5

AP fault 0 2 10 0 0
CC comm loss 0 9 0 0 0

F/CTL fault (rudder) 0 9 3 0 0

TABLE I: Number of minimal cut sets involving each initiating
event.

in a procedure can thus reduce the amount of lower order
minimal cut sets and shift them over to higher orders. This is
however to be balanced with procedure complexity as adding
too many parallel branches might prove counter-productive
should one specific actor be overwhelmed.

The absence of higher order minimal cut sets in the analysis
also originates in the limited amount of procedures it was
performed on. Adding more procedures to the analysis would
add more interactions that could lead to undesired outcomes.

The minimal cut set {’CC_Comms_total’,
’FCTL_FAULT_RUD.trigger_event’} illustrates
the need for procedures handling multiple faults. Namely, in
the absence of CC communications, the pilot is unable to take
control of the UAV (CC are a resource required by component
CM man in figure 10), despite RC communications possibly
remaining available. In order to improve the F/CTL fault
(rudder) procedure, a condition component should thus be
added to ascertain whether CC communications are available.
Should they not be, the relevant branch could make use of
RC communications instead, before merging back with the
now unused CC communications branch.

Through the modeling process, several instances of a ’Warn-
ing’ task component have had to be placed. This task was
not explicitly described as executed in parallel to others in
the source material. We have however considered it as such
on several occasions, based on the context of the procedure
(namely, whether the pilot’s awareness of an emergency de-
pended solely on this task). When considered non-blocking,
that task was placed on a parallel branch featuring no outcome
task component, thus having no impact on the outcome. While
we discuss this specific task below regarding future work, this
does question the importance of procedure tasks that appear
to have no safety impact on the global scenario. Other such
tasks exists that are not presented in this article; for instance
the pilot may be required to monitor the UAV’s controlled
crash via video link even though he has no means to control
it. Pilot actions in such procedures are sometimes limited to
non-existent (as it is in the AP Fault procedure), it would thus
be beneficial for the UAS designers to more explicitly state
the expected safety gain of such tasks.

B. Limitations

The procedures model makes the assumption that individual
task components are independent from one another. This is
due to the high-level of abstraction of the approach that was
used to model procedures. Largely ignorant of the lower level
architectures of the UAV whose procedures were modeled, the
procedures model does not tie in with genuine physical and



functional models. Future work will be done in order to: first,
acquire a model of a UAV’s architecture, and second, to create
bridges between the physical and functional layers and the
procedures model. This would increase both the consistency
and verisimilitude of the procedure model.

Another implicit assumption of our model is that a fault is
always detected. Our models thus include no section pertaining
to the detection of the fault. This limitation is connected to a
previous remark in V-A concerning the apparent lack of safety
impact of the ‘Warning’ tasks. These tasks could actually be
the first elements of a new section in our model dedicated to
modeling the detection of a fault by actors of the system.

Other possible avenues of development are the modeling
of undesired activation of task components, procedures with
multiple initiating events or procedure complexity.

VI. RELATED WORK ON THE SORA

The authors of [12] have developed a web-based question-
naire that allows users to get a safety report of their drone.
The tool gathers system information directly from the user and
matches it against SORA criteria, producing a report as output.
This report takes the form of a table summarizing the highest
level of compliance met by the UAS with regards to each OSO.
The proposed approach allows to remove part of the tedium
of going over the numerous safety criterion of all 24 OSOs.
The tool is still in early development stages, and only covers
multi-rotor drones over a limited range of compliance levels.
Furthermore, the generated safety report provides feedback as
to which objectives are met and which aren’t, but in the latter
case, it does not provide any improvement suggestions as can
already be found in the corpus of the SORA.

In [13], a safety assessment is done for a UAS recording
sport events, according to the methodology provided by the
SORA. The authors conclude that their operation matches
the lowest category of risk and that the SORA’s OSOs are
thus all only recommended as optional or with low levels of
compliance. However, the authors suggest that further work
is required on the SORA to cover multi-drones use cases, as
those scenarios are getting more and more leverage. We also
identified that had the risk level of the pair drone-operation
been any higher in that article, the described means of miti-
gation and associated assurance would not have been enough
to qualify the operation under the recommended SORA levels
of compliance. This highlights the need for proper procedure
analysis methodologies (e.g., safety assessment processes) if
more risky drone operations are to be analyzed.

VII. CONCLUSION

The significant increase in demand for UAS and their
massive deployment in closer proximity to humans and areas
of risk put in sharp relief the need for increased safety. SORA
provides an early framework to ease safety analyses. However,
the SORA standard does not define the methodologies and
processes required to model and analyze the procedures.

To tackle this problem, this paper provides a methodology
based on the ADF formal language to model and analyze

emergency procedures. The Cecilia Workshop tool was used
to compute minimal cut sets leading to undesired procedure
outcomes, and to identify shortcomings in the procedures.

Future work stills needs to be done in order to formalize
the separation of actors in a procedure so that one actor’s
specific safety impact can be assessed. We will also expand
the processes with a fault detection as it really occurs, which
will contrast with the current ADF model where a fault in the
system is immediately noticed by the relevant actors.
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