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Data-based Extended Moving Horizon Estimation for MISO Anesthesia
Dynamics∗

Kaouther Moussa 1,2, Bob Aubouin-Pairault 3,4, Mazen Alamir 3, Thao Dang 4

Abstract— This paper presents an extended moving horizon
observer to estimate both the states and the pharmacodynamic
(PD) parameters of an anesthesia model, based on real data.
The inputs of this model are the injection rates of Propofol
and Remifentanil. The states represent the concentration of
the anesthetic agents in different compartments of the human
body (muscles, fat, blood) and in the effect site. The considered
output is the Bispectral index (BIS) which is derived from
the electroencephalogram (EEG). The observer is designed
such that the parameters are estimated during the anesthesia
induction phase, and then almost frozen for the rest of the
surgery. The estimator is validated on real data that were
extracted from the VitalDB database [12].

I. INTRODUCTION

During surgery, the anesthesiologists use different types of
anesthetic agents in order to induce and maintain the depth
of unconsciousness (hypnosis), the absence of movement
(areflexia), and the absence of pain (analgesia) [10].

The level of hypnosis is measured by monitoring the
electroencephalogram (EEG) signals and combining several
extracted features to determine the depth of anesthesia,
usually via processed variables such as the Bispectral Index
(BIS) which takes values in the interval [0,100]. The range
[40,60] characterizes a moderate hypnosis state and the value
50 is generally considered as suitable for surgery.

Compartmental modeling of the drugs distribution has
been widely used in the literature, it relies on the conserva-
tion principle applied to the exchange of chemicals between
different coupled macroscopic systems (compartments) [9].
The anesthetic agent concentrations are assumed to be uni-
form within a given compartment and the transport rate
leaving a compartment is assumed to be proportional to its
corresponding concentration.

The 4th order Pharmacokinetic-Pharmacodynamic (PK-
PD) model has been commonly considered in the literature.
This model considers four compartments, the central one
(blood), the fast equilibrating one (muscles), the slow equili-
brating one (fat), and the effect site. In [10] a similar structure
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has been considered using the Schnider model for Propofol
pharmacokinetic [16] and the Minto model for Remifentanil
phamacokinetic [13].

Estimating the internal states and the parameters of a
dynamical model is important to achieve robust performances
when using state feedback schemes. For linear unconstrained
systems, it is well established that the Kalman filter is the
optimal state estimator, when the states and the inputs are
subject to normally distributed noises [8]. In the presence of
hard constraints, such as non-negative drug concentrations,
Kalman filtering is not directly applicable. In the case of
nonlinear constrained systems, Moving-Horizon-Estimation
(MHE) has proven to be a powerful tool for state estimation
[15]. Furthermore, with the advances of optimization solvers,
MHE suits well the context of online estimation based on a
window of available past measurements.

The automation of therapy injections has the potential to
decrease the clinical workload while maintaining the same
care quality [18]. Therefore, many closed-loop strategies
have been proposed for anesthesia dynamics, for example,
[17] where the authors proposed a Model Predictive Control
(MPC) and an MHE for a Single Input Single Output
(SISO) model describing the dynamic interactions between
the inhaled anesthetic Sevolufrane and the BIS signal. In [5],
an extended Kalman filter has been proposed for a minimally
parametrized Multiple-Input-Single-Output (MISO) model
describing the dynamics between the Propofol and Remifen-
tanil injection rates (inputs) and the BIS as an output, in order
to estimate the states and some PK-PD parameters. However,
the results rely on approximations and the presented observer
is aggressive in the sense that it allows to fit the output
with the noise, which means that the parameters change even
during the maintenance phase.

Contrary to PK parameters, the PD parameters do not have
standard expressions in terms of patient information. Accord-
ing to [11], the uncertainty introduced by the PD parameters
shows a more significant influence on the measurable outputs
than the one introduced by the PK parameters. Therefore,
in this paper, we propose an extended MHE allowing us
to estimate both the states and the PD parameters for the
complete MISO system with a nonlinear output equation.
Furthermore, the cost function is designed such that the
penalty on parameters is activated during the maintenance
phase in order to avoid having noisy parameters due to
the presence of noise on the data, which means that the
parameters are identified only during the anesthesia induction
phase.

The states being complex to measure practically for the



Fig. 1. Compartmental scheme of the pharmacokinetic and the pharmaco-
dynamic model of Propofol and Remifentanil

case of anesthesia, the observer is first validated on simulated
data, for which the state profiles and the parameter values
are available. Then, the observer is applied to different real
clinical cases from the VitalDB database [12]. We show that
an online estimation of both the states and the parameters
is practically feasible since the average needed time for one
iteration varies between 12 and 19ms for a sampling time
of 2s. Furthermore, we show that the distributions of the
parameters, that were estimated based on real data, closely
correspond to practically validated distributions that have
been presented in [4].

This paper is structured as follows: Section II presents the
dynamical model that is used for the estimation problem,
in Section III the Moving Horizon Estimation technique is
recalled and its use for state and parameter estimation is
explained. In Section IV we present an observer validation
framework. In Section V we present the estimation results for
different cases from the VitalDB database and we carry out
a statistical analysis on the different estimated parameters.
Finally, in Section VI, we present a summary of the results
and suggest future perspectives.

II. DYNAMICAL MODEL

Compartmental modeling has been widely used for anes-
thesia dynamics [10]. The latter consists, firstly, in consid-
ering different compartments of the human body, such as
the blood, the muscles and the fat, each of them being
characterized by its own volume. Then, the concentrations of
the anesthetic agents within each compartment are modeled
using a set of coupled ordinary differential equations (ODEs).

Pharmacokinetic (PK) allows to characterize the evolu-
tion of the injected anesthetic agents in the human body
through the absorption phenomenon. Whereas pharmacody-
namic (PD) allows to characterize the effect of the drug on
the organism, through the BIS in the case of hypnosis study
for example.

In the real clinical world, patients usually receive different
types of anesthetic agents [18]. Therefore, it is important to
model the interaction between treatments whether it is syn-
ergistic or antagonistic, in order to have a reliable hypnosis
indicator, in the case of the BIS for example.

The PK-PD models that are commonly considered for
Propofol and Remifentanil are of order 4 (as depicted
in Fig.1) The interaction between both drugs is modeled
through the relation between the BIS and the effect site

concentration of Propofol (xp4) and Remifentanil (xr4). We
describe in the sequel the different parts of the model that
has been considered in this paper.

A. Propofol PK-PD modeling

Propofol is a hypnotic agent that is used to induce and
maintain the hypnosis of the patient during surgery. The PK-
PD linear model linking the Propofol infusion rate up to the
Propofol concentration in the effect site xp4 is the following:

ẋp1
ẋp2
ẋp3
ẋp4

=

−a11p a12p a13p 0
a21p −a21p 0 0
a31p 0 −a31p 0
a41p 0 0 −a41p

xp1
xp2
xp3
xp4

+

 1
V1p
0
0
0

up

(1)

where xp = (xp1,xp2,xp3,xp4)
T ∈ R4

+ stands for the vec-
tor of Propofol concentrations in the different considered
compartments and up ∈R+ stands for the Propofol infusion
rate. By considering that Ap is the state matrix and Bp =
( 1

V1p
,0,0,0)T , Model (2) can be condensed in the following

equation:

ẋp = Apxp +Bpup (2)

The matrices Ap and Bp are considered as in equa-
tion (2) since the standard model for pharmacokinetic de-
scribes the direct effect that the intravenous input up has on
the blood concentration. Furthermore, it models the inter-
compartmental clearances between the blood compartment,
the fat and muscles compartments, as well as the elimi-
nation clearance of the drug from the blood compartment.
Moreover, the effect compartment is connected to the cen-
tral compartment (blood) by a first-order rate constant in
order to model the delay between a variation in the blood
concentration and the beginning of its corresponding effect.

B. Remifentanil PK-PD modeling

Remifentanil is an opioid with a high metabolic clearance,
when administered with Propofol, both drugs interact in
a synergistic way on hypnosis and analgesia. The PK-PD
model of Remifentanil has a similar form as the Propofol
one, with different parameter values. Therefore, it can also
be described by the following equation:

ẋr = Arxr +Brur (3)

where xr = (xr1,xr2,xr3,xr4)
T ∈ R4

+ stands for the vector
of Remifentanil concentrations in the different considered
compartments and ur ∈ R+ stands for the Remifentanil
infusion rate.

Since both Propofol and Remifentanil interact separately
on the different compartments, the total PK-PD model can
be characterized by the following decoupled system:

(
ẋp
ẋr

)
=

(
Ap 04×4

04×4 Ar

)(
xp
xr

)
+

(
Bp 04×1

04×1 Br

)(
up
ur

)
(4)



where 0l×k stands for a zero elements matrix of dimension
l × k. By considering that x = (xp,xr)

T ∈ R8 and u =
(up,ur)

T ∈ R2, we can rewrite model (4) as:

ẋ = AT x+BT u (5)

With AT ∈ R8×8 and BT ∈ R8×2 being respectively the
state and the input matrices.

The parameters of AT and BT are related to the patient
information (age, height, weight and gender). Several ex-
pressions have been proposed in the literature, for example,
Schnider model in [16] for the Propofol PK parameters (in
Ap and Bp), Minto model in [13] for the Remifentanil PK
parameters (in Ar and Br) as well as Eleveld model for both
Propofol and Remifentanil PK [6], [7].

C. Propofol & Remifentanil synergy modeling

The interaction model linking xp4 and xr4 (as depicted in
Fig.1) determines the output equation that characterizes the
BIS. The latter is defined as a Hill function depending on an
interaction term U as follows:

y = BIS = E0 −Emax
U γ

1+U γ
(6)

where E0, Emax and γ are static parameters representing,
respectively, the initial BIS value, the maximal drug effect
on the BIS and the slope of the Hill function. The drug
interaction term U is defined as follows:

U =
Up +Ur

1−βθ +βθ 2 (7)

with:

Up =
xp4

c50p
Ur =

xr4

c50r
θ =

Up

Up +Ur
(8)

where c50p, c50r and β are also static parameters, standing
respectively for the Propofol half-effect concentration, the
Remifentanil half-effect concentration and the interaction
coefficient.

The PD parameters Emax, c50p, c50r, γ and β are patient
dependent and have to be identified based on the BIS
(output) signal. Several works in the literature proposed to
simplify this model by considering Emax=E0 and β = 0, for
example in [4]. In order to carry out a consistent comparison
with respect to the clinically validated parameters distri-
butions, we consider the same simplification and estimate
only the three parameters c50p,c50r and γ , we denote by
η =

(
c50p,c50r,γ

)T ∈ R3 the vector of PD parameters to
be estimated. Finally, the global system is defined by linear
dynamics and a nonlinear output equation as follows:{

ẋ = AT x+BT u
y = h(x,η)

(9)

III. EXTENDED MOVING HORIZON ESTIMATION

Extended observers have been presented in the literature
[3] and used to estimate exogenous disturbances or the model
parameters, in addition to the states. It consists in considering
the disturbances (or the parameters) as part of the state
vector, with a given dynamical model or invariant dynamics
in the case of static parameters.

Since the objective of this paper is to estimate both the
states and the PD parameters, the state dynamics can be
extended by adding η̇ = 0 to the dynamics by considering
x̄ = (x,η)T as follows:{

˙̄x = ĀT x̄+ B̄T u
y = h(x̄)

(10)

Discretizing model (10) with a sampling period Te, by
using the forward Euler method, results in the following
extended discrete time system:{

x̄k+1 = Ax̄k +Buk = Φ(x̄k,uk)

yk = h(x̄k)
(11)

where A = I+TeĀT and B = TeB̄T , other discretization meth-
ods can also be considered. However, since the PK system
is relatively slow and in order to induce lower computation
time, the Euler method with the associated sampling period
of 1 or 2 sec is found appropriate.

Moving Horizon Estimation (MHE) is a widely used
observation technique [1], allowing to recover the states of a
given dynamical system, based on the input and the output
measurements. In MHE, the current state is estimated by
minimizing a cost over a fixed number of past measurements
called the estimation horizon and denoted by NMHE . The
decision variables being the states over the measurement
window, the cost to minimize represents a trade-off between
minimizing the output error and ensuring the compatibility
of the estimated states with respect to the model and the
previous estimated state.

The main advantage of MHE is the explicit handling of the
constraints, especially in the context of anesthesia dynamics
estimation where the states represent drug concentrations and
have to be non-negative. Moreover, the PD parameters that
we aim at estimating have also to be non-negative.

The cost function to be minimized at each time step k can
be written as follows:

JNMHE (x̄k | ˆ̄xk−1,ym,um) =
k

∑
i=k−NMHE

∥ym
i −h(x̄i)∥Q

+
k

∑
i=k−NMHE+1

∥x̄i −Φ( ˆ̄xi−1,um
i−1)∥R(k)

(12)

where x̄k and ˆ̄xk−1 represent, respectively, the state over
the estimation horizon (decision variable) and the previous
estimated state up to time k−1. The remaining arguments,
namely ym and um represent the output and the input
measurements profiles over the estimation horizon, Q and R



represent the penalty matrices. Note that the first summation
in the cost allows to ensure the fitting with the output while
the second one allows to ensure the compatibility of the
estimated state with respect to the evolution of the previous
estimated one by the dynamical model.

The compatibility cost is penalized with a time depen-
dent weighting diagonal matrix R(k), following a sigmoid
function. This allows to identify the parameters during the
anesthesia induction phase and to maintain them for the rest
of the surgery through a proper penalization. The diagonal
elements of R(k) have the following parameterized form:

r j j(k) = θ1 +θ2e−θ3e−θ4k
(13)

where j = 1, . . . ,13. This function allows to have a bounded
weight (θ1 + θ2) for high values of time k, provided that
θ3,θ4 > 0. θ1 is used to penalize the states representing the
drugs concentrations within the compartments, whereas θ2
is used to penalize the parameters during the maintenance
phase. For some parameters, a use of θ1 is required during
the induction phase in order to avoid a high variation.

The optimization problem to be solved at each time step
k is the following:

min
x̄k

JNMHE (x̄k | ˆ̄xk−1,ym,um)

s.t. x̄i+1 = Φ(x̄i,um
i ),∀i = k−NMHE , · · · ,k

x̄i ∈ X ,∀i = k−NMHE , · · · ,k

(14)

Solving (14) at each time step k allows to estimate the
states (and the parameters) in a receding horizon way, by
sliding the measurements window of length NMHE at each
time step k. The dynamical constraints have been imple-
mented with the multiple shooting technique allowing to
improve the convergence and the sparsity of the optimization
problem by lifting it to a higher dimension.

The set X ∈ R13 allows to define box constraints on
the states and the parameters. Regarding the initial guess of
the decision variables, a warm start has been implemented,
allowing to initialize the states over the estimation horizon
by the previous estimated states. At the first time step k = 0,
since no estimation is available, the states x (representing the
concentrations) are initialized at 0, since u = 0 at the begin-
ning of the surgery, while the parameters η are initialized at
an arbitrary pre-tuned PD model.

Since the tuning of the penalty matrices Q and R has a
high impact on the estimation quality, in particular in the
the context of real data that are corrupted with noise, these
matrices are firstly tuned on noisy simulated data, for which
we know the real states and parameters, in order to fit them
to a realistic scenario and then they are fine-tuned based on
real data. The fine-tuning is done in such a way to ensure a
smooth BIS profile that do not catch the noise on the output.

IV. OBSERVER VALIDATION

The observability of the non-extended anesthesia system
(without parameters) has already been proved in the liter-
ature, for example in [14]. However, when extending the
system with the parameters dynamics, proving theoretically

the observability becomes complex. Therefore, we propose
in this section to assess the observability of the extended
system based on simulated data for which we know the real
states and parameters.

We will consider in the sequel a population of 100 simu-
lated patients, for whom the PD parameters are drawn using
the distributions clinically measured in [4] and presented in
Table I, the maximal and minimal bounds are hypothetical
values allowing to truncate the normal distribution in order
to avoid unrealistic values in the simulations. The PK pa-
rameters of Propofol and Remifentanil are computed using
Schnider and Minto models [16], [13]. .

Parameter c50p c50r γ

Min∗ 2 6 1
Max∗ 9 25 5
Mean 4.47 19.3 1.43

Standard deviation 1.34 5.79 0.73

TABLE I
THE PD PARAMETERS STATISTICS CONSIDERED FOR THE OPTIMIZATION

PROBLEM [4], ∗ STANDS FOR HYPOTHETICAL VALUES

Problem (14) has been successively solved, for the 100
simulated cases, by considering NMHE = 20, Te = 1s and
using CasADi [2]. The state constraints can be set based
on the solution of (2) and (3), given the measured inputs
up and ur. Furthermore, several tests on the estimation
errors showed that there is no noticeable improvement for
estimation horizons that are higher than 20. The computation
time for one optimization step is 26 ms, which is reasonable
for an online implementation.

The results presented in Figs. 2-3 correspond to one patient
and show that in the absence of noise, the output is well fitted
and the parameters are well estimated.

Fig. 4 presents the histograms of the mean relative absolute
error of the BIS and the states, when no noise affects the BIS,
when the BIS is affected with a white noise of variance 1
and when the penalty term R(k) is constant with no noise
on the BIS. We can see that in the noise-free case, the
estimation errors are centered around 0 and present a low
dispersion, which is almost similar for the case where the
BIS is corrupted with a white noise, except for the error of
x2 which presents a higher mean error. In the case where
R(k) is considered to be constant, we can see that the errors
present a higher dispersion even though no noise has been
added to the BIS.

Moreover, Fig. 4 shows that the parameters estimation
errors are centered around zero and present a low dispersion
in the noise-free case, their means remain close to 0 in the
noisy case, with a higher dispersion. We can also see that
when using a constant penalization R(k), and without any
noise, the parameters errors present higher dispersions than
in the noisy case.

To summarize, using a simulated based data framework,
it is shown that an insight on the observability of the
extended system can be gained and the underlying statistics
of the estimation errors seems encouraging. The relevance of
considering a time-dependent cost in order to freeze the PD
parameters, lowering thereby their dispersion is highlighted.
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Fig. 2. The drug injection rate profiles, the measured and the estimated
BIS for NMHE = 20
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Fig. 3. The real and estimated PD parameters for NMHE = 20

V. DATA-BASED NUMERICAL RESULTS

A. Presentation of clinical data

The clinical data used in this paper have been imported
from VitaldB [12]. The latter is an open-source database that
was created to facilitate the analysis and the monitoring of
vital signs during surgery. This database gives access to high-
resolution multi-parameter data from 6388 cases with several
indicator signals.

We considered a population of 50 cases from the database,
this population has a median age of 55, a median height of
64, a median weight of 166 and a 32% proportion of women.
They have been selected based on two criteria, the first one is
the use of both Propofol and Remifentanil and the second one
is the BIS stability. Indeed, the database contains some cases
with an unstable BIS during the maintenance phase, which is
due to different possible exogenous disturbances. Therefore,
in order to avoid skewing the estimation of the parameters
with exogenous signals, we consider only the cases with a
stable BIS during the maintenance phase. Furthermore, the
data have been processed in order to remove the NaNs.

B. MHE implementation on Real-data

The MHE optimization problem has been solved using
CasADi [2] with NMHE = 20 and Te = 2s. The initial guesses
were set to the nominal values. The PK parameters have been
considered according to the Eleveld Model [7], [6], since it
showed a better fitting of clinically measured PD parameters

distributions presented in [4]. E0 has been identified from the
first samples of the BIS, since it represents the BIS value
before the induction phase. Figs. 5-6 show the results of
the extended MHE for the case ID 167, we can see that
the parameters are quasi static during the maintenance phase
and the estimated BIS fits the measured one even though
the latter presents a relatively high variance noise. We can
also see that the BIS that was calculated for nominal PD
parameters presents a high fitting error, which highlights the
importance of estimating the PD parameters.

Fig. 7 shows the distribution of the estimated parameters
with the practically validated ones, we can see that the distri-
bution of c50p presents a good fitting, while the distributions
of c50r and γ are slightly shifted. This can be explained by
the difference of the population that have been considered for
the study in [4], since the median age presents a considerable
difference.

VI. CONCLUSION

We presented in this paper a data-based extended moving
horizon estimator for anesthesia dynamics, the latter allows
to estimate both the state and the parameters. The estimated
variables can be used in a state feedback scheme in order to
stabilize the BIS in the interval [40,60]. Moreover, a global
statistical analysis can be carried out based on the estimated
parameters in order to study the correlation between the dif-
ferent variables. Furthermore, fault detection based observers
can be considered in order to detect the presence of external
disturbances on the BIS signal.
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, ε (ĉ50r) and ε (γ̂) (bottom).

0 25 50 75 100 125 150 175

0

1

2

Propofol

Remifentanil

0 25 50 75 100 125 150 175

Time (min)

40

60

80

100
BIS measured

BIS nominal model

BIS estimated

Fig. 5. Case ID 167: the drug injection rates (up), the measured and the
estimated BIS (down)

0 25 50 75 100 125 150 175

3.5

4.0

4.5
C50p

0 25 50 75 100 125 150 175

18

20

C50r

0 25 50 75 100 125 150 175

Time (min)

1.6

1.8
gamma

Fig. 6. Case ID 167: the estimated parameters

[10] C. M. Ionescu, M. Neckebroek, M. Ghita, and D. Copot. An
open source patient simulator for design and evaluation of computer
based multiple drug dosing control for anesthetic and hemodynamic
variables. IEEE Access, 9:8680–8694, 2021.

[11] A. Krieger, N. Panoskaltsis, A. Mantalaris, M. C. Georgiadis, and
E. N. Pistikopoulos. Modeling and analysis of individualized phar-
macokinetics and pharmacodynamics for volatile anesthesia. IEEE
Transactions on Biomedical Engineering, 61(1):25–34, 2014.

[12] H. C. Lee, Y. Park, S. B. Yoon, S. M. Yang, D. Park, and C. W.
Jung. VitalDB, a high-fidelity multi-parameter vital signs database in

0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C50p

Estimated

Bouillon

0 25 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

C50r

0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Fig. 7. Histograms of the estimated parameters with the practically
validated distribution in [4]

surgical patients. Sci Data, 9(1):279, Jun 2022.
[13] C. Minto, T. Schnider, T. Egan, E. Youngs, H. M. Lemmens,

P. Gambus, V. Billard, J. Hoke, K. P. Moore, D. Hermann, K. Muir,
J. Mandema, and S. Shafer. Influence of Age and Gender on the
Pharmacokinetics and Pharmacodynamics of Remifentanil: I. Model
Development. Anesthesiology, 86(1):10–23, 01 1997.

[14] F. N. Nogueira, T. Mendonça, and P. Rocha. Positive state observer
for the automatic control of the depth of anesthesia—clinical results.
Computer Methods and Programs in Biomedicine, 171:99–108, 2019.
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