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Abstract: This paper studies the distributed coverage control problem of multi-quadcopter systems
connected with fixed and switching network topologies to guarantee the finite-time convergence.
The proposed method modifies the objective function originating from the locational optimization
problem to accommodate the consensus constraint and solves the problem within a given time limit.
The coverage problem is solved by sending angular-rate and thrust commands to the quadcopters.
By exploiting the finite-time stability theory, we ensure that the rotation and translation controllers
of the quadcopters are finite-time stable both in fixed and switching communication topologies,
able to be implemented distributively, and able to collaboratively drive the quadcopters towards
the desired position and velocity of the Voronoi centroid independent of their initial states. After
carefully designing and analyzing the performance, numerical simulations using a Robot Operating
System (ROS) and Gazebo simulator are presented to validate the effectiveness of the proposed
control protocols.

Keywords: coverage control; finite-time stability; distributed control; quadcopter; multiagent sys-
tems; robotic sensor network

MSC: 93D15

1. Introduction

The robotics community has shown interest in the coverage control problem of robotic
sensor networks (RSNs). There have been real-world issues motivating the rising attention
to this problem, such as agriculture, search and rescue, wireless communication, and nuclear
decommissioning, where sensor placement with a prdefined number of sensor determines
the quality of the measured data [1,2]. For example, in precision agriculture, different color
distribution in an agricultural farm may correspond to water stress, fertilizer shortage,
or disease [3,4]. In order to capture and analyze the temporal information of this issue,
unmanned aerial vehicles (UAVs) can be equipped with relevant sensors and be deployed
to the farm. From the optimization point-of-view, finding the optimal position of the UAVs
and the sensors becomes one of the main tasks of an RSN in order to maximize the coverage
of the deployed sensors.

The existing literature shows extensive work to address the coverage control problem.
Locational optimization, having its roots in the field of operations research, has been
suggested as a method for determining the optimal agent locations based on an interest
function. Centroidal Voronoi tessellation has emerged as a widely recognized approach for
addressing this problem, as referenced in [5–8]. By adopting the locational optimization
problem, a simple proportional controller was initially developed [8,9]. This algorithm is
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improved to tackle the time-varying density coverage on a group of nonholonomic mobile
robots in [10]. Different approaches to coverage control have been explored in [11–15]
to alleviate the constraints related to unlimited, isotropic, and homogeneous sensing
ranges, as well as convex environments. Solving the optimal coverage control problem of
multiple robots can offer improved coverage, energy efficiency, robustness, and scalability,
among other benefits. Nonoptimal approaches may be simpler to implement and require
fewer computational resources but may not achieve the same level of performance as the
optimal approach. Adaptive coverage control to estimate the information density function
has been studied in [16–18]. Regarding the communication topology, the result in [19]
includes a dynamically routing communication algorithm while optimizing the coverage
control problem. The coverage control problem on a circle with unknown terrain roughness
and time-varying communication delays has been studied in [20]. The mobile sensors
cooperatively estimate the roughness function and are driven to their optimal positions
using proposed control laws under some delay constraints. A reinforcement learning
approach has also been studied to tackle the area coverage problem of networked UAVs
in [21]. However, the coverage algorithm of multiple quadcopters from the control system
perspective that guarantees timely convergence in a finite time for both fixed and switching
communication topology has not been investigated among the existing strategies.

In various applications, such as postdisaster evacuation and nuclear decommissioning,
the importance of timeliness has grown to prevent deteriorating situations [2]. In control
theory, timeliness refers to the settling or convergence time of an autonomous system start-
ing from initial values and reaching the origin. The research presented in [22] introduced
the concept of finite-time stability analysis in control systems by demonstrating the depen-
dence of convergence time on initial states. This finite-time strategy was applied to achieve
finite-time consensus among teams of agents with different dynamics in [23–25], and also
used for spacecraft pose synchronization based on dual quaternions in [26]. However, these
results are dependent on initial values, causing longer convergence times when agents are
initially separated by a large distance. To address this issue, [27] proposed a finite-time
consensus controller that ensures convergence within a specified settling time boundary
regardless of the initial states. Subsequently, [28] extended this result to the consensus of
multiagent systems with double-integrator dynamics. Additionally, this approach was
applied to design a finite-time consensus controller for networked systems with time delays
in [29].

In this article, a distributed coverage control algorithm for a sensor network consisting
of multiple quadcopters is introduced. The algorithm ensures finite-time stability in both
fixed and switching communication topologies. This study builds upon our previous
research that focused on the finite-time stability of the coverage control problem using
a fixed communication topology [30]. The contributions of this work are highlighted as
follows. Firstly, it differs from existing approaches by simultaneously addressing the
locational optimization and consensus problems. This approach focuses on maintaining
the position, velocity, and formation shape of the agents’ Voronoi centroids. Secondly,
the study leverages finite-time stability theory to ensure timely attainment of desired
positions, velocities (i.e., Voronoi centroids), and attitudes in switching communication
networks. Thirdly, since quadcopters are used as agents, the algorithm accounts for
their nonlinear dynamics, which involve coupled translational and rotational motions.
The algorithm guarantees stability of both translational and rotational motions within a
specified time limit.

The structure of this paper is organized as follows. Section 2 briefly reviews the
concepts of graph theory, locational optimization, and quaternions. Section 3 states the main
problem addressed in this paper. Following that, the main algorithms for achieving finite-
time coverage control of the quadcopter flock are presented in Section 4. Finally, numerical
simulations validating the proposed algorithm are provided in Section 5, followed by
concluding remarks in Section 6.
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2. Preliminaries
2.1. Graph Theory

A graph, denoted as G(V , E), is a collection of n vertices V = {v1, v2, . . . , vn} connected
by a set of edges E ⊆ V × V . If an edge (vi, vj) ∈ E exists, it means that vertex vi can
receive information from vertex vj. When both (vi, vj) and (vj, vi) exist in E , the graph is
referred to as undirected. The neighbor of vertex vi, denoted as vj ∈ Ni ⊂ V , with vj 6= vi,
is defined as a vertex connected to vi through the edge (vi, vj) ∈ E .

2.2. Locational Optimization

Consider the deployment of n robots within a convex environment represented by the
set Q ⊂ Rd. The positions of all robots are denoted by the set P = pi

n
i=1 ⊂ Q, where pi

denotes the position of robot i.
The sensing unreliability function, denoted as g : Q×Q → R+ : (x, pi) 7→ g(x, pi),

provides quantitative information about the sensing performance of agent i at position pi
when sensing point x ∈ Q. In our context, we assume the sensing unreliability function to
possess the following properties: isotropy, increasing, and convexity. An isotropic function
exhibits a value that is independent of its direction. Therefore, we can redefine the function
g(x, pi) as a norm-based function f : R → R+, such that g(x, pi) = f (‖x − pi‖), where
i ∈ 1, 2, . . . , n.

The density function, or information distribution function, denoted by φ : Q → R+ :
x 7→ φ(x), represents the spatial distribution of information within the environment. This
function quantifies the importance of measuring a specific quantity at a particular point x
in the set Q.

After providing the definitions of the sensing unreliability function and density func-
tion, we introduce the locational optimization problem. Generated by the sensor positions
at time t, P , we are able to use the Voronoi tessellation of Q given by

Vi(pi) = {x ∈ Q : ‖x− pi‖ ≤ ‖x− pj‖, ∀pj ∈ P , j 6= i}. (1)

In the following discussion, we use Vi conveniently to refer to Vi(pi). With this Voronoi
partitions, the objective function of the locational optimization is formulated as

H(P) =
n

∑
i=1

∫
Vi

g(x, pi)φ(q)dx. (2)

With the defined conditions of the sensing unreliability function and density functions, the fol-
lowing lemma states the convexity of the objective function of the locational optimization.

Lemma 1 (Sensing Unreliability Function [30]). Assume that the sensing unreliability function
is isotropic, increasing, and convex in pi ∈ P , for all i ∈ {1, 2, . . . , n}. Then, for a positive density
function, the cost function H in (2) is convex.

In this work, we make use of the quadratic sensing unreliability function defined
as f (‖x − pi‖) = ‖x − pi‖2. By employing this quadratic function, we can incorporate
the concept related to rigid body motion. This includes considering the mass, moment of
inertia, and centroid of the i-th Voronoi region, which can be expressed as

MVi =
∫

Vi

φ(x)dx, IVi =
∫

Vi

xφ(x)dx, and CVi =
IVi

MVi

, (3)

respectively. Therefore, applying the parallel-axis theorem of rigid-body motion [31] to the
cost function (2) leads to an equivalent expression given by

min
p∈P

H(p), with H(p) =
n

∑
i=1
IVi +

n

∑
i=1

MVi‖pi − CVi‖
2, (4)
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where p = [p>1 , . . . , p>n ]> ∈ Rnd denotes the vectorized positions of the robots. The
coverage control problem can be regarded as the task of designing control inputs for robots
to drive them towards optimal positions, aiming to minimize the objective function of the
locational optimization.

2.3. Quaternion-Based Rotation

In order to prevent singularities associated with Euler angles, the rotational move-
ments of a rigid body are parameterized using quaternions, represented by the set H = {q ∈
R4|q>q = 1}. A quaternion q1 ∈ H can be utilized to express the rotation from frameW b to

frameW a. The element-wise expression of this quaternion is given by q1 =
[
η1 q̄>1

]>
=[

cos ϑ1
2 k>1 sin ϑ1

2

]>
, where ϑ1 is the rotation angle around the unit vector k1. The quater-

nion conjugate is denoted by a superscripted asterisk, that is, q∗1 = [η1 − q̄>1 ]
> ∈ H.

In this paper, the dot operator represents the quaternion multiplication of quaternions,
for example,

q3 = q1 · q2, for q1, q2 ∈ H. (5)

A function T : H→ R4×4 is defined as

T(q1) =

[
η1 −q̄>1
q̄1 η1 I + S(q̄1)

]
, (6)

where the cross-product between two vectors v1, v2 ∈ R3 is represented using a skew-
symmetric matrix operator S ∈ R3×3 such that v1 × v2 = S(v1)v2. Utilizing this function,
expression (5) becomes

q3 = T(q1)q2. (7)

The angular velocity of frameW a with respect to frameW b, as observed from frame
W b, is defined as ω1 ∈ R3. The connection between the time derivative of quaternion q1
and the angular velocity ω1 is expressed by

q̇1 =
1
2

q1 ·
[

0
ω1

]
=

1
2

T(q1)

[
0

ω1

]
=

1
2

T̄(q1)ω1, (8)

where T̄ = [−q̄1 (η1 I + S(q̄1))
>]> because the first column of T(q1) vanishes.

A rotation matrix can be created using quaternions through the application of Ro-
drigues’ formula. The rotation matrix representing a rotation from frameW b toW a can be
formulated as

R1 = I + 2η1S(q̄1) + 2S2(q̄1). (9)

3. Problem Formulation

Consider a robotic sensor network comprising n quadcopters deployed in a convex
space Q ⊆ Rd, and their connection topology is represented by a connected undirected
graph Gn = (Vn, En). In this study, we investigate two cases: static and switching com-
munication topology. For the static topology, we generate an undirected connected graph
among the agents before deployment. In the switching case, we employ Delaunay triangu-
lation to generate the communication graph in each new step, as indicated by Equation (1).
The corresponding Laplacian of these graphs is denoted by Ln ∈ Rn×n.

The locational optimization with consensus performance index in the coverage control
problem can be constructed from (2) into

min
p∈P

H̃(p), with H̃(p) = H(p) +
1
2
(p− CV)

>L̂n(p− CV), (10)
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where L̂n = Ln ⊗ Id ∈ Rnd×nd, p = [p>1 , . . . , p>n ]> ∈ Rnd and CV = [C>V1
, . . . , C>Vn

]> ∈ Rnd.
Quadcopter i ∈ Vn within the network possesses position, velocity, attitude, and an-

gular rate denoted by pi ∈ Q, vi ∈ R3, qc
i ∈ H, and ωc

i ∈ R3, respectively. The coordinate
frames are illustrated in Figure 1, where we adhere to the ENU coordinate convention. The
motions of a quadcopter can be categorized into two components: translation and rotation.
The translational motion is determined by the attitude and the total thrust of the propellers.
In the inertial frame, the quadcopter’s translational dynamics, normalized by its mass, are
governed by

p̈i = qc
i · f̄i · qc∗

i − ḡ = Rc
i f̄i − ḡ, (11)

where qc
i ∈ S3 is the unit quaternion denoting the current attitude of the quadcopter,

ḡ = [0 0 g]> is the gravitational vector, with g being the gravitational acceleration,
and f̄i = [0 0 fi]

> is the thrust control input, with fi being the total thrust input. Following
(8), the rotational motion of the quadcopter is governed by

q̇c
i =

1
2

qc
i ·
[

0
uω

i

]
=

1
2

T̄(q1)uω
i , (12)

where, in this paper, the control input for the rotational motion is the angular rate uω
i .

Figure 1. Coordinate frame of a quadcopter, adapted from our previous work in [30].

Using the transformed constrained optimization problem and the defined quadcopter
dynamics in Equations (11) and (12), the objectives of this work are to design the quaternion-
based attitude and distributed coverage controllers that guarantee convergence within a
given settling time, regardless of the initial values, in both fixed and switching communica-
tion topologies.

4. Finite-Time Control Design
4.1. Translation Control with Fixed Topology

In the following control design, we tackle our first scenario: the coverage control
problem with finite-time stability using a fixed communication topology. We introduce
a distributed coverage controller that ensures the attainment of the optimal position and
velocity within a finite duration, regardless of the initial positions, relying solely on infor-
mation obtained from neighboring agents.

Let the performance index of the coverage problem be as defined in (10). The corre-
sponding optimal point of this optimization is given by p? = CV − 1

2 M−1
V L̂nτv for some

vector τv ∈ Rnd. Given a fixed connected graph, it follows that the last term vanishes due to
the zero eigenvalue of the Laplacian matrix L̂n such that (p1 − CV1)

? = . . . = (pn − CVn)
?.
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In other words, we can assert that the objective function H̃(p) is at its optimum when
the robots’ positions converge to the optimal point p? = CV and consensus is reached.
The velocity reaches its optimal value as v? = ĊV .

For all agent i ∈ Vn, consider the following errors: ζ̃i = [ p̃>i ṽ>i ]
> and ζ̃ij = [ p̃>ij ṽ>ij ]

>,
where p̃i = pi − CVi , p̃ij = sgn( p̃i − p̃j)| p̃i − p̃j|, ṽi = vi − ĊVi , and ṽij = sgn(ṽi − ṽj)|ṽi −
ṽj|. Since there are two terms to optimize in (10), by employing these errors, we design
a controller consisting of centroid stabilizer and the consensus stabilizer. The controller
responsible for driving the robots toward the centroids is proposed as

ug
i = −κgsgn(ζ̃i)(|ζ̃i|

mv
nv + |ζ̃i|

pv
qv ), (13)

with κg = [kgp kgv]>, for kgp, kgv > 0, as well as some positive odd integers mv, nv, pv, qv,
for mv > nv and pv < qv. Similarly, with adjacency matrix A = [ai j], for i 6= j and i, j ∈ Vn,
the consensus stabilizer to maintain the formation is given by

uc
i = −κc

n

∑
j=1

aijsgn(ζ̃ij)(|ζ̃ij|
mv
nv + |ζ̃ij|

pv
qv ), (14)

with κc = [kcp kcv]> and kcp, kcv > 0. Hence, the augmented controller reads

u f
i = ug

i + uc
i + ḡ. (15)

The following lemmas are useful for analyzing the performance of the designed
control protocol.

Lemma 2 ([27]). Let x1, x2, . . . , xn ≥ 0. Then,

n

∑
j=1

xa
j ≥

(
n

∑
i=1

xj

)a

, for a ∈ (0, 1).

Lemma 3 ([27]). Let x1, x2, . . . , xn ≥ 0. Then,

n

∑
j=1

xa
j ≥ n1−a

(
n

∑
i=1

xj

)a

, for a > 1.

Lemma 4 ([27]). The equilibrium point of the scalar system

ẋ = −αx
a
b − βx

c
d , x(0) = x0,

where α, β > 0, and a, b, c, d are positive odd integers satisfying a > b and c < d, which are
finite-time stable with the settling time given by

T < Tmax :=
1
α

b
a− b

+
1
β

d
d− c

.

Remark 1. It is worth noticing that this lemma guarantees the finite-time convergence independent
of the initial value of the system.

In the subsequent theorem, we introduce our first result regarding the finite-time
convergence of the suggested coverage control protocol for the fixed-topology situation,
which is adapted from our conference paper [30].

Theorem 1 (Convergence of Finite-time Coverage Controller with Fixed Topology [30]). Let
a group of n agents be connected via a fixed undirected connected graph Gn = (Vn, En) with agent
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dynamics defined in (12) and (11). Let two adjacency matrices corresponding to this graph be denoted
by Aα = [a2nv/mv+nv

ij ] ∈ Rn×n and Aβ = [a2qv/pv+qv
ij ] ∈ Rn×n, respectively, with mv, nv, pv, qv

being positive odd integers satisfying mv > nv and pv < qv. Let the corresponding Laplacians
Lα and Lβ have the smallest nonzero eigenvalues λα

2 and λ
β
2 , respectively. Then, there exist some

constants κ1, κ2 > 0 such that the finite-time coverage problem can be solved by employing the
coverage control protocol (15) with settling time expressed as

Tf < T f
max :=

1
κ1

nv

mv − nv
+

1
κ2

qv

qv − pv
. (16)

Proof. Using the translational controller (15), the translational dynamics of the quadcopter
can equivalently be expressed as

˙̃ζi = Aζ̃i + Bu f
i =

[
0 1
0 0

]
ζ̃i +

[
0
1

]
u f

i . (17)

Define a Lyapunov function:

V f (ζ̃(t)) =
1
2

n

∑
i=1

ζ̃2
i (t). (18)

With the system dynamics in (17), the time derivative of the candidate function is given by

V̇ f (ζ̃) = V̇g(ζ̃) + V̇c(ζ̃). (19)

The centroid stabilizer in the first term of (19) can be expanded into

V̇g(ζ̃) ≤ −λ
g
min

n

∑
i=1

ζ̃isgn(ζ̃i)(|ζ̃i|
mv
nv + |ζ̃i|

pv
qv ), (20)

in which we already utilize the smallest eigenvalue of A− Bκg denoted by λ
g
min. By using

the fact that |ζ̃i| = ζ̃isgn(ζ̃i), along with Lemmas (2) and (3), the centroid stabilizer term
could be written as

V̇g(ζ̃) ≤ −λ
g
min
(
n

nv−mv
2nv

( n

∑
i=1

ζ̃2
i
)mv+nv

2nv + n
qv−pv

2qv
( n

∑
i=1

ζ̃2
i
) pv+qv

2qv
)

= −λ
g
min(n

nv−mv
2nv (2V f )

mv+nv
2nv + n

qv−pv
2qv (2V f )

pv+qv
2qv ). (21)

Similarly, the inequality of the consensus stabilizer from the second term of (19) can
be expressed as

V̇c(ζ̃) ≤ −λc
min

n

∑
i=1

ζ̃i

n

∑
j=1

aijsgn(ζ̃ij)(|ζ̃ij|
mv
nv + |ζ̃ij|

pv
qv ), (22)

where λc
min is the smallest eigenvalue of A− Bκc. By utilizing the property of the adjacency

matrix and also the fact that |ζ̃ij| = ζ̃ijsgn(ζ̃ij), the consensus stabilizer term could be
written as
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V̇c(ζ̃) ≤ −
λc

min
2

n

∑
i=1

n

∑
j=1

aij((ζ̃
2
ij)

mv+nv
2nv + (ζ̃2

ij)
pv+qv

2qv )

+ (a
2qv

pv+qv
ij ζ̃2

ij)
pv+qv

2qv )

≤ −
λc

min
2
(
n

nv−mv
2nv

( n

∑
i=1

n

∑
j=1

a
2nv

mv+nv
ij ζ̃2

ij
)mv+nv

2nv

+ n
qv−pv

2qv
( n

∑
i=1

n

∑
j=1

a
2qv

pv+qv
ij ζ̃2

ij
) pv+qv

2qv
)

(23)

where the last inequality is obtained by employing Lemmas 2 and 3.
To analyze the graph, consider two adjacency matrices of connected undirected graphs

Gα and Gβ, denoted by Aα = [a2nv/mv+nv
ij ] ∈ Rn×n and Aβ = [a2qv/pv+qv

ij ] ∈ Rn×n, respec-
tively. The corresponding Laplacians are given by Lα and Lβ. It follows that the inequality
of the consensus stabilizer can equivalently be expressed as

V̇c(ζ̃) ≤ −
λc

min
2

(n
nv−mv

2nv (2ζ̃>Lα ζ̃)
mv+nv

2nv

+ n
qv−pv

2qv (2ζ̃>Lβ ζ̃)
pv+qv

2qv ), (24)

with ζ̃ = [ζ̃>1 , . . . , ζ̃>n ]> ∈ Rnd. Applying the Courant–Fischer theorem of the Laplacian
matrices, ζ̃>Lα ζ̃ ≥ λα

2‖ζ̃‖2 and ζ̃>Lβ ζ̃ ≥ λ
β
2‖ζ̃‖2 for 1>nd ζ̃ = 0nd, leads (24) to

V̇c(ζ̃) ≤ −
λc

min
2

(n
nv−mv

2nv (4λα
2V f )

mv+nv
2nv

+ n
qv−pv

2qv (4λ
β
2 V f )

pv+qv
2qv ). (25)

By adding (21) and (25), followed by some rearrangements, the time derivative of the
Lyapunov function can be written as

V̇ f (ζ̃) ≤− 1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα
2)

mv+nv
2nv )(2V f )

mv+nv
2nv

− 1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β
2 )

pv+qv
2qv )(2V f )

pv+qv
2qv . (26)

By denoting ξ =
√

2V f and ξ̇ = 2V̇ f /
√

2V f for V f (ζ̃) 6= 0, we have

ξ̇ ≤− 1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα
2)

mv+nv
2nv )ξ

mv+nv
nv

− 1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β
2 )

pv+qv
2qv )ξ

pv+qv
qv . (27)

Choosing positive odd integers mv, nv, pv, qv satisfying mv > nv and pv < qv and employ-
ing Lemma 4 with the Comparison Principle [32] yields the boundary of the settling time,
expressed as

Tf < T f
max :=

1
κ1

nv

mv − nv
+

1
κ2

qv

qv − pv
,

with

κ1 =
1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα
2)

mv+nv
2nv ), and

κ2 =
1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β
2 )

pv+qv
2qv ).
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It can be observed that the system is finite-time stable, i.e., lim
t→T f

max
V f (ζ̃) = 0, implying

that lim
t→T f

max
‖ζ̃‖ = 0.

In the the quadcopter model, we may obtain the thrust via fi = (u f
i )
>Rc

i [0 0 1]>

utilizing the translational control input in (15).

4.2. Translation Control with Switching Topology

In this section, we address the second scenario examined in this research paper, which
pertains to the finite-time coverage problem with a switching communication topology.
The subsequent control design showcases a proposed controller that ensures the finite-time
convergence of the robots’ trajectory towards the optimal position and velocity, regardless
of their initial positions, using only information from neighboring agents.

By employing similar performance index of the coverage problem defined in (10),
this optimization problem has an optimal point given by p? = CV − 1

2 M−1
V L̂nτv for some

vector τv ∈ Rnd. As long as the time-varying undirected graph is connected, the last term
vanishes due to the zero eigenvalue of the Laplacian matrix L̂n such that (p1 − CV1)

? =
. . . = (pn − CVn)

?. The objective function H̃(p) is optimal when the position of the robots
converge to the optimal point p? = CV and the consensus is achieved. The optimal value
of the velocity is denoted by v? = ĊV .

In this switching topology scenario, the proposed centroid stabilizer, responsible for
driving the robots toward the centroids, is formulated as

ug
i = −κgsgn(ζ̃i)(|ζ̃i|

mv
nv + |ζ̃i|

pv
qv ), (28)

with κg = [kgp kgv]>, for kgp, kgv > 0, as well as some positive odd integers mv, nv, pv, qv,
for mv > nv and pv < qv. Similarly, utilizing the adjacency matrix A = [ai j], for i 6= j and
i, j ∈ Vn, the consensus stabilizer to maintain the formation is given by

uc
i = −κc

n

∑
j=1

aijsgn(ζ̃ij)(|ζ̃ij|
mv
nv + |ζ̃ij|

pv
qv ), (29)

with κc = [kcp kcv]> and kcp, kcv > 0. Combining the centroid and consensus stabilizers,
the augmented controller is

u f
i = ug

i + uc
i + ḡ. (30)

After formulating the controller, we present our second result for the finite-time
convergence of the proposed coverage control protocol for the switching communication
scenario extended from our previous result [30].

Theorem 2 (Convergence of Finite-time Coverage Controller with Switching Topology).
Let a group of n agents have the agent dynamics defined in (12) and (11). Let these agents be
connected via a switching connected Delaunay graph Gn(t) = (Vn, En(t)) for all time t > 0.
Let two adjacency matrices correspond to this graph, denoted by Aα = [a2nv/mv+nv

ij ] ∈ Rn×n

and Aβ = [a2qv/pv+qv
ij ] ∈ Rn×n, respectively, where mv, nv, pv, qv are positive odd integers

satisfying mv > nv and pv < qv. Let the corresponding Laplacians Lα and Lβ for every time
t have the smallest nonzero eigenvalues for all time t > 0 be λα∗

2 = mint λα
2(Lα(Gn)) and

λ
β∗
2 = mint λ

β
2 (Lβ(Gn)), respectively. Then, there exist some constants κ1, κ2 > 0 such that the

finite-time coverage problem can be solved by employing the coverage control protocol (30) with
settling time given by

Tf < T f
max :=

1
κ1

nv

mv − nv
+

1
κ2

qv

qv − pv
. (31)
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Proof. Using the translational controller (30), the translational dynamics of the quadcopter
can equivalently be expressed as

˙̃ζi = Aζ̃i + Bu f
i =

[
0 1
0 0

]
ζ̃i +

[
0
1

]
u f

i . (32)

Define a Lyapunov function:

V f (ζ̃(t)) =
1
2

n

∑
i=1

ζ̃2
i (t). (33)

With the system dynamics in (32), the time derivative of the candidate function is given by

V̇ f (ζ̃) = V̇g(ζ̃) + V̇c(ζ̃). (34)

The centroid stabilizer in the first term of (34) can be expanded into

V̇g(ζ̃) ≤ −λ
g
min

n

∑
i=1

ζ̃isgn(ζ̃i)(|ζ̃i|
mv
nv + |ζ̃i|

pv
qv ), (35)

in which we already utilize the smallest eigenvalue of A− Bκg denoted by λ
g
min. By using

the fact that |ζ̃i| = ζ̃isgn(ζ̃i) along with Lemmas (2) and (3), the centroid stabilizer term
could be written as

V̇g(ζ̃) ≤ −λ
g
min
(
n

nv−mv
2nv

( n

∑
i=1

ζ̃2
i
)mv+nv

2nv + n
qv−pv

2qv
( n

∑
i=1

ζ̃2
i
) pv+qv

2qv
)

= −λ
g
min(n

nv−mv
2nv (2V f )

mv+nv
2nv + n

qv−pv
2qv (2V f )

pv+qv
2qv ). (36)

Similarly, the inequality of the consensus stabilizer from the second term of (34) can
be expressed as

V̇c(ζ̃) ≤ −λc
min

n

∑
i=1

ζ̃i

n

∑
j=1

aijsgn(ζ̃ij)(|ζ̃ij|
mv
nv + |ζ̃ij|

pv
qv ), (37)

where λc
min is the smallest eigenvalue of A− Bκc. By utilizing the property of the adjacency

matrix and also the fact that |ζ̃ij| = ζ̃ijsgn(ζ̃ij), the consensus stabilizer term could be
written as

V̇c(ζ̃) ≤ −
λc

min
2

n

∑
i=1

n

∑
j=1

aij((ζ̃
2
ij)

mv+nv
2nv + (ζ̃2

ij)
pv+qv

2qv )

+ (a
2qv

pv+qv
ij ζ̃2

ij)
pv+qv

2qv )

≤ −
λc

min
2
(
n

nv−mv
2nv

( n

∑
i=1

n

∑
j=1

a
2nv

mv+nv
ij ζ̃2

ij
)mv+nv

2nv

+ n
qv−pv

2qv
( n

∑
i=1

n

∑
j=1

a
2qv

pv+qv
ij ζ̃2

ij
) pv+qv

2qv
)

(38)

where the last inequality is obtained by employing Lemmas 2 and 3.
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Using the relationship between Laplacian and adjacency matrices, it follows that the
inequality of the consensus stabilizer can equivalently be expressed as

V̇c(ζ̃) ≤ −
λc

min
2

(n
nv−mv

2nv (2ζ̃>Lα ζ̃)
mv+nv

2nv

+ n
qv−pv

2qv (2ζ̃>Lβ ζ̃)
pv+qv

2qv ), (39)

with ζ̃ = [ζ̃>1 , . . . , ζ̃>n ]> ∈ Rnd. Using the properties of the Laplacian matrices, ζ̃>Lα ζ̃ ≥
λα

2‖ζ̃‖2 ≥ λα∗
2 ‖ζ̃‖2 and ζ̃>Lβ ζ̃ ≥ λ

β
2‖ζ̃‖2 ≥ λ

β∗
2 ‖ζ̃‖2 for 1>nd ζ̃ = 0nd, leads (39) to

V̇c(ζ̃) ≤ −
λc

min
2

(n
nv−mv

2nv (4λα∗
2 V f )

mv+nv
2nv

+ n
qv−pv

2qv (4λ
β∗
2 V f )

pv+qv
2qv ). (40)

By adding (36) and (40), followed by some rearrangements, the time derivative of the
Lyapunov function can be written as

V̇ f (ζ̃) ≤− 1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα∗
2 )

mv+nv
2nv )(2V f )

mv+nv
2nv

− 1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β∗
2 )

pv+qv
2qv )(2V f )

pv+qv
2qv . (41)

By denoting ξ =
√

2V f and ξ̇ = 2V̇ f /
√

2V f for V f (ζ̃) 6= 0, we have

ξ̇ ≤− 1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα∗
2 )

mv+nv
2nv )ξ

mv+nv
nv

− 1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β∗
2 )

pv+qv
2qv )ξ

pv+qv
qv . (42)

Choosing positive odd integers mv, nv, pv, qv satisfying mv > nv and pv < qv and employ-
ing Lemma 4 with the Comparison Principle [32] yields the boundary of the settling time
expressed as

Tf < T f
max :=

1
κ1

nv

mv − nv
+

1
κ2

qv

qv − pv
,

with

κ1 =
1
2

n
nv−mv

2nv (2λ
g
min + λc

min(2λα∗
2 )

mv+nv
2nv ), and

κ2 =
1
2

n
qv−pv

2qv (2λ
g
min + λc

min(2λ
β∗
2 )

pv+qv
2qv ).

It can be observed that the system is finite-time stable, i.e., lim
t→T f

max
V f (ζ̃) = 0, implying

that lim
t→T f

max
‖ζ̃‖ = 0.

Similar to the the previous scenario, we may compute the thrust via fi = (u f
i )
>Rc

i [0 0 1]>

by employing the translational control input in (30).

4.3. Rotation Control

Due to the interdependence of translational and rotational motion, it is necessary to
develop an attitude controller that ensures finite-time stability.

Given the current and desired attitudes of the i-th quadcopter, denoted by qc
i =

[ηc
i q̄c>

i ]> and qd
i = [ηd

i q̄d>
i ]>, respectively, the error quaternion can be obtained via
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qe
i = qc∗

i · qd
i = T(qc∗

i )qd
i = [ηe

i q̄e>
i ]>. For controller analysis, an error vector is also defined

as follows:

eqe
i
=

[
1∓ ηe

i
q̄e

i

]
. (43)

Differentiating this error yields the error dynamics expressed as

ėqe
i
=

1
2

T̄(qe
i )u

ω
i . (44)

In this attitude control scheme, by employing the error vector, the angular-rate control
command is defined as

uω
i = −κωsgn

(
ẽqe

i

)(
|ẽqe

i
|

mw
nw + |ẽqe

i
|

pw
qw

)
(45)

with ẽqe
i
= [T̄(qe

i )]
>eqe

i
and kω > 0.

The following theorem states our next result on the attitude controller of a quadcopter.

Theorem 3 (Convergence of Finite-time Rotational Controller). Let the attitude dynamics of a
quadcopter be given by (12) and the error vector between the current and desired attitudes be given
by (43). Then, given the control protocol (45), there exist some positive constants kω such that the
equilibrium point of the error vector is finite-time stable with settling time given by

Ta < Ta
max :=

1
κω

(
nw

mw − nw
+

qw

qw − pw

)
, (46)

where mw, nw, pw, qw are positive odd integers satisfying mw > nw and pw < qw.

Proof. Define a Lyapunov function:

Va(eqe
i
) =

1
2

e>qe
i
eqe

i
. (47)

Taking the derivative of the Lyapunov function yields

V̇a(eqe
i
) = −κω

1
2

ẽ>qe
i
sgn
(

ẽqe
i

)(
|ẽqe

i
|

mw
nw + |ẽqe

i
|

pw
qw

)
, (48)

where ẽqe
i
= [T̄(qe

i )]
>eqe

i
, and the error dynamics with the proposed control command have

been utilized. Since
∣∣∣ẽqe

i

∣∣∣ = ẽqe
i
sgn
(

ẽqe
i

)
, (48) can be expressed as

V̇a(eqe
i
) = −κω

1
2

((
ẽ2

qe
i

)mw+nw
2nw +

(
ẽ2

qe
i

) pw+qw
2qw

)
(49)

Substituting 2Va = ẽ2
qe

i
to (49) leads to

V̇a(eqe
i
) = −κω

1
2

(
(2Va)

mw+nw
2nw + (2Va)

pw+qw
2qw

)
. (50)

By taking $ =
√

2Va and $̇ = 2V̇a/
√

2Va for Va > 0, (49) can equivalently be rewritten as

$̇ = −κω$
mw
nw − κω$

pw
qw . (51)
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Therefore, utilizing the Comparison Principle [32] and Lemma 4 with some positive
odd integers mw, nw, pw, qw, for mw > nw and pw < qw, we may conclude that the settling
time of the attitude system can be expressed as

Ta < Ta
max :=

1
κω

(
nw

mw − nw
+

qw

qw − pw

)
,

and the system is finite-time stable, i.e., limt→Ta
max Va(eqe

i
) = 0, implying that limt→Ta

max ‖eqe
i
‖ =

0.

Based on Equations (16) and (46), the computation of the boundary of the settling
time of this coverage controller is indeed dependent on some controller parameters
and the algebraic graph topology but independent of the initial values. Furthermore,
the quadcopters will reach the optimal position and velocity within the settling time
Tsys = Ta + T f < Ta

max + T f
max.

To obtain the desired quaternion, given translational control input (15) or (30) and
desired heading ψd

i , let a heading vector xc
i = [cos ψd

i sin ψd
i 0]>. Then, we may have

a rotation matrix Rd
i = [xd

i yd
i zd

i ] composed of zd
i = u f

i /‖u f
i ‖, yd

i = zd
i × xc

i /‖zd
i × xc

i ‖,
and xd

i = yd
i × zd

i /‖yd
i × zd

i ‖. Accordingly, the desired quaternion can easily be obtained us-
ing a rotation matrix and quaternion relationship, such that qd

i = rotmatToQuaternion(Rd
i ),

as documented in [33].

5. Simulation Results

In this section, a series of numerical simulations are conducted to validate the proposed
control protocols. The simulations are performed using the PX4 Autopilot software-in-the-
loop (SITL) on the Gazebo simulator and the Mavros controller package integrated with the
Robot Operating System (ROS) [34,35]. This simulation platform provides a highly realistic
environment that closely emulates the behaviors and characteristics of real quadcopters
equipped with the PX4 flight controller. The PX4 flight controller incorporates control input
saturation in the low-level actuator controllers. The simulations are run on a computer with
a Linux-based operating system, a 3.2-GHz processor, and 16-GB RAM. Figure 2 displays a
screenshot of the simulator.

Figure 2. Quadcopters on Gazebo simulator, adapted from our previous work in [30].

Two scenarios are examined in this simulation: coverage control with fixed topology
and coverage control with switching topology.
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In the fixed topology scenario, nine quadcopters are randomly deployed within a
bounded planar space defined by the coordinates (0,0), (0,1), (1,1), and (1,0). The quad-
copters have constant altitude and adjust only their position and velocity in the x− y plane.
The distribution of information in this scenario is uniform. The controller parameters
used are mv = mw = 5, nv = nw = 3, pv = pw = 3, qv = qw = 5, κω = 0.8, κg = 0.5,
and κc = 0.4. The communication topology is represented by a complete graph among the
nine agents, with the smallest nonzero eigenvalue being λ2 = 0.16. Theoretical analysis
(Theorems 1 and 3) suggests an estimated maximum settling time of Tsys = 23.850.

Applying the control protocols described in Equations (15) and (45) to the quadcopter
dynamics modeled by Equations (11) and (12), the resulting trajectories of the robots and the
corresponding Voronoi partition are shown in Figure 3a. Additionally, Figure 3b displays
the objective function, and Figure 3c illustrates the convergence trajectory of the error
‖pi − CVi‖. The control inputs of the agents are depicted in Figure 3d [30].

(a) (b)

(c) (d)

Figure 3. Finite-time coverage control simulation with fixed communication topology and uniform
information distribution: (a) Trajectories and optimal Voronoi regions; (b) Objective function conver-
gence, red-dashed line refers to the true objective function, blue line refers to the objective function
computed by the agents in every iteration; (c) Trajectory errors; (d) Control inputs. Different colours
in Subfigures (a), (c) and (d) refer to different trajectories of the quadcopters.

In the switching topology scenario, ten quadcopters are randomly deployed within a
bounded planar space defined by the coordinates (0,0), (0,1), (1,1), and (1,0). Similar to the
fixed topology case, the quadcopters have constant altitude and adjust only their position
and velocity in the x − y plane. However, the information distribution in this scenario
exhibits two peaks. The controller parameters used are mv = mw = 5, nv = nw = 3,
pv = pw = 3, qv = qw = 5, κω = 0.8, κg = 0.5, and κc = 0.4. The communication topology
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is represented by a Delaunay graph among the ten agents, with the smallest nonzero
eigenvalue being λ2 = 0.4615. Theorems 2 and 3 suggest an estimated maximum settling
time of Tsys = 20.298.

Applying the control protocols described in Equations (30) and (45) to the quadcopter
dynamics modeled by Equations (11) and (12), the resulting trajectories of the robots and the
corresponding Voronoi partition are shown in Figure 4a. Additionally, Figure 4b displays
the objective function, and Figure 4c illustrates the convergence trajectory of the error
‖pi − CVi‖. The control inputs to drive the agents are plotted in Figure 4d.

(a) Trajectories and optimal Voronoi regions. (b) Objective function convergence.

(c) Trajectory errors. (d) Control inputs.

Figure 4. Finite-time coverage control simulation with switching communication topology and
diagonal-peak information distribution: (a) Trajectories and optimal Voronoi regions; (b) Objective
function convergence, red-dashed line refers to the true objective function, blue line refers to the
objective function computed by the agents in every iteration; (c) Trajectory errors; (d) Control inputs.
Different colours in Subfigures (a), (c) and (d) refer to different trajectories of the quadcopters.

Figures 3 and 4 demonstrate the successful execution of the controllers, resulting in
the alignment of the robots’ positions with their respective centroids. In the first scenario,
where the density function within the boundary is uniform, the distribution of robots per
unit area appears similar. However, in the second scenario, quadcopters tend to cluster
around the diagonal peaks. The error plots in Figures 3c and 4c confirm that the position
error relative to the optimal position is minimized before the expected settling time Tmax.
Additionally, Figures 3b and 4b illustrate the convergence of the objective function towards
an optimal value once the centroids are reached.

Based on these results, it can be observed that the quadcopters, guided by the attractive
coverage controller, move towards the optimal points from their initial positions. At certain
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time instances t = t2 (where t2 > 0), some quadcopters exhibit higher convergence errors
compared with earlier time t = t1 (where t2 > t1). However, analyzing the objective func-
tion curves, it can be inferred that this behavior arises because, at time t = t2, the algorithm
has found a more efficient way to minimize the total objective function, i.e., moving a few
quadcopters is easier than adjusting the others. These simulation results further validate
that the protocols (15) and (30) successfully address the coverage control problem, enabling
the quadcopters to converge close to the optimal positions within a finite time.

There remains the task of theoretically analyzing the proposed finite-time coverage
control protocol under constrained control inputs to account for real quadcopter systems,
where the control inputs may have bounds. This aspect will be investigated in future
research, which will involve the utilization of actual quadcopters to validate the analysis.

6. Conclusions

In this paper, we studied the distributed coverage control problem of quadcopter
sensor networks and ensured their finite-time stability both in fixed and switching commu-
nication topologies. The control protocols were classified into two schemes according to the
motions: translation and rotation. By employing the reformulated locational optimization
problem, a translational control protocol was developed to guide the quadcopters in track-
ing the position and velocity of the Voronoi centroid derived from the coverage control
problem. Subsequently, the translational control command was fed into the rotational
controller to determine the desired attitude of the quadcopter. Since the planar translation
of the quadcopter was coupled with its attitude, we also proposed a rotational control pro-
tocol for each quadcopter based on quaternion to follow the desired attitude. The proposed
translational and rotational protocols were carefully analyzed using the finite-time stabil-
ity theory to ensure that the quadcopters’ position and velocity converge to the Voronoi
centroid position and velocity within a designed settling time, independent of the initial
values, both in fixed and switching communication networks. Through simulations on
the Gazebo simulator with ROS, we validated the performance of the proposed control
protocols, where the centroids were reached within the expected duration. In future work,
a number of experiments with real quadcopter systems with constrained control inputs
will also be carried out at the GIPSA lab to verify the effectiveness of the algorithms.
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