

Plasmonic sensing to follow the reactivity on Pt NPs and clusters

<u>B. Demirdjian^{*}</u>, I. Ozerov^{*}, M. Vaidulych^{**}, S. Vajda^{**}, C. R. Henry^{*}

* Interdisciplinary Center for Nanoscience of Marseilles

Aix-Marseille University, CNRS, Marseilles, France

** J. Heyrovsky Institut of Physical Chemistry, Dept of Nanocatalysis

Prague, Czech Republic

Nanosensors based on the LSPR (Localized Surface Plasmon Resonance)

Understanding how gas molecules interact with NPs :

→ essential challenge in atmospheric chemistry and catalysis

Extraordinary optical properties of noble-metal nanoparticles :

→ development of (chemical, biological, ...) sensitive nanosensors

LSPR extinction peak : collective oscillation of electrons of an illuminated metal nanoparticle

The minimum of reflected light corresponds to a maximum of absorbance

Indirect nanoplasmonic sensing: INPS

Cluster Meeting 2023, Prague, 18-23 June 2023

powder catalysts and Pt(100) single crystals.

Wavelength (nm)

Pt NP's fabrication

TEM pictures JEOL JEM 2010

- Chemical synthesis (plasmonic sample immersed in Pt(acac)2 + chloroform)
- Reduction (CO, H₂) + heating treatment (200 °C) \rightarrow transfer HV reactor - Pt NPs cubic shape
 - *d* = **3.0** ± 1 nm
 - $a_s = n_s d^2 = 0.52$ % (very low !)

Oxygen adsorption: INPS $vs \Delta \Phi$

- INPS on our sample:
 Δλ > 0 and increases with oxygen coverage
 Error bars =
 lower limit of detection =
 0.04 ML !!!
- Literature → work function measurements on polycrystalline Pt*
 <u>ΔΦ > 0</u> and increases with oxygen coverage

 → oxygen is irreversibly adsorbed on Pt NPs until the saturation coverage Θ ~ 0.4 ML

CO adsorption: INPS $vs \Delta \Phi$

INPS on our sample:
 Δλ < 0 and increases when
 0.3 < Θ < 0.5 ML
 Error bars =

lower limit of detection = 0.04 ML !!!

 Literature → work function measurements on Pt(111)*:
 <u>ΔΦ < 0</u> and increases when 0.3 < Θ < 0.5 ML

→ CO is reversibly adsorbed on Pt NPs until the saturation coverage θ ~ 0.5 ML

QMS coupling: quantitative measurements

• QMS \rightarrow monitoring the CO₂ production during CO oxidation on Pt NPs T = 443 K, **X**_{CO} = **P**_{CO} / (**P**_{CO} + **P**_{O2}) = 0.25

• CO₂ production by the plasmonic sample itself (contribution from the bare HV reactor has been subtracted)

QMS / INPS to follow the CO oxidation

To go further...

0.5% of the sensor surface is covered by Pt nanocubes

detection of a few hundredths of a monolayer

Work on size-sorted Pt clusters (10 to 20 atoms)

- Decrease the amount of Pt (rare and expansive)
- > INPS measurable ?
- Sensitivity vs the Pt cluster size ?

Collaboration with

J. Heyrovský Institute of Physical Chemistry

Combination of the condensation of metal atoms from the gas phase by means of Gas Aggregation Cluster Source and Quadrupole Mass Selection

Pt 10 deposited directly onto the INPS sensor 10 % at. ML eq.

Conclusions and outlooks

- > INPS = non destructive probe on large (P, T) domains
- > With cubic Pt NP's: quantitative + very sensitive probe
- > With Pt10 clusters: first results on CO adsorption ...

Outlooks:

- > Pt10 at lower P_{CO}, O₂, and CO oxidation + Mass Spectrom.
- Increase the Pt cluster size
- > Measure the isosteric heat of adsorption