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Abstract: Marine tunicates are identified as a potential source of marine natural products (MNPs),
demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The
symbiotic relationship between tunicates and specific microbial groups has revealed the acquisi-
tion of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented
compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily
originated from their bacterial symbionts, which are involved in their chemical defense function, indi-
cating the ecological role of symbiotic microbial association with tunicates. This review has garnered
comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various
sections covered in this review include tunicates’ ecological functions, biological activities, such as
antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates,
and research gaps. Apart from the literature content, 20 different chemical databases were explored to
identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources
in the global oceans are detailed for their ecological and biotechnological implications.

Keywords: tunicates; symbiotic microbes; pigments; bioactive compounds; alkaloids &amp; peptides

1. Introduction

Tunicates and sea squirts are soft-bodied solitary or colonial (60%) sessile marine
organisms belonging to the family Ascidiacea under the subphylum Urochordata, phylum
Chordata [1,2]. These organisms are hermaphroditic, filter feeders, and appear in different
body colors, such as translucent to blue, green, yellow, red, and brown, with a life span rang-
ing from two months to one year [1–4]. Currently, tunicates are classified into four major
clades such as (a) Appendicularia, (b) Thaliacea + Phlebobranchia + Aplousobranchia, (c)
Molgulidae, and (d) Styelidae + Pyuridae, on the basis of the phylogenomic transcriptomic
approach [5]. Globally, around 2815 tunicate species have been recorded from shallow
coastal waters to deep waters [1]. Tunicate larvae resemble tadpole larvae of members of
Chordata, but soon after the retrogressive metamorphosis, they lose the notochord and
post-anal tail; thus, these organisms are often referred to as the “evolutionary connecting
link” between invertebrates and chordates [6,7]. Therefore, tunicates are considered as im-
portant model organisms for several research aspects, such as evolution [6], development
biology [8,9], invasion success [10], and bioactive compounds.
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Tunicates are prolific producers of marine natural products (MNPs), and certain
species are also known to release toxins, such as Bistramide A [11,12]. However, a few
species, like Halocynthia roretzi and Pyura michaelseni, are eaten in southeast Asian countries
like Korea [13,14]. The strong immune defensive system [15] and their associated symbiotic
microbes with bioactive properties [16], makes tunicates highly preferential drug resources
in the ocean [15,17]. Since the majority of the tunicate species are known to produce MNP’s,
attempts are being undertaken in the culturing of these tunicates (e.g., mangrove tunicate
Ecteinascidia turbinata) in large scale for various applications [18,19]. The process of accu-
mulation of vanadium by vanadocytes of tunicates from seawater is well-known [20]. In
contrast, investigations on the acquisition of MNPs by tunicates from their symbiotic bacte-
ria are very limited, except for the antitumor products ecteinascidins [21,22], didemnin [23],
and talaropeptides [24]. A recent review highlighted the association of bacteria, actino-
mycetes, fungi, and cyanobacteria with the tunicates and their bioactive nature [25]. It
was also observed that actinomycetes, fungi, and bacteria are the predominant microbes
associated with the tunicates, showing cytotoxic and antimicrobial activities [26], with
the production of alkaloids as the major source of MNPs [27]. In this context, this review
aimed to provide the chemical profiles of various tunicates and their associated microbes
for biotechnological and drug development applications.

2. Ecological Importance of Tunicates

The tunicates population plays an important role in the marine food web through
filter feeding [4]. Earlier studies have suggested that phytoplankton productivity in a
shallow fjord is controlled by the tunicates population [28]. Tunicates are known to trap the
sinking particulate organic matter and generate mucus rich organic matter and fecal pellets
with carbohydrates and minerals [29,30], thereby triggering the downward biogeochemical
flux (e.g., carbon flux) patterns from surface to deep waters [29,31,32]. Some obligate
photosymbiotic tunicates have been suggested to act as environmental stress indicators [33].
The unknown ecological functions of a few tunicate MNPs [34] in understanding their
ecological role is yet to be understood.

3. Database Search on Tunicate MNPs

Twenty different public chemical databases such as BIAdb, BindingDB, ChemDB,
ChEMBL, ChemSpider, DrugBank, HIT, HMDB, KEGG, NCI, NPACT, PDB-Bind, PDBeChem,
PharmaGKB, PubChem, SMPDB, SuperDrug, TTD, UNIProt, and ZINC were explored
to identify the tunicate-originated MNPs deposited in these databases. The chemical con-
stituents identified from these databases using the search keywords “tunicate and ascidian”
are listed in Table 1.

Table 1. List of MNPs originated from tunicates available in various public databases. The unknown compound records are
excluded from the list.

Database No. of Known
Compounds

No. of Unknown
Compounds

Known Chemical
Compound Biological Properties

BIAdb 1 - Polycarpine Cytotoxic, antiviral, and
antifungal

BindingDB 2 -
Tuberatolides,

Sodium 1-(12-hydroxy)
octadecanyl sulfate

Farnesoid X receptor
antagonists, matrix

metalloproteinase 2 inhibitor

ChemDB 2 - Patellazole B,
Patellazole C Antimicrobial, cytotoxic

ChEMBL 2 Ascididemin,
Trabectedin Anticancer

ChemSpider 1 - Trabectedin Anticancer
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Table 1. Cont.

Database No. of Known
Compounds

No. of Unknown
Compounds

Known Chemical
Compound Biological Properties

DrugBank - -

HIT - -

HMDB 1 - Trabectedin Anticancer

KEGG 1 - Trabectedin Anticancer

NCI - -

NPACT - -

PDB-Bind - -

PDBeChem 16 >30

Cystodytin D, cystodytin F,
cystodytin E,
cystodytin G,
cystodytin H,
cystodytin I,

Diplosoma ylidene 1,
Diplosoma ylidene 2,

Lejimalide A, lejimalide B,
lissoclibadin 1,
lissoclibadin 2,

lissoclibadin 3, lamellarin
alpha 20-sulfate,

plitidepsin,
trabectedin

Cytotoxic, anticancer

PharmaGKB 1 - Trabectedin Anticancer

PubChem 4 2

Patellazole B,
Patellazole C,

GnRH-II,
GnRH-I

Antimicrobial and cytotoxic,
induces spawning

SMPDB - -

SuperDrug 1 - Trabectedin Anticancer

TTD - -

UniProt 1 1 Retinoic acid Regeneration of gut

ZINC 1 - Trabectedin Anticancer

Foot note: Table 1 data are garnered from public chemical databases listed in the main text part 3, but not from the literature. That is why
there are no references cited in this table. Readers are asked to refer to Tables 2 and 3 where details are from the literature, and therefore,
references are cited.

4. Profile of MNPs from Tunicates and Associated Microbes

Tunicates are known to produce a wide range of MNPs with various bioactive proper-
ties (Tables 2 and 3). These organisms are considered as a rich source of cellulose, which
varies with different species [35]. Alkaloids and peptides are the major chemical con-
stituents observed in tunicates [36]. Metabolites originated from tunicate hemocytes are
also found to be cytotoxic to foreign particles [37] and various cell lines [38]. Microor-
ganisms associated with the invertebrate hosts have also been identified as a source of
bioactive metabolites [39]. In fact, bioactive metabolite-producing invertebrate-associated
microorganisms have special implications in solving the “supply problem” in the initial
steps of drug discovery [40]. Recently, Chen et al. reviewed the biological and chemical
diversity of ascidian-associated microorganisms [41].
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Table 2. Chemical profiles from body parts and fluids of few tunicate species.

Body Component Chemical Compound Function Application Reference

Tunic
(Ascidia sp., Ciona intestinalis,

Halocynthia roretzi, and Styela plicata)
Tunicin (cellulose) Protection Material cellulose [35]

Blood (Ascidia nigra,
Molgula manhattensis) Vanadium Oxygen transport [42]

Blood
(Ascidia nigra) Tunichromes Vanadium binding and

reduces blood pigments [42,43]

Hemocytes
(Styela clava) Clavanins Multiple functions Antimicrobial [44,45]

Hemocytes
(Halocynthia papillosa)

Halocyntin and
papillosin Antimicrobial [46]

Hemocytes
(Halocynthia aurantium) Halocidin Antimicrobial [47]

Gonad (Unknown sp.) GnRH-2 peptide Pheromone-like function Induce spawning [48]

Microbes associated with tunicates have been found to produce potential metabo-
lites showing antimicrobial and anticancer activities (Figures 1–3 and Table 3). Tunicate-
associated bacteria such as Bacillus, Pantoea, Pseudoalteromonas, Salinicola, Streptomyces,
Vibrio and Virgibacillus have recently been identified with potential antimicrobial activi-
ties [16]. The introduced tunicate species are also reported to harbor diverse host-specific
microbial populations [49] that produce species-specific metabolites [50]. In general, tuni-
cate associated bacteria and fungi are known to produce a variety of MNPs with various
biological properties [41]. The chemistry of yellow pigment-producing parasitic bacteria in
the interstitial and blood-filled spaces of planktonic tunicates, Oikopleura vanhoeffeni and
Oikopleura dioica, are yet to be characterized [51].

Table 3. Bioactive compounds from various species of tunicates and their associated microbes.

MNPs from Tunicates Chemical Compound Function Application Reference

Aplidium albicans Aplidin Anticancer [52,53]

Aplidium albicans Dehydrodidemnin B Antitumor [54]

Aplidium glabrum Quinones Anticancer, cytotoxic [55]

Aplidium haouarianum Haouamine A Cytotoxic activity [56]

Aplidium meridianum Meridianins Anticancer, antibiofilm [57]

Aplidium & Synoicum Meridianins Feeding deterrents Antibacterial [58]

Atapozoa sp. Tambjamine Feeding deterrents [59]

Botryllus tuberatus Tuberatolides Farnesoid X receptor
antagonists [60]

Clavelina lepadiformis Lepadins and villatamines Antiparasitic,
anticancer [61]

Clavelina picta Clavepictine A and B Antimicrobial,
cytotoxicity [62]

Cynthia savignyi Cynthichlorine Antifungal, cytotoxicity [63]

Cystodytes dellechiajei Cystodytins A-I Antitumor, cytotoxic [64,65]

Cystodytes dellechiajei Ascididemin Antitumor [66]

Cystodytes sp. Ascididemin Feeding deterrents Antifeedant [67]
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Table 3. Cont.

MNPs from Tunicates Chemical Compound Function Application Reference

Didemnidae Mellpaladine and
dopargimine Neuroactive [68]

Didemnidae Siladenoserinols A and B Antitumor [69]

Didemnidae Sameuramide A Colony formation [70]

Didemnum sp. Lepadins D-F Antiplasmodial and
antitrypanosomal [71]

Didemnum guttatum Cyclodidemniserinol
trisulfate Anti-retroviral [72]

Didemnum granulatum Granulatamides Deterrent activity [73]

Didemnum molle Lanthipeptide divamide A anti-HIV drug [74]

Didemnum molle Mollamide B Anticancer [75]

Didemnum proliferum Shishijimicins Antitumor [76]

Didemnum psammatodes Methyl esters Antiproliferative [77]

Didemnum ternerratum Lamellarin Sulfates Anticancer [78]

Diplosoma sp. Diplamine Antibacterial and
cytotoxic [79]

Diplosoma virens Diplosoma ylidene 1,
Diplosoma ylidene 2 Anticancer [80]

Ecteinascidia turbinata Ecteinascidin 743
(Trabectedin) Anticancer [81]

Eudistoma gilboverde Methyleudistomins Antitumor [82]

Eudistoma olivaceum Eudistomins G and H Chemical defense Antifouling [34]

Eudistoma olivaceum Eudistomins A, D, G, H, I,
J, M, N, O, P, and Q Antiviral [83]

Eudistoma olivaceum Eudistomins C, E, K, and L Antiviral [84]

Eudistoma vannamei 7-Oxostaurosporine Anticancer [85]

Eudistoma viride Eudistomins H Anticancer [86]

Eusynstyela latericius Eusynstyelamides A, B Antibacterial [87]

Eusynstyela tincta Kuanoniamine A Chemical defense Antimicrobial,
antitumor, antifouling [88]

Halocynthia aurantium Halocidin Antimicrobial [47]

Halocynthia papillosa Halocyntin and papillosin Antimicrobial [46]

Halocynthia roretzi Lumichrome Larval metamorphosis [89]

Halocynthia roretzi Halocyamine A and B Antimicrobial,
anticancer [90]

Lissoclinum cf. badium Lissoclibadins Anticancer [91]

Lissoclinum fragile
Antimicrobial,
hemolytic, and

cytotoxic
[92]

Lissoclinum patella Patellazole B and C Antimicrobial,
cytotoxic [93,94]

Phallusia nigra Vanadium chloride,
vanadyl sulfate Antimicrobial [95]
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Table 3. Cont.

MNPs from Tunicates Chemical Compound Function Application Reference

Polycarpa aurata Polyaurines A and B Antiparasitic [96]

Polycarpa clavata Polycarpine
dihydrochloride Cytotoxic [97]

Polycarpa clavata Polycarpaurines A and C Antiviral, antifungal [98]

Polyclinidae Sodium 1-(12-hydroxy)
octadecanyl sulfate

Matrix
metalloproteinase 2

inhibitor
[99]

Polysyncraton lithostrotum Namenamicin Cytotoxic, antitumor [100]

Polyandrocarpa sp. Polyandrocarpidines
Antimicrobial,

cytotoxic, and deterrent
activities

[101,102]

Polyandrocarpa misakiensis Retinoic acid Regeneration of gut [103]

Pseudodistoma antinboja Cadiolides J-M Antibacterial [104]

Pycnoclavella kottae Kottamide D
Cytotoxic,

anti-inflammatory, and
antimetabolic activities

[105]

Sidnyum turbinatum Alkyl sulfates Antiproliferative [106]

Stolonica sp. Stolonic acid A and B Antiproliferative [107]

Styela clava Clavanins Antimicrobial [108]

Styela plicata Hemocytes Cytotoxic [109]

Synoicum adareanum Hyousterones and
Abeohyousterone

Cytotoxic and
anticancer [110]

Trididemnum solidum Didemnins A, B, and C Antiviral, cytotoxic [111,112]

MNPs from associated
microbes

Candidatus
Endoecteinascidia

frumentensis
Tetrahydroisoquinoline [113]

Microbulbifer sp. Bulbiferates A and B Antibacterial [114]

Penicillium verruculosum Verruculides A,
chrodrimanins A and H

Protein tyrosine
phosphatase 1B

inhibition
[115]

Pseudoalteromonas rubra Isatin Microbial defense Antibacterial [16]

Pseudoalteromonas tunicata Tambjamine Feeding deterrents [116]

Pseudoalteromonas tunicata Tambjamine Antifungal [117]

Pseudovibrio denitrificans Diindol-3-ylmethanes Antifouling [118]

Saccharopolyspora sp. JBIR-66 Cytotoxic [119]

Serratia marcescens Tetrapyrrole pigment Feeding deterrents [120]

Streptomyces sp. Granaticin, granatomycin
D, and dihydrogranaticin B Antibacterial [121]

Talaromyces sp. Talaropeptides A-D
Plasma stability,

Antibacterial,
antifungal, cytotoxic

[24]

Tistrella mobilis and
Tistrella bauzanensis Didemnin Anticancer [23,122]
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5. Antimicrobial Applications

Tunicates [123], with their associated epi-symbionts [16,124] and endosymbionts [125],
are prolific producers of antimicrobial and antifungal compounds inhibiting pathogens.
The brominated alkaloids [126] and other compounds from tunicates have been reported
to possess several biological activities [25,26]. Pseudoalteromonas tunicata produces alkaloid
tambjamine (425 nm), an antifungal yellow pigment [127,128], and violacein (575 nm), a
purple pigment with antiprotozoal activity [129,130], in addition to a range of bioactive
compounds [129,131]. Methanol extraction of Lissoclinum fragile displayed antibacterial,
antifungal, hemolytic, and cytotoxic activities [92]. The kuanoniamine A metabolite pro-
duced by Eusynstyela tincta inhibited pathogenic bacteria such as B. subtilis, E. coli, S. aureus,
V. cholerae, and V. parahaemolyticus and fungi A. fumigatus and C. albicans [88]. A diffusible
190-kDa protein produced by tunicate Ciona intestinalis associated bacterium Pseudoal-
teromonas tunicata was found to show antibacterial activity against marine isolates [132].
The four α-helical peptides “clavanins A, B, C, and D” isolated from the hemocytes of
tunicate Styela clava showed antibacterial activity against pathogenic Listeria monocyto-
genes strain EGD and antifungal activity against Candida albicans [44]. Halocidin, an
antimicrobial peptide purified from tunicate Halocynthia aurantium showed antibacterial
activity against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseu-
domonas aeruginosa [47]. Similarly, halocyntin and papillosin peptides isolated from tunicate
Halocynthia papillosa also displayed antibacterial activity against both Gram-positive and
Gram-negative marine bacteria [46]. Halocyamine peptides synthesized by the hemocytes
of Halocynthia roretzi showed antimicrobial activity against various bacteria and yeasts [90].
Similarly, Halocyamines produced by Styela clava also displayed antimicrobial proper-
ties [108]. A salt-tolerant peptide isolated from hemocytes of Ciona intestinalis showed both
antibacterial and antifungal activity [133]. Vanadium chloride and vanadyl sulfate also
displayed antibacterial activity against various pathogens [95].

An endobiont, Streptomyces sp., isolated from the tunicate, Styela canopus, produced an-
tibacterial compounds such as granaticin, granatomycin D, and dihydrogranaticin B [121].
Similarly endosymbiotic fungi associated with the tunicates, Polycarpa aurata [134] and
Rhopalaea crassa [135], showed antimicrobial activity. The fungi Talaromyces sp., isolated
from an unidentified tunicate, produced talaropeptides A and B, two antibacterial metabo-
lites that inhibited Gram-positive bacteria, Bacillus subtilis [24]. The endophytic fungus
Penicillium sp. isolated from Didemnum sp. produced antifungal and cytotoxic compounds,
terretrione C and D [136].

Some tunicates produced antiviral molecules, indicating their chemical defense func-
tion against environmental viruses. The Caribbean tunicate, Trididemnum sp., was found to
produce depsipeptides, particularly didemnin A and B, exhibiting antiviral activity against
DNA and RNA viruses in vitro [111,137]. Another species of Caribbean tunicate, Eudistoma
olivaceum, produced prolific MNPs, such as eudistomins A, D, G, H, I, J, M, N, O, P, and
Q, which possessed antiviral activity [83]. The ascidian Didemnum guttatum was found to
produce the cyclodidemniserinol trisulfate compound that showed anti-retroviral activity
by inhibiting HIV-1 integrase [72]. The tunicate, Didemnum molle, released lanthipeptide
divamide A that promised to be a potential anti-HIV drug [74] (Table 4).

6. Anticancer and Antitumor Applications

Trabectedin (Ecteinascidin; ET-743; Yondelis®), an alkaloid extracted from the orange
tunicate, Ecteinascidia turbinata, is approved as a first anticancer drug [138] to treat breast
cancer [139,140], soft tissue sarcoma [141], and ovarian cancer [142–144]. This molecule is
suggested to originate from E. turbinata symbiotic bacteria, Candidatus Endoecteinascidia fru-
mentensis [145]. However, plitidepsin (Aplidin®), a depsipeptide isolated from the Mediter-
ranean tunicate, Aplidium albicans, is in phase II clinical trials [138,146] as an anticancer drug
against breast cancer [147], human kidney carcinoma cells [52], and multiple myeloma [53].
Didemnin B is also in phase II trials [148], showing anticancer activity against leukaemia
P388 cells [111]. Significantly, 60% of the human cervical carcinoma cell lines (HeLa)
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were inhibited by Eudistomins H extracts (IC50 0.49 µg/mL) obtained from E. viride [86].
Clavepictine A and B alkaloids originated from Clavelina picta demonstrated potential
cytotoxic activity (IC50 12 µg/mL) against murine leukemia and human solid tumor cell
lines [62]. Lamellarin sulfates originated from Didemnum ternerratum [78] and polycarpine
dihydrochloride, a disulfide alkaloid extracted from an ascidian Polycarpa clavata, were
found to inhibit human colon tumor cell lines [97].

Cystodytins A, B, and C, three teracyclic alkaloids isolated from Okinawa tunicate
Cystodytes dellechiajei, were reported to show antitumor activities [64]. Macrolides isolated
from tunicates Lissoclinum patella (Patellazole C) [94] and Eudistoma cf. rigida (Lejimalides
A, B, C, and D) [149,150] possessed anticancer activity [151]. Diplamine, an orange pigment
alkaloid produced by Diplosoma sp., demonstrated cytotoxic activity against leukemia
cells [79]. Halocyamine A and B peptides extracted from H. roretzi showed anticancer
activity against various cell lines [90]. A depsipeptide, dehydrodidemnin B, produced
by Aplidium albicans inhibited Ehrlich carcinoma cells in mice and reduced 80–90% tumor
cells [54]. Bryostatins Ecteinascidins products, such as ET-729, 743, 745, 759 A, 759B, and 770,
extracted from the Caribbean tunicate Ecteinascidia turbinata showed immunomodulator
activity and antitumor activity against various leukemia cells [152] and breast, lung, ovary,
and melanoma cells [153]. The Brazilian ascidian, Didemnum granulatum, produced G2
checkpoint-inhibiting aromatic alkaloids, granulatimide and isogranulatimide [154]. The
ascidian Cystodytes dellechiajei produced topoisomerase II-inhibiting ascididemin, which
has antitumor activity against various tumor cell lines [66]. This marine alkaloid exhibits
marked cytotoxic activities against a range of tumor cells. The kuanoniamine A metabolite
extracted from E. tincta displayed 100% inhibition of Dalton’s lymphoma and Ehrlich
ascites tumor cell lines [88]. Cynthichlorine, an alkaloid isolated from the tunicate Cyn-
thia savignyi, showed cytotoxicity against Artemia salina larva at an LD50 of 48.5 µg/mL [63].
Siladenoserinols A and B derivatives isolated from didemnid tunicates possessed antitumor
activity by inhibiting the interaction of p53-Hdm2 [69] (Table 4).

Table 4. Bioactive MNP’s from tunicates and associated microbes.

Application Compound Activity against Dose/
Concentration

Growth
Inhibition
(Diameter/
Percentage)

Assay
Method Reference

Antimicrobial

Clavanins
E. coli,

L. monocytogenes,
C. albicans

1.6–3.5 µg/mL -
Radial

diffusion
assay

[44]

Diplamine E. coli,
S. aureus - [79]

Halocidin

Methicillin-resistant
Staphylococcus aureus and

multidrug-resistant
Pseudomonas aeruginosa

100–200 µg/mL 5–11 mm
Radial

diffusion
assay

[47]

Isatin
Bacillus cereus, Bacillus

megaterium, Escherichia coli,
Micrococcus luteus,

MIC 200 µg/mL 7–>21 mm
Disk

diffusion
assay

[16]

Kuanoniamine
A

B. Subtilis, E. coli, S. aureus,
V. cholerae,

V. parahaemolyticus and
fungus

A. jumigatus and C. albicans

25 µg/mL 7–13 mm
Disk

diffusion
assay

[88]

Cynthichlorine

A. radiobacter,
E. coli,

P. aeruginosa,
Botrytis cinerea,

Verticillium albo atrum

6–10 mm
Disc

diffusion
assay

[63]
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Table 4. Cont.

Application Compound Activity against Dose/
Concentration

Growth
Inhibition
(Diameter/
Percentage)

Assay
Method Reference

Talaropeptides A
and B Bacillus subtilis IC50 1.5–3.7 µM 50% Microtiter

plate assay [24]

Terretrione C and
D Candida albicans MIC 32 µg/mL 17–19 mm

Disc
diffusion

assay
[136]

Anticancer &
antitumor

Aplidin

Multiple myeloma cell lines,
MDA-MB-231 breast cancer

cells, A-498 and ACHN
cell lines

IC50 1 to 15 nmol/L

Nuclear
Staining

Assay; MTT
assay

[52,53]

Clavepictines A
and B

Murine leukemia and
human solid tumor cell lines IC50 12 µg/mL

Microculture
tetrazolium

assay
[62]

Dehydrodidemnin
B Ehrlich carcinoma cells 2.5 µg/mouse 70–90% MTT assay [54]

Didemnins A and
B Leukaemia P388 cells IC50 1.5–25 µg/mL - [111]

Diplamine Leukemia L1210 cells IC50
2 × 10−2 µg/mL - [79]

Ecteinascidin 743
(Trabectedin) Leukemia L1210 cells IC50 0.5 µg/mL - [152]

Eudistomins H HeLa cell lines IC50 0.49 µg/mL 60% MTT assay [86]

Halocyamine A
and B

Rat neuronal cells, mouse
neuroblastoma N-18 cells,
and human Hep-G2 cells

- [90]

Kuanoniamine A
Dalton’s lymphoma and

Ehrlich ascites tumour cell
lines

25 µg/mL 100% Trypan blue
exclusion test [88]

Lamellarin
Sulfates

HCT-116 human colon
tumor cells IC50 9.7 µM

MTS cell
proliferation

assay
[78]

Namenamicin P388 leukemia cells, 3Y1,
and HeLa

IC50 3.5 nM;
IC50 3.3–13 pM

Biochemical
prophage
induction

assay

[100]

Polycarpine
dihydrochloride

HCT-116 human colon
tumor cells ED50 1.9 µg/mL - [97]

7-
oxostaurosporine

HL-60, Molt-4, Jurkat, K562,
HCT-8, MDA MB-435, and

SF-295 cell lines
IC50 10–58 nM 95% MTT assay [85]

Terretrione C and
D Human breast cancer cells IC50 16.5 and

17.6 µM
Sulforhodamine

B assay [136]

Antifouling

Diindol-3-
ylmethanes

Barnacle, Balanus amphitrite
and bryozoan,
Bugula neritina

EC50 18.57 Microtiter
plate assay [118]

Eudistomins G
and H Fish and other larvae Antifeedant

assay [34]
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7. Antifouling and Anti-Deterrent Activities

The colonial tunicate, Eudistoma olivaceum, was found to produce brominated alka-
loids, Eudistomins G and H, which acted as antifouling substances and fish antifeedants;
thus, the E. olivaceum surface was completely free from fouling epibionts [34]. A dark green
pigmented bacteria, Pseudoalteromonas tunicata, isolated from the surface of Ciona intesti-
nalis, collected originally from off the west coast of Sweden, showed antifouling activity
against algal spores, invertebrate larvae, and diatoms [131,155,156]. The yellow pigmented
Pseudoalteromonas tunicata mutants have demonstrated antifouling activity against algal
spore germination, bacterial growth, fungal growth, and invertebrate larvae [129]. Diindol-
3-ylmethane products isolated from an unidentified ascidian-associated bacteria, Pseudovib-
rio denitrificans, displayed nearly 50% antifouling activity against barnacle Balanus amphitrite
and bryozoan Bugula neritina [118].

Deterring activity of vanadium acidic solutions, such as vanadyl sulfate and sodium
vanadate, was observed against Thalassoma bifasciatum when incorporated into food pel-
lets [95,157]. Didemnimides C and D from Didemnum conchyliatum [158], nordidemnin
B [102] and didemnin B [159] from Trididemnum solidum, and granulatamides from Didem-
num granulatum [73] displayed antifeedant effects on various fishes in laboratory experi-
ments. The kuanoniamine A molecule from E. tincta displayed feeding-deterrent activities
against carnivore gold fish, Carassius auratus [88]. MNPs isolated from Antarctic tunicates
have demonstrated variability in anti-deterrent activities [58]. Both the yellow pigmented
tambjamine metabolites and blue tetrapyrrole metabolite released from Sigillina sp. (i.e.,
Atapozoa sp.) showed feeding-deterrent activity against various carnivore fishes [59,160].
The blue tetrapyrrole pigment was suggested to originate from the associated bacteria
Serratia marcescens [120]. Tambjamines and tetrapyrrole chemical constituents from both
adult and larvae were reported to function as defensive chemicals against predators [102].
Lipophilic crude extracts from Antarctic tunicate, Distaplia cylindrica [161], and polyandro-
carpidines from Polyandrocarpa sp. [101,102] demonstrated deterrent activity against certain
sea-stars, hermit crabs, and snails (Table 4).

8. Miscellaneous Applications

The chiton Mopalia sp. spawned when injected with 1.0 mg/L of gonadotropin re-
leasing hormone (GnRH2) of a tunicate [48]. Lumichrome, a compound extracted from
tunic, gonads, and eggs of ascidian, Halocynthia roretzi, was involved in the larval metamor-
phosis [89]. Similarly, sperm-activating and attracting factors (SAAF) were isolated from
eggs of the ascidians Ciona intestinalis and Ascidia sydneiensis [162]. Lipids extracted from
H. roretzi have demonstrated the antidiabetic and anti-obese properties in mice models [163].
Two novel alkaloids, mellpaladine and dopargimine, isolated from Palauan tunicate have
demonstrated neuroactive behavior in mice [68]. Two new alkaloids, polyaurines A and
B, isolated from the tunicate, Polycarpa aurata, inhibited blood-dwelling Schistosoma man-
soni [96]. Lepadin and villatamine alakaloids isolated from Clavelina lepadiformis [61] and
lepadins from Didemnum sp. [71] displayed potential antiparasitic and cytotoxic activities.
The ascidian species, Didemnum psammathodes, collected from the central west coast of India
was extracted in organic solvents. These extracts showed antimicrobial and antifouling
properties [164].

9. Issues in Extraction & Identification of Tunicate MNPs

Marine organisms have developed diverse secondary metabolic pathways, which
produce a vast number of unusual chemical moieties. These compounds belong to a wide
variety of chemical classes, including terpenes, shikimates, polyketides, peptides, alkaloids,
and many unidentified and uncharacterized structures (Houssen and Jaspars, 2012). There
are several technologies in place to isolate and characterize the natural products from even
a very small quantity of marine organisms. However, there are still hurdles in the isolation
and characterization of bioactive molecules from ascidians. These include 1. taxonomic
uncertainty: worldwide, there are very few taxonomists available for proper taxonomic
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assignments of tunicates. Sometimes the identification using molecular tools has been
complicated by the difficulty in getting pure gDNA from the target species due to complex
biotic associations (Houssen amd Jaspars, 2012). 2. Quantity of isolated molecules: most
of the time, a small quantity of metabolites is available in the organisms, which is not
even sufficient for spectroscopic analysis. 3. Instability of molecules: there are extremely
labile compounds in the extracts, which decompose during the purification process, and
we get artefacts. Of course, these problems are common in other marine invertebrates as
well. Research funding has also become a hurdle for many young researchers; thus, many
researchers are publishing their works with crude extracts instead of analyzing complete
structural elucidation. If we could address these issues, we will be able to isolate and
characterize novel bioactive molecules from this unique group of marine invertebrates. The
quantity of molecules can be increased if we collect the target tunicate species at the right
time (season) from the correct geographic location. This can be achieved by understanding
the chemical ecology of the producing species. For this purpose, there should be joint
efforts from marine biologists, ecologists, and natural product chemists.

10. Metabolic Origin of Some Tunicates and Their Predators

Several bioactive MNPs extracted from tunicates were believed to be originated from
tunicates themselves. However, few studies have investigated the original origin of tuni-
cate MNPs from their symbiotic microbes. Tambjamine pigments have been reported to
be originated from tunicate-associated symbiotic bacteria like S. marcescens [160] and Pseu-
doalteromonas tunicata [116,131]. An identical dark blue pigmented tetrapyrrole compound
isolated from an ascidian was observed from a bacterium [165]. The blue tetrapyrrole pig-
ment was reported to have originated from the associated bacteria, Serratia marcescens [120].
Didemnins extracted from the tunicate, T. solidum [111], are found to be released by associ-
ated bacteria, Tistrella mobilis and Tistrella bauzanensis [23,122]. Similarly, the trabectedin
compound identified from the Caribbean tunicate, E. turbinata [152,166], has now been
observed to be produced by its symbiotic bacteria, Candidatus Endoecteinascidia frumenten-
sis [145]. Meridianins isolated from Antarctic tunicates, Aplidium, Synoicum, and some
sponges, are thought to have originated from their symbiotic microbes [58]. Similarly,
tetrahydroisoquinoline constituents identified from the tunicate, Ecteinascidia turbinata,
appeared to be released by the unculturable endosymbiotic bacterium, Candidatus En-
doecteinascidia frumentensis [113]. Some of the bioactive MNPs identified from Didemnid
tunicates also originated from their symbiotic cyanobacterial species, such as Synechocystis
and Prochloron [167,168]. Namenamicin produced by the orange color ascidian, Polysyncra-
ton lithostrotum, was suggested to originate from its symbiotic bacterium, Micromonospora
species [100]. The anti-HIV lanthipeptide, divamide A, isolated from the tunicate, Didem-
num molle, was found to be produced by uncultivable symbiotic bacteria [74].

Tunicates are known to produce more than 300 alkaloid compounds [126]. The tuni-
cate predatory flatworm Prostheceraeus villatus was reported to obtain alkaloids, lepadins,
and villatamines by preying (dietary origin) on the tunicate, Clavelina lepadiformis [61].
Likewise, tambjamine alkaloids observed in the ascidian Atapozoa sp. [160] and associ-
ated bacteria [131] were found to be acquired by the predatory nudibranchs, like Nem-
brotha sp., for defense functions [59,169]. Pyridoacridine metabolites observed in ascidians
and some sponges indicate a possible microbial origin or convergent evolution of these
molecules [170].

11. Utilization of Invasive Tunicates Resources

Tunicates usually occur in relatively low abundance in coastal waters. However, some
tunicates are reported as invasive species in some coastal waters [171] and are known to
cause space competition [172], damage to aquaculture [173,174] by harboring pathogenic
viruses and bacteria [175], and ecosystem alteration within the spread area [176]. Few
non-invasive tunicate species of the coral reef environment have also been reported to
overgrow on massive corals and caused minimal [112] or partial inhibition or delayed
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development of coral polyps [177]. A study reported the outbreak of the invasive tunicate,
Diplosoma similis, that overgrew on corals and macrophytes and resulted in 50% mortality
of corals [178] (Table 5).

Table 5. Occurrence of invasive tunicate species in the global ocean and their impact on the marine ecosystem.

Invasive Tunicate Country Origin Type Negative Impacts Reference

Ascidiella aspersa Argentina Exotic Space competition [179]

Botrylloides violaceus Netherlands Exotic Space competition [172]

Botryllus schlosseri Netherlands Indigenous Space competition [172]

Botryllus schlosseri,
Botrylloides violaceus,

Ciona intestinalis,
Ciona savignyi,

Didemnum vexillum,
Molgula manhattensis,

Styela clava

USA Exotic Competitors for food
and space [180,181]

Ciona intestinalis Canada Exotic Mussel mortality [176]

Ciona intestinalis Korea Exotic Space competition and
damage to aquaculture [174]

Didemnum psammathodes India Indigenous Space competition [182]

Didemnum vexillum USA Exotic Threat to eelgrass [183]

Didemnum vexillum Wales Exotic Space competition [184]

Diplosoma similis American Sāmoa Indigenous Kill corals [178]

Therefore, such overwhelming invasive species may be utilized to investigate their
biological properties, biotechnological implications, and drug development. The exploita-
tion of antiviral and cytotoxic didemnins from the invasive tunicate, T. solidum, has already
been investigated [111,112]. Antimicrobial activity of α-helical peptides “Clavanins” was
identified from the hemocytes of the tunicate, Styela clava [44]. Thus, other invasive species
need to be investigated for their bioactive properties. Seasonal studies on the spread of
various invasive tunicates and their biomass estimations are an important research aspect
for resource management and coastal conservation. A study suggested that ocean warming
is triggering the rise of invasive species in coastal waters [185]. Therefore, identifying the
key ocean-warming factors and their mitigation strategies is essential for a sustainable
management of the global ocean bioresources.

12. Research Gaps and Future Perspective

Tunicates have been an important marine drug reservoir to treat a variety of diseases,
including cancer. These resources from the ocean, particularly from the deep-sea, remain
untapped for drug discovery. Therefore, exploration and exploitation of tunicate resources
from coastal waters to the deep-sea and tropical to polar regions would open new insights
in the drug discovery and evolutionary lineages. However, these efforts should be driven
by chemical ecology of these organisms. The study of chemical ecology will help in
bioprospecting and the efficient production of marine drugs from this unique group of
organisms. On the other hand, the mode of colonization and pigment biosynthesis by
associated microbes and the acquisition mechanism of pigments (e.g., tambjamines) by
tunicates from their associated microbes are yet to be unveiled. Since tunicates have been
reported to be colonized by pathogenic bacteria during filter feeding, the pathological
implications of tunicates needs to be investigated to understand the possible transfer ways
of pathogenic bacteria from tunicates to other biota and aquaculture setups. Therefore,
regular biodiversity monitoring and population dynamics of tunicate resources should be
performed to understand their distribution patterns and impact on the coastal resources.
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