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We consider the Calogero-Sutherland derivative nonlinear Schrödinger equation

where Π is the Szegő projector

First, we characterize the traveling wave u 0 (x -ct) solutions to the defocusing equation (CS -) , and prove for the focusing equation (CS + ), that all the traveling waves must be either the constant functions, or plane waves, or rational functions.

A noteworthy observation is that the (CS)-equation is one of the fewest nonlinear PDE enjoying nontrivial traveling waves with arbitrary small and large L 2 -norms.

Second, we study the finite gap potentials, and show that they are also rational functions, containing the traveling waves, and they can be grouped into sets that remain invariant under the evolution of the system.

Introduction

In recent decades, the theory of traveling wave solutions has been the subject of intense research in theoretical and numerical analysis. Indeed, many nonlinear PDEs exhibit these type of waves [START_REF] Chen | Existence of periodic travelling-wave solutions of nonlinear, dispersive wave equations[END_REF][START_REF] Chen | Bona Periodic traveling-wave solutions of nonlinear dispersive evolution equations[END_REF][START_REF] Pava | Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions[END_REF] . Their importance resides as they are explicit solutions for nonlinear PDEs, and they can sometimes provide information regarding the dynamics of the equation. However, the problem of proving the existence of these waves can be more or less challenging depending on the nonlinear part of the PDE.

In this paper, we consider a type of derivative nonlinear Schrödinger equation with a nonlocal nonlinearity, called the Calogero-Sutherland derivative nonlinear Schrödinger equation

i∂ t u + ∂ 2 x u ± 2DΠ(|u| 2 )u = 0 , x ∈ T := R/(2πZ) , (CS) 
where D = -i∂ x , and Π denotes the Szegő projector

Π n∈Z u(n) e inx := n≥0 u(n) e inx , (1.1) 
which is an orthogonal projector from L 2 (T) into the Hardy space

L 2 + (T) := u ∈ L 2 (T) | u(n) = 0 , ∀n ∈ Z ≤-1 . (1.2)
Note that the operator Π can also be read as We are interested in studying the traveling waves u 0 (x -ct) of this equation in the focusing (with sign + in front of the nonlinearity) and defocusing case (with sign-) in the periodic setting, namely when x ∈ T . As noted in [START_REF] Pava | Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions[END_REF], the presence of the dispersion operator ∂ x H appearing in the nonlinearity can make the problem of existence of traveling waves more complicated. The approach addressed in this paper to characterize the traveling waves is based on studying them, at a first stage, spectrally i.e. by means of spectral property of the Lax operator related to this equation (see below), before deriving, at a second stage, their explicit formulas. 1 1.1. Main results. Settings and notation. In the sequel, our study takes place with potentials in the Hardy Sobolev spaces of the torus

H s + (T) := H s (T) ∩ L 2 + (T) , s ≥ 0 ,
where L 2 + (T) is defined in (1.2) and H s refers to the Sobolev space. We equip L 2 + (T) with the standard inner product of L 2 (T) ,

⟨u | v⟩ = 2π 0 uv dx 2π .
We recall also, that via the following isometric isomorphism *** First, we deal with the defocusing Calogero-Sutherland DNLS equation

z ∈ D , u(z) = k≥0 u(k)z k -→ u * (x) := k≥0 u(k) e ikx , x ∈ T , k≥0 | u(k)| 2 < ∞ ,
i∂ t u + ∂ 2 x u -2DΠ(|u| 2 )u = 0 . (CS -)
We denote by G 1 the set of the trivial traveling waves, made up from the constant functions and the plane wave solutions

G 1 = C e iN (x-N t) | C ∈ C , N ∈ N ≥0 .
(1.4)

1 It should be noted that the idea of using the spectral theory to derive the traveling waves of (CS), draws inspiration from [GK21, Appendix B] , where the authors provide an alternative proof to the characterization of the traveling waves for the Benjamin-Ono equation [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation -a nonlinear Neumann problem in the plane[END_REF][START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] by characterizing them first spectrally.

2 For a simple introduction to the different definitions of Hardy space, we refer to [START_REF] Garcia | Ross Introduction to model spaces and their operators[END_REF]Chapter 3.] Theorem 1.1 (Characterization of the traveling waves of (CS -)). A potential u is a traveling wave of (CS -) if and only if u ∈ G 1 or u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , θ ∈ T , (1.5)

where N ∈ N , c := -N 1 + 2α β , and (α, β) are two real constants satisfying

αβ + β 2 1 -|p| 2 = -N .
(1.6)

Remark 1.1. The condition (1.6) implies that the real constants α and β must be of opposite signs.

Second, we pass to the focusing Calogero-Sutherland DNLS equation

i∂ t u + ∂ 2 x u + 2DΠ(|u| 2 )u = 0 . (CS + )
By changing the sign in front of the nonlinearity, the strategy adopted in the defocusing case to exhibit the traveling waves becomes significantly more complicated. However, we can ensure the existence of a larger set of traveling wave solutions for (CS + ) comparing to (CS -) , and that all the non-trivial traveling waves u(t, x) := u 0 (x -ct) of (CS + ) are also rational functions.

Theorem 1.2. The traveling waves u 0 (x-ct) of (CS + ) are either rational functions or trivial waves in G 1 . In addition, the potentials u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , θ ∈ T , N ∈ N ,

where c = -N 1 + 2α β , (α, β) ∈ R × R such that αβ + β 2 1 -|p| 2 = N , (1.7) 
and the potentials u(t, z) = e iθ e im(x-mt) α + β 1 -p e i(x-mt) p ∈ D * , θ ∈ T , m ∈ N , where (α, β) ∈ R × R such that

αβ + β 2 1 -|p| 2 = 1 , β(m -1) = 2α ,
are parts of the set of the traveling waves of (CS + ) .

Remark 1.2. It is worth noting that the condition on (α, β) appearing in (1.7) for the focusing case, allows to obtain a larger set of traveling waves in comparison to the condition (1.6) of the defocusing case. Indeed, (1.7) enables, for instance α or α + β to vanish, which leads respectively to the following traveling waves u(t, x) = e iθ N (1 -|p| 2 ) 1 -p e iN (x+N t) and u(t, x) = e iθ N (1 -|p| 2 ) e iN (x-N t) 1 -p e iN (x-N t) .

Contrary to the focusing case, no traveling waves u(t, x) := u 0 (x -ct) with a profile u 0 (x) := β 1 -p e iN x or u 0 (x) := α e iN x 1 -p e iN x can be found for the (CS -)-equation because otherwise, thanks to (1.6) ,

β 2 1 -|p| 2 = -N or |p| 2 1 -|p| 2 β 2 = -N
which is clearly impossible for p ∈ D * .

Remark 1.3. (The L 2 -norm and the speed of the traveling waves of (CS) )

(1) As will be established in Subsection 3.3 for the defocusing equation and in Subsection 4.2 for the focusing equation, the L 2 -norm of the non-trivial traveling waves of (CS) can be arbitrarily small or large in L 2 + (T) . More rigorously, for any r > 0 , there exists a non-trivial traveling wave u(t, x) := u 0 (x -ct) of (CS) where ∥u 0 ∥ L 2 = r .

(2) For the defocusing (CS -)-equation. The nontrivial traveling waves u of the form (1.5) propagate to the right with a speed c > N , where N is the degree appearing in the denominator of u . In addition, when ∥u∥ L 2 → +∞ , we have c → +∞ , and when ∥u∥ L 2 → 0 then c → N . (See Remark 3.3 and Subsection 3.3 for the proofs).

For the focusing (CS + )-equation. Contrary to the defocusing equation, the (CS + )'s nontrivial traveling waves do not necessarily propagate at a relatively high speed (i.e. c → ∞) when ∥u∥ 2 L 2 is large (i.e. ∥u∥ L 2 → ∞). In fact, the speed of the traveling waves in the focusing case is independent of the size of its L 2 + (T)-norm . We refer to Remark 4.2 for an example.

In light of the previous remarks, we infer that the Calogero-Sutherland DNLS equation enjoys a significantly richer dynamic in the focusing case. In particular, one can observe that the (CS + ) admits non-trivial stationary waves u(t, x) := u 0 (x), which is not the case of the defocusing equation. An example of nontrivial stationary waves for (CS + ) is

u(t, x) := e iθ N (1 -|p| 2 ) 2(1 + |p| 2 ) 1 - 2 1 -p e iN x , p ∈ D * , θ ∈ T , N ∈ N .
At a second stage, we study the finite gap potentials of the Calogero-Sutherland DNLS equation (CS) , i.e. potentials satisfying that, from a certain rank, all the gaps between the consecutive eigenvalues of the Lax operator are equal to 1 (see Subsection 1.2.2 for the Lax operator). It turns out that these potentials are multiphase solutions containing the stationary and traveling waves of (CS) . The following theorem aims to characterize the finite gap potentials on T in the state space.

Theorem 1.3 (Characterization in the state space of the (CS)'s finite gap potentials). The finite gap potentials of (CS) are either the functions u(x) = C e iN x , C ∈ C * , N ∈ N ≥0 , or the rational function

u(x) = e im 0 x r j=1 e ix -p j 1 -p j e ix m j -1 a + r j=1 c j 1 -p j e ix , p j ∈ D * , p k ̸ = p j , k ̸ = j ,
where, for N ∈ N , m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N such that m 0 + r j=1 m j = N , and (a, c 1 , . . . , c r ) ∈ C × C r satisfy for all j = 1 , . . . , r , (i) In the defocusing case,

a c j + r k=1 c j c k 1 -p j p k = -m j , (1.8) 
(ii) In the focusing case,

a c j + r k=1 c j c k 1 -p j p k = m j , (1.9) 
with a ̸ = 0 if m 0 ̸ = 0 . Moreover, these finite gap potentials can be regrouped into sets that remain invariant under the evolution of (CS) .

In order to establish the results mentioned above, it is necessary to provide an overview regarding the integrability of the Calogero-Sutherland derivative nonlinear Schrödinger equation (CS).

1.2. About the Calogero-Sutherland DNLS equation. The Calogero-Sutherland DNLS equation (CS) has been actively studied by physicists and engineers. In particular, we cite the works of Tutiya [START_REF] Tutiya | Bright N-solitons for the intermediate nonlinear Schrödinger equation[END_REF], Berntson-Fagerlund [BF22], Stone-Anduaga-Xing [START_REF] Stone | The classical hydrodynamics of the Calogero-Sutherland model[END_REF], Polychronakos [START_REF] Ap Polychronakos | Waves and solitons in the continuum limit of the Calogero-Sutherland model[END_REF][START_REF] Ap Polychronakos | Waves and solitons in the continuum limit of the Calogero-Sutherland model[END_REF] and Matsuno [START_REF] Matsuno | Multiperiodic and multisoliton solutions of a nonlocal nonlinear Schrödinger equation for envelope waves[END_REF][START_REF] Matsuno | N-soliton formulae for the intermediate nonlinear Schrödinger equation[END_REF][START_REF] Matsuno | Linear stability of multiple dark solitary wave solutions of a nonlocal nonlinear Schrödinger equation for envelope waves[END_REF][START_REF] Matsuno | Exactly solvable eigenvalue problems for a nonlocal nonlinear Schrödinger equation[END_REF][START_REF] Matsuno | Calogero-Moser-Sutherland dynamical systems associated with nonlocal nonlinear Schrödinger equation for envelope waves[END_REF][START_REF] Matsuno | Asymptotic solutions of the nonlocal nonlinear Schrödinger equation in the limit of small dispersion[END_REF][START_REF] Matsuno | A Cauchy problem for the nonlocal nonlinear Schrödinger equation[END_REF][START_REF] Matsuno | Calogero-Moser-Sutherland dynamical systems associated with nonlocal nonlinear Schrödinger equation for envelope waves[END_REF][START_REF] Matsuno | Multiphase solutions and their reductions for a nonlocal nonlinear Schrödinger equation with focusing nonlinearity[END_REF]... Mathematically, recent progress has been made with regard to this equation. In this subsection, we provide a brief overview of some established results concerning (CS) .

Local and global well-posedness results.

To the best of the author's knowledge, the first LWP result for (CS) equation traced back to De Moura [deM07] who established the LWP 3 of (CS) for small initial data in H s (R) with s ≥ 1 , and extend his LWP's result to a GWP by means of the gauge transformation. More recently, Barros-DeMoura-Santos present in [START_REF] Barros | Local well-posedness for the nonlocal derivative nonlinear Schrödinger equation in Besov spaces[END_REF] the LWP of (CS) for small initial data in the Besov space B 1 2 ,1 2 (R) . Besides, observe that the Calogero-Sutherland DNLS equations (CS) is invariant under the scaling

u λ (t, x) = λ 1 2 u(λt, λ 2 x) , λ > 0 .
This suggests that (CS) is L 2 -critical. In the Hardy Sobolev spaces settings, i.e. in H s + := H s ∩ L 2 + , where recall L 2 + is the Hardy space defined in (1.2) in the periodic case, and as follows in the non-periodic case

L 2 + (R) = u ∈ L 2 (R) ; supp û ⊂ [0, ∞) , Gérard-Lenzmann [GL22] obtained the LWP in H s + (R) with s > 1 2
, by following the arguments of [START_REF] De Moura | Local well-posedness for the nonlocal nonlinear Schrödinger equation below the energy space[END_REF] . Furthermore, by the virtue of a Lax pair structure associated with the Calogero-Sutherland DNLS equation (CS) (see below), they inferred the global well-posedness of the equation in all

H k + (R) , k ∈ N ≥1 for small initial data ∥u 0 ∥ L 2 (R) < √ 2π in the focusing case.
Moving to the periodic setting, i.e. when x ∈ T , a recent work of the author shows the GWP of (CS) in all H s + (T) , s ≥ 0 , for small critical initial data in the focusing case, namely when ∥u 0 ∥ L 2 (T) < 1 , and for arbitrary initial data in the defocusing case. In particular, the extension of the flow to the critical space L 2 + (T) has been achieved after deriving the explicit formula for the solution of the Calogero-Sutherland DNLS equation (CS) [Ba23, Proposition 2.5]. Moreover, under the same assumptions, the relative compactness of the trajectories has been established in H s + (T) , for all s ≥ 0 [START_REF] Badreddine | On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation[END_REF].

1.2.2. Integrability of the (CS)-equation. One of the most remarkable features of the Calogero-Sutherland DNLS equation is its integrability as a PDE on R and on T. In fact, it enjoys a Lax pair structure in the focusing and defocusing case [START_REF] Gérard | The Calogero-Moser Derivative nonlinear Schrödinger equation[END_REF][START_REF] Badreddine | On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation[END_REF] : for any u ∈ H s + (T) , s > 3 2 , there exists two operators (L u , B u ) satisfying the Lax equation

dL u dt = [B u , L u ] , [B u , L u ] := B u L u -L u B u ,
where (i) In the focusing case,

L u = D -T u T ū , B u = T u T ∂x ū -T ∂xu T ū + i(T u T ū) 2 .
(1.10)

3 Actually, they prove the local well-posedness of a family of nonlocal nonlinear Schrödinger equation [START_REF] Pelinovsky | Nonlocal models for envelope waves in a stratified fluid[END_REF] that includes also the (CS)-equation.

(ii) In the defocusing case,

Lu = D + T u T ū , Bu = -T u T ∂x ū + T ∂xu T ū + i(T u T ū) 2 . (1.11)
The differential operator D is -i∂ x , and T u is the Toeplitz operator of symbol u defined for any u ∈ L ∞ by

T u f = Π(uf ) , ∀f ∈ L 2 + , (1.12)
where Π is the Szegő projector introduced in (1.1) . Note that since we are working in the Hardy space, L u is a semi-bounded operator from below and Lu is a nonnegative operator. In addition, as noted in [Ba23, Proposition 2.3] , the Lax operators L u and Lu are self-adjoint operators of domain H 1 + (T) , and are of compact resolvent. Therefore, their spectra are made up of a sequence of eigenvalues going to +∞ ,

σ(L u ) := {ν 0 (u) ≤ . . . ≤ ν n (u) ≤ . . .} , ν 0 (u) ≥ -∥u∥ 2 L ∞ , (1.13) σ( Lu ) := {λ 0 (u) ≤ . . . ≤ λ n (u) ≤ . . .} , λ 0 (u) ≥ 0 .
Recall that any Lax operator satisfies the isospectral property

L u 0 = U (t) -1 L u(t) U (t) , (1.14) 
where u 0 is the initial data, u(t) is the evolution of the solution starting from u 0 , and U (t) is a family of operators solving the Cauchy problem

d dt U (t) = B u(t) U (t) U (0) = Id .
The identity (1.14) implies that the spectrum of L u(t) is invariant by the evolution, i.e. ν n (u(t)) = ν n (u 0 ) and λ n (u(t)) = λ n (u 0 ) for all n . Therefore, in the sequel, we omit the variable u in ν n (u) and λ n (u) when it does not make confusion.

Further information regarding the spectrum of the Lax operators will be provided in Section 2. 1.2.3. Traveling waves on R. Let us mention that the focusing Calogero-Sutherland DNLS equation (CS + ) also enjoys traveling waves and stationary waves in the nonperiodic case (i.e. x ∈ R). They are of the form

u(t, x) = e iθ e iv(x-vt) λ 1 2 R λ(x -2vt) + y , λ > 0, y ∈ R, θ ∈ T , v ∈ R ,
where the profile

R(x) = e iθ √ 2 Imp x + p , p ∈ C + , θ ∈ R , (1.15)
is obtained as ground states (minimizers) for the energy functional [GL22, Section 4]. Notice that all these waves are of L 2 -norm equal to √ 2π . Therefore, this situation differs from the torus T, where in the latter case, there is no L 2 -threshold that would prevent the existence of small or large traveling waves in L 2 (T) . Essentially, the main reason that leads to a more diverse class of traveling waves in the periodic setting compared to the non-periodic seting, is due to the spectral property carried by the Lax operator in both cases. Indeed, on R , the Lax operator has an absolute continuous spectrum and a finite number of eigenvalues [GL22, Section 5]. In contrast with T, the Lax operator present only point spectrum formed by eigenvalues [Ba23, Section 2].

To summarize, we refer to the following table ( 

✓ ✓ Wave speed c ∈ R c ≥ N L 2 -norm of the non-trivial traveling waves ∥u∥ L 2 ∈ (0, +∞) ∥u∥ L 2 ∈ (0, +∞) Table 1.
Where N ∈ N is the denominator's degree of a traveling wave of the form (1.5). In addition, by a non-trivial traveling wave, we mean the traveling wave that does not belong to G 1 where G 1 is the set of trivial traveling waves defined in (1.4) . Moreover, by non-trivial stationary waves we mean the solution u(t, x) = u 0 (x) that are not constant functions.

1.3. Outline of the paper. The paper is organized as follows. In Section 2 , we present some spectral properties concerning the eigenvalues and the eigenfunctions of the Lax operators L u and Lu . Moving on to Section 3, we focus on the traveling waves of the defocusing Calogero-Sutherland DNLS equation (CS -). This section follows a two-step process. Subsection 3.1 provides a spectral characterization of these waves, while Subsection 3.2 derives their explicit formulas. Moreover, Subsection 3.3 includes remarks concerning the speed and L 2 -norm of these traveling waves for the defocusing (CS -)-equation.

In Section 4 , we delve into the analysis of traveling waves for the focusing Calogero-Sutherland DNLS equation (CS + ) . Thus, we describe the set of traveling waves of (CS + ) in Subsubsection 4.1, and we highlight the presence of a larger set of traveling waves in the focusing case comparing to the defocusing case. Similarly to the defocusing case, some remarks related to the speed and the L 2 -norm of the traveling waves of (CS + ) are discussed in Subsection 4.2 , and in particular we establish the existence of stationary wave solutions for the focusing Calogero-Sutherland DNLS equation (CS + ) .

Note that in order to describe the traveling waves of (CS + ), one need to understand the set of finite gap potentials. To this end, Section 5 is dedicated to the study of finite gap potentials for the Calogero-Sutherland DNLS equation (CS).

Throughout this paper, we have assumed sufficient regularity on the solutions. However, in Section 6, we discuss how the same analysis can be extended to solutions with lower regularity. Lastly, in Section 7, we present some open problems for further exploration.

Acknowledges. The author would like to thank her Ph.D. advisor Patrick Gérard for proposing this problem and suggesting [GK21, Appendix B] as a useful reference to start the investigation.

Spectral properties for the Lax operators

As mentioned in the introduction, our aim is to describe the traveling waves of the Calogero-Sutherland DNLS equation (CS). In order to accomplish this goal, our strategy relies on characterizing them first in the state space, by means of some spectral tools of the Lax operators L u and Lu introduced in (1.10) and in (1.11) , respectively. Therefore, we need to delve deeper into the spectral properties of the Lax operators.

In the sequel, we assume, for more convenience, that u is any function of the state space with enough regularity, for example, u ∈ H 2 + (T) . But, it is worth mentioning that the analysis can be easily extended to potentials with less regularity as well (see Section 6). Besides, recall from (1.13) , that the Lax operators Lu and L u have point spectra, bounded from below

σ( Lu ) := {λ 0 ≤ . . . ≤ λ n ≤ . . .} , λ 0 ≥ 0 , σ(L u ) := {ν 0 ≤ . . . ≤ ν n ≤ . . .} , ν 0 ≥ -∥u∥ 2 L ∞ .
The following proposition aims to give more information, regarding the multiplicity of the eigenvalues (ν n ) and (λ n ) . But before, we need to recall two useful commutator identities. We denote by S the shift operator defined as 

S : L 2 + (T) → L 2 + (T) , Sh(x) = e ix h(x) . ( 2 
λ n+1 ≥ λ n + 1 , n ∈ N ≥0 .
(2.5)

Focusing case. The eigenvalues (ν n ) of L u are of multiplicity at most two

ν n+2 ≥ ν n + 1 n ∈ N ≥0 . (2.6)
Moreover, when n is large enough, the eigenvalues of L u are simple. More precisely,

lim inf n→∞ ν n+1 -ν n ≥ 1 . (2.7)
Furthermore, for all 0 ≤ α < 1 such that ∥u∥ 2 L 2 < 1 -α , we have for all n ∈ N ≥0 , ν n+1 > ν n + α .

(2.8)

Remark 2.1.

(1) It should be noted that for any potential u, the eigenvalues (ν n ) of L u cannot be all simple. For instance, take u(x) = e ix , one can easily check that for

L u = D -T u T u , L u 1 = L u e ix = 0 .
(2) Inequality (2.7) implies that as n >> 0, the lower bound of the distance between two consecutive eigenvalues ν n gets closer to 1 .

Proof. All the presented inequalities are a direct consequence of the max-min principle

λ n = max F ⊆L 2 + dim F ≤n min Lu h | h ; h ∈ F ⊥ ∩ H 1 2 + (T) , ∥h∥ L 2 = 1 . ν n = max F ⊆L 2 + dim F ≤n min ⟨L u h | h⟩ ; h ∈ F ⊥ ∩ H 1 2 + (T) , ∥h∥ L 2 = 1 .
Spectrum of Lu . Let F be any subspace of L 2 + (T) of dimension n , and consider E := C1 ⊕ S(F ) , where S is the shift operator, then

λ n+1 ≥ min{⟨ Lu h | h⟩ ; ∥h∥ L 2 = 1, h ∈ E ⊥ ∩ H 1 2 + } Observe that E ⊥ = S F ⊥ , thus by (2.2) , λ n+1 ≥ min ⟨ Lu g | g⟩ + 1 + |⟨Sg | u⟩| 2 ; ∥g∥ L 2 = 1, g ∈ F ⊥ ∩ H 1 2 + .
In addition, since |⟨Sg | u⟩| 2 ≥ 0 , we infer for all n ∈ N ≥0 ,

λ n+1 ≥ λ n + 1 .
Spectrum of L u -Inequality (2.6). let F be any subspace of L 2 + (T) of dimension n, and take G := C1 ⊕ S(F ) + Cu . Then,

ν n+2 (u) ≥ min{⟨L u h | h⟩ ; ∥h∥ L 2 = 1, h ∈ G ⊥ ∩ H 1 2 + } . Since G ⊥ = S F ⊥ ∩ (S * u) ⊥ , then ν n+2 ≥ min ⟨L u Sg | Sg⟩ ; ∥g∥ L 2 = 1, g ∈ F ⊥ ∩ (S * u) ⊥ ∩ H 1 2 + (T) . Note that g ⊥ S * u, then by (2.2), ν n+2 ≥ min ⟨L u g | g⟩ + 1; ∥g∥ L 2 = 1, g ∈ F ⊥ ∩ (S * u) ⊥ ∩ H 1 2 + (T) , leading to ν n+2 ≥ ν n + 1 .
Inequality (2.7) . For any n , let F n = span{f 0 , f 1 , . . . , f n-1 } be the subspace of

L 2 + (T) of dimension n made up of the first n eigenfunctions of L u . For this choice of F n , min ⟨L u h | h⟩ ; ∥h∥ L 2 = 1, h ∈ F ⊥ n ∩ H 1 2 + = ν n .
(2.9)

Let us consider the subspace

E := C1 ⊕ S(F n ) of L 2 + (T) of dimension n + 1 , then ν n+1 ≥ min{⟨L u g | g⟩ ; ∥g∥ L 2 = 1 , g ∈ E ⊥ ∩ H 1 2 + } . Note that E ⊥ ∩ H 1 2 + = S F ⊥ n ∩ H 1 2 + . Therefore, by (2.2) , ν n+1 ≥ min ⟨L u ϕ | ϕ⟩ + 1 -|⟨Sφ | u⟩| 2 ; ∥φ∥ L 2 = 1, φ ∈ F ⊥ n ∩ H 1 + . It results, for all n ∈ N ≥0 , ν n+1 ≥ ν n + 1 - sup ∥φ∥ L 2 (T) =1 φ∈F ⊥ n |⟨Sφ| u⟩| 2 . (2.10) To conclude the proof, it remains to prove sup ∥φ∥ L 2 (T) =1 φ∈F ⊥ n |⟨Sφ| u⟩| 2 -→ n→∞ 0 .
Lemma 2.2. Let F n be the be the subspace of L 2 + (T) defined as above. Then sup

∥φ∥ L 2 (T) =1 φ∈F ⊥ n |⟨Sφ | u⟩| -→ 0 as n → ∞ .
Proof. Suppose for the sake of contradiction, that for all n ∈ N ≥0 ,

sup ∥φ∥ L 2 (T) =1 φ∈F ⊥ n |⟨Sφ | u⟩| ≥ ε , ε > 0 .
Namely, there exists

φ n ∈ F ⊥ n , ∥φ n ∥ L 2 (T) = 1 such that |⟨Sφ n | u⟩| ≥ ε 2 . Hence, since ∥φ n ∥ L 2 (T) = 1 , then up to a sub-sequence φ n ⇀ φ in L 2 + (T) as n → ∞ , which yields to |⟨Sφ n | u⟩| -→ n→∞ |⟨Sφ | u⟩| ,
and so ⟨Sφ | u⟩ ≥ ε 2 . On the other hand, since

φ n ⊥ F n then ⟨φ n | f p ⟩ = 0 , ∀ 0 ≤ p ≤ n -1 .
Taking n → ∞ , we infer

⟨φ | f p ⟩ = 0 , ∀p ∈ N ≥0 .
Note that the eigenfunctions (f p ) of the self-adjoint operator L u form an orthonormal basis of L 2 + (T) . Therefore, we have φ = 0 , which is a contradiction with

⟨Sφ | u⟩ ≥ ε 2 . □ Inequality (2.8) .
It is a consequence of inequality (2.10) after applying the Cauchy-Schwarz inequality and considering the fact that ∥u∥ 2

L 2 < 1 -α . □
In what follows, we make a slight abuse of notation by using (f n ) to denote both an orthonormal basis of L 2 + (T) consisting of the eigenfunctions of the self-adjoint operator L u , and an orthonormal basis of L 2 + (T) consisting of the eigenfunctions of Lu . Nonetheless, we will specify the context in which we are working to avoid confusion and ensure that (f n ) is understood appropriately as either the eigenfunctions of L u or Lu .

Lemma 2.3. Given u ∈ H 2 + (T) , then for all n, p ∈ N ≥0 , • Defocusing case. ⟨1 | u⟩ ⟨u | f n ⟩ = λ n ⟨1 | f n ⟩ , (λ n -λ p -1) ⟨Sf p | f n ⟩ = ⟨Sf p | u⟩ ⟨u | f n ⟩ . • Focusing case. ⟨1 | u⟩ ⟨u | f n ⟩ = -ν n ⟨1 | f n ⟩ , (ν n -ν p -1) ⟨Sf p | f n ⟩ = -⟨Sf p | u⟩ ⟨u | f n ⟩ .
Proof. We prove first the identities for the defocusing case. By definition of Lu = D + T u T ū , we have Lu 1 = ⟨1 | u⟩ u .

Then taking the inner product of both sides with f n , and using the fact that Lu is a self-adjoint operator, lead to the first identity. For the second one, thanks to the commutator relation between Lu and S

Lu Sf p = S Lu f p + Sf p + ⟨Sf p | u⟩ u , of equation (2.
2), we infer by taking the inner product with f n the second identity.

Besides, by considering the focusing case with L u = D -T u T ū it follows that L u 1 = -⟨1 | u⟩ u . This explains the sign -appearing in the first statement. As for the second one, since by (2.2)

L u Sf p = SL u f p + Sf p -⟨Sf p | u⟩ u .
than taking once more the inner product with f n leads to the desired identity. □

In light of the previous lemma and based on the commutator identities (2.2), one can investigate further information regarding the spectral data (i.e. the eigenvalues and the eigenvectors) of L u and Lu , especially when the quantities ⟨u | f n ⟩ vanishes. The following lemmas/propositions aim to achieve this.

For the following, we denote by E νn the eigenspace of L u corresponding to the eigenvalue ν n . In addition, the notation f //g means that the two vectors f and g are collinear in L 2 + (T) .

Proposition 2.4. For all n ∈ N , such that ν n ̸ = 0 , we have

ν n = ν n-1 + 1 =⇒ [Sf n-1 ∈ E νn ] or [f n ∈ SE ν n-1 ] ,
Moreover, for the defocusing case,

λ n = λ n-1 + 1 =⇒ Sf n-1 //f n .
Remark 2.2.

(1) The condition ν n ̸ = 0 cannot be omitted. For an example, we refer to the Appendix 1 .

(2) For the defocusing case, the condition of non-vanishing eigenvalues λ n ̸ = 0 is already satisfied for all n ∈ N , since Lu is a non-negative operator on the Hardy space, and for all n ∈ N , we have by (2.5) , λ n ≥ λ n-1 + 1 .

Proof. The key is to use Lemma 2.3 and the commutator identities (2.2) . In view of the second identity of Lemma 2.3, we have

⟨Sf n-1 | u⟩ ⟨u | f n ⟩ = 0 .
(2.11)

If ⟨u | Sf n-1 ⟩ = 0 , then by (2.2), L u Sf n-1 = SL u f n-1 + Sf n-1 = (ν n-1 + 1) Sf n-1 = ν n Sf n-1 , as ν n = ν n-1 + 1 . Namely, Sf n-1 ∈ E νn .
Let us move to the second case where ⟨u | f n ⟩ = 0 . By the first identity of Lemma 2.3 ,

ν n ⟨f n | 1⟩ = 0 .
Therefore, since ν n ̸ = 0 , there exists g n ∈ H 1 + (T) such that f n = Sg n . Using again the commutator identity (2.2), we have

SL u g n = (ν n -1)Sg n .
Applying S * to both sides of the latter identity, and using the fact that S * S = Id , and as ν n = ν n-1 + 1 , we find

L u g n = ν n-1 g n . That is, g n ∈ E ν n-1 , and so f n ∈ SE ν n-1 .
Besides, note that for the defocusing equation, the vector spaces E λn are of dimension one, thanks to Proposition 2.1. Consequently, the results

[Sf n-1 ∈ E λn ] or [f n ∈ SE λ n-1 ] , leads to Sf n-1 //f n . □
In the sequel, we denote by I(u) the set of

I(u) := {n ∈ N | ⟨Sf n-1 | f n ⟩ = 0} .
(2.12)

Lemma 2.5. Defocusing case. For any u ∈ H 2 + (T) , the set I(u) is empty. Focusing case. Given u ∈ H 2 + (T) , let m ∈ I(u) . Assume that the eigenvalues ν m and ν m-1 are simple, Then, either

ν m-1 + 1 = ν m+1 , with Sf m-1 ∈ E ν m+1 or ν m-2 + 1 = ν m , with S * f m ∈ E ν m-2 or ν m = 0 , with f m //1 .
Remark 2.3.

(i) Observe that in the focusing case, if ∥u∥ 2 L 2 < 1 2 , then by inequality (2.8) ,

ν n > ν n-1 + 1 2 , ∀n ∈ N .
Hence, for such u , if m ∈ I(u) then the only possible choice is to have ν m = 0 with f m // 1 . In other words, for ∥u∥ 2 L 2 < 1 2 , we have, either I(u) = ∅ , or I(u) = {m} and in such case ν m = 0 and f m //1 .

(ii) For any u ∈ H 2 + (T) , the set I(u) in the focusing case is of finite cardinal, since by inequality (2.7) we have ν n > ν n-1 + 1 2 and ν n ̸ = 0 for all n large enough.

Proof. Focusing case. Let m ∈ I(u) . By the second identity of Lemma 2.3 ,

⟨Sf m-1 | u⟩ ⟨u | f m ⟩ = 0 . If ⟨Sf m-1 | u⟩ = 0 , then applying the commutator identity (2.2) , L u Sf m-1 = (ν m-1 + 1)Sf m-1 .
(2.13)

Namely, ν m-1 + 1 is an eigenvalue of L u and Sf m-1 is a corresponding eigenfunction. Since ν m is simple, then Sf m-1 cannot be collinear to f m as ⟨Sf m-1 | f m ⟩ = 0 for m ∈ I(u)
. Therefore, by (2.6) ,

ν m-1 + 1 = ν m+1 .
If ⟨u | f m ⟩ = 0 , then by applying the adjoint of the commutator identity (2.2) ,

S * L u = L u S * + S * + ⟨ • | u⟩ S * u ,
we infer,

L u S * f m = (ν m -1)S * f m .
That is, if S * f m ̸ = 0 , then S * f m is an eigenfunction of L u associated with the eigenvalue ν m -1 . Recall, we have by assumption that ν m-1 is simple, and since S * f m cannot be collinear to f m-1 as m ∈ I(u) , then

ν m -1 = ν m-2 ,
thanks to (2.6) . It remains to study the case where S * f m = 0 , i.e., f m //1 . For that case, we have thanks to the first identity of Lemma 2.3 , ν m = 0 as ⟨u | f m ⟩ = 0 .

The defocusing case. Suppose that there exists m ∈ I(u) . Then, using the same analysis as in the focusing case, we infer that, either λ m-1 + 1 = λ m+1 or λ m-2 + 1 = λ m or λ m = 0 . However, recall that λ n ≥ λ n-1 + 1 for all n ∈ N (inequality 2.5) , thus the first two cases cannot occur. In addition, since Lu is a non negative operator, where all the eigenvalues satisfy the inequality (2.5) , then

λ m = 0 implies m = 0 / ∈ I(u) . □ Corollary 2.6. For all n ≥ 1 , λ n = λ n-1 + 1 ⇐⇒ ⟨u | f n ⟩ = 0 .
In addition,

ν n = ν n-1 + 1 , ∀n ≥ N 1 ⇐⇒ ⟨u | f n ⟩ = 0 , ∀n ≥ N 2 .
Remark 2.4. We refer to the Appendix 2 for an example that shows that N 2 is not necessarily equal to N 1 .

Proof. For the defocusing case. Suppose that λ n = λ n-1 + 1 . Then, from one side we have by Proposition 2.4 , Sf n-1 //f n , and from the other hand, we infer by the second identity of Lemma 2.3 ,

⟨Sf n-1 | u⟩ ⟨u | f n ⟩ = 0 . That is, ⟨u | f n ⟩ = 0 .
The converse is a direct consequence of the second identity of Lemma 2.3 and the previous lemma.

For the focusing case, the same analysis can be applied. However, it should be noted that, since not all the eigenvalues (ν n ) satisfy ν n > ν n-1 + 1 2 , and ν n ̸ = 0 , for all n ∈ N , but only for large n , thanks to Proposition 2.1 , then the equivalence holds for n sufficiently large. □

3.

Traveling waves for the defocusing (CS -)

3.1. Spectral Characterization. One way to understand the behavior of a linear PDE's solution is to consider its Fourier transform. Specifically, on the periodic domain T, this consists of computing the inner product with ⟨ • | e inx ⟩ for all n ∈ Z.

The main idea behind this approach is to "diagonalize" the problem in the (e inx )basis, which facilitates solving the equation. However, by considering the Calogero-Sutherland DNLS equation (CS -) , we are dealing with a nonlinear integrable PDE, which can also be "diagonalized" in some coordinate system (think about the Birkhoff coordinates). Thus, by imitating the idea of the linear case, we suggest taking the inner product of the (CS -)-equation with an appropriate orthonormal basis of L 2 + (T) . Before proceeding, observe that the defocusing Calogero-Sutherland DNLS equation can be rewritten in terms of the Lax pair as [Ba23, Lemma 2.4, Lemma 5.2]

∂ t u = Bu u -i L2 u u . (3.1)
This motivates the choice of the following orthonormal basis of L 2 + (T) .

Definition 3.1. Given u ∈ C t H 2 + (T) x , let (g t n ) be the evolving orthonormal basis of L 2 + (T) defined along the curve t → u(t) as ∂ t g t n = Bu(t) g t n g t n | t=0 = f u 0 n , ∀n ∈ N ≥0 , (3.2)
where (f u 0 n ) is an orthonormal basis of L 2 + (T) made up of the eigenfunctions of Lu 0 at t = 0 , and Bu(t) is the skew-adjoint operator defined in (1.11) .

Remark 3.1. Note that the (g t n ) satisfies for all n ∈ N ≥0 [Ku06, Lemma 4.1] , Lu(t) g t n = λ n g t n .

(3.3) Therefore, as it was established in [Ba23, Lemma 3.6] , by taking the inner product of (3.1) with the g t n and using that Lu is a self-adjoint operator and Bu is skewsymmetric, we find

∂ t u(t) | g t n = -iλ 2 n u(t) | g t n , or u(t) | g t n = ⟨u 0 | f u 0 n ⟩ e -iλ 2 n t . (3.4) Lemma 3.2. For any u ∈ C t H 2 + (T) x solution of (CS -) and for all n , p ∈ N ≥0 , 1 | g t n = ⟨1 | f u 0 n ⟩ e -iλ 2 n t , (3.5) Sg t p | g t n = Sf u 0 p | f u 0 n e i((λp+1) 2 -λ 2 n ) t .
Proof. By Definition 3.1 , and since Bu is skew-symmetric operator,

∂ t 1 | g t n = 1 | Bu g t n = -Bu 1 | g t n ,
where by (1.11) ,

Bu 1 = -T u T ∂x ū1 + T ∂xu T ū1 + i(T u T ū) 2 1 = ⟨1 | u⟩ ∂ x u + iT u T u u . Note that Lu 1 = -i∂ x 1 + T u T ū1 = ⟨1 | u⟩ u . Therefore, Bu 1 = i L2 u 1 and ∂ t 1 | g t n = -i L 2 u 1 | g t n = -iλ 2 n 1 | g t n .
This achieves the proof of the first point. To prove the second one, we proceed with the same manner. By Definition 3.1 ,

∂ t g t n | Sg t p = Bu g t n | Sg t p + g t n | S Bu g t p = [S * , Bu ] g t n | g t p .
Hence, applying the commutator identity (2.4) , and since Lu is a self-adjoint operator, we infer

∂ t g t n | Sg t p = i S * L2 u -( Lu + Id) 2 S * g t n g t p = i (λ 2 n + (λ p + 1) 2 ) g t n | Sg t p . Therefore, g t n | Sg t p = f u 0 n | Sf u 0 p e i(λ 2 n -(λp+1) 2 )t .

□

Remark 3.2. The consideration of the evolution of ⟨u | g t n ⟩, ⟨1 | g t n ⟩, and Sg t p | g t n is motivated by the fact that any element u of the Hardy space can be written as follows.

Lemma 3.3 ([GK21, GMR16]). For any u ∈ L 2 + (T) , u(z) = (Id -zS * ) -1 u | 1 , z ∈ D ,
where S * is the adjoint operator of S in L 2 + (T) .

Therefore, by expressing the operator S * , and the two vectors u and 1 in their matrix representations with respect to the (g t n )-basis, we obtain

u(t, z) = (Id -zM ) -1 X | Y , z ∈ D , (3.6)
where X , Y are infinite column vectors and M is the infinite matrix representation :

X := u | g t n , Y := 1 | g t n , M := g t n | Sg t n . Proof of Lemma 3.3 . ([GK21])
The idea is to observe that any element u of the Hardy space L 2 + (T) can be read as an analytic function on the open unit disc D , whose trace on the boundary ∂D is in L 24 . Thus, for any z ∈ D ,

u(z) = k∈N ≥0 u(k)z k = k∈N ≥0 u | S k 1 z k = k∈N ≥0 (S * ) k u | 1 z k .
As a result, by Neumann series,

u(z) = (Id -zS * ) -1 u | 1 .

□

At this stage, we consider u(t) := u 0 (x -ct) to be a traveling wave to the Calogero-Sutherland DNLS equation (CS -). We denote, for all c, t ∈ R , by τ ct the isometric linear map

τ ct : L 2 + (T) → L 2 + (T) , τ ct u 0 (x) = u 0 (x -ct) .
Our aim for this subsection is to prove the following Theorem.

Theorem 3.4. Let u(t) := τ ct u 0 be a traveling wave to the (CS -)-equation. Then there exists at most one N ∈ N such that

⟨u 0 | f u 0 N ⟩ ̸ = 0 .
Moreover, the speed c is given by

c = 1 + 2 N N -1 k=0 λ k .
To this end, we shall need two key elements. Firstly, Lemma 3.2 and identity (3.4). Secondly, we will utilize the existence of a relationship (identity (3.7)) connecting the eigenfunctions (g t n ) of Lu(t) introduced in Definition 3.1 , with the functions (τ ct f u 0 n ), where recall (f u 0 n ) represents the eigenfunctions of Lu 0 . To establish this connection, we present the following proposition, which also describes the behavior of the eigenfunctions (f u 0 n ) of Lu 0 under the action of the translation map on the spatial variable

f u 0 n -→ τ ct f u 0 n , c, t ∈ R .
Proposition 3.5. Let u(t) := τ ct u 0 be a solution to (CS -) . There exists a sequence (θ n (t)) ⊆ R , such that

τ ct f u 0 n = e iθn(t) g t n , ∀n ∈ N ≥0 . (3.7)
In other words, the (τ ct f u 0 n ) are also eigenfunctions of Lu(t) .

Proof. By definition of Lu = D + u Π ū • , and since u(t) = τ ct u 0

Lu(t) τ ct f u 0 n = Df u 0 n (x -ct) + u 0 (x -ct) Π ū0 (x -ct) f u 0 n (x -ct) , = τ ct Lu 0 f u 0 n = λ n (u 0 ) τ ct f u 0 n , ∀n ∈ N ≥0 .
In other words, τ ct f u 0 n is an eigenfunction of Lu(t) associated with the eigenvalue λ n (u 0 ) . On the other hand, recall that all the eigenvalues λ n (u 0 ) of Lu(t) are simple, as stated in Proposition 2.1 . Additionally, according to Remark 3.1, the (g t n ) are eigenfunctions of Lu(t) associated to the eigenvalues λ n (u 0 ) . Therefore, for all n ∈ N ≥0 , the two vectors τ ct f u 0 n and g t n are collinear. Since both vectors belongs to an orthonormal basis of L 2 + (T), then each one has an L 2 -norm equal to one. Thus, we infer for all n ∈ N ≥0 , there exists θ n (t) ∈ R such that for all t ∈ R , τ ct f u 0 n = e iθn(t) g t n .

□ Corollary 3.6. For all n , p ∈ N ≥0 , and for all t ∈ R , we have

(1) If ⟨1 |f u 0 n ⟩ ̸ = 0 then θ n (t) = -λ 2 n t .
(

) If ⟨u 0 |f u 0 n ⟩ ̸ = 0 then θ n (t) = -λ 2 n t . (3) If ⟨Sf u 0 p |f u 0 n ⟩ ̸ = 0 then θ n (t) = ((λ p + 1) 2 -λ 2 n )t -ct + θ p (t) , 2 
where θ n (t) is the angle obtain in (3.7) .

Proof. By combining identity (3.4) and the two identities of Lemma 3.2 , with identity (3.7) of the previous proposition, we infer

e iθn(t) ⟨1 | τ ct f u 0 n ⟩ = ⟨1 | f u 0 n ⟩ e -iλ 2 n t , e iθn(t) ⟨τ ct u 0 | τ ct f u 0 n ⟩ = ⟨u 0 | f u 0 n ⟩ e -iλ 2 n t e -iθp(t) e iθn(t) Sτ ct f u 0 p | τ ct f u 0 n = Sf u 0 p | f u 0 n e i((λp+1) 2 -λ 2 n ) t .
Note that, S τ ct (•) = e ict τ ct (S •) , and since we are dealing with periodic functions , we deduce,

e iθn(t) ⟨1 | f u 0 n ⟩ = ⟨1 | f u 0 n ⟩ e -iλ 2 n t , e iθn(t) e iφ(t) ⟨u 0 | f u 0 n ⟩ = ⟨u 0 | f u 0 n ⟩ e -iλ 2 n t e -iθp(t) e iθn(t) e ict Sf u 0 p | f u 0 n = Sf u 0 p | f u 0 n e i((λp+1) 2 -λ 2 n ) t .
(3.8) leading to the result. □

At this point, we are ready to prove the spectral characterization of the traveling waves for (CS -), namely Theorem 3.4 .

Proof of Theorem 3.4. The proof relies on the spectral property of Lu discussed in Section 2 and on Corollary 3.6 . Indeed, observe first by Lemma 2.5 , we have

Sf u 0 n-1 | f u 0 n ̸ = 0 for all n ∈ N .
Hence, applying the third identity of Corollary 3.6 with p = n -1 , leads to the recurrence relation

θ n (t) = (λ n-1 + 1) 2 -λ 2 n t -ct + θ n-1 (t) , n ≥ 1 .
Taking the sum of all these expressions from n = 1 to n ∈ N , we infer

θ n (t) = λ 2 0 t + 2t n-1 k=0 λ k + nt -λ 2 n t -nct + θ 0 (t) . (3.9) 
Our aim is to prove that for all n ≥ 1 , ⟨u 0 | f u 0 n ⟩ = 0 unless at most for one n . For the sake of contradiction, suppose that there exist two integers 1 ≤ n 1 < n 2 such that u 0 | f u 0 n 1 ̸ = 0 and u 0 | f u 0 n 2 ̸ = 0 . Then by Corollary 3.6, we infer

θ n 1 (t) = -λ 2 n 1 t (3.10)
θ n 2 (t) = -λ 2 n 2 t Plugging (3.10) in (3.9) we obtain

n 1 ct = n 1 t + 2t n 1 -1 k=0 λ k + θ 0 (t) + λ 2 0 t . (3.11) n 2 ct = n 2 t + 2t n 2 -1 k=0 λ k + θ 0 (t) + λ 2 0 t .
Besides, notice that θ 0 (t) = -λ 2 0 t .

(3.12) Indeed, if ⟨u 0 | f u 0 0 ⟩ ̸ = 0 then by the second point of Corollary 3.6, we have the claimed identity. Otherwise, if ⟨u 0 | f u 0 0 ⟩ = 0 then ⟨1 | f u 0 0 ⟩ ̸ = 0 , since if it is not the case, i.e. if there exists h ∈ L 2 + (T) such that f u 0 0 = Sh , then we have by the commutator relation (2.2)

λ 0 Sh = Lu 0 Sh = S Lu 0 h + Sh + ⟨Sh | u 0 ⟩ u 0 , implying, as ⟨Sh | u 0 ⟩ = ⟨f u 0 0 | u 0 ⟩ = 0, Lu 0 h = (λ 0 -1)h .
That means, h is an eigenvector of Lu 0 associated with an eigenvalue strictly less than λ 0 , which is impossible. Therefore ⟨1 | f u 0 0 ⟩ ̸ = 0 , and so by the first identity of Corollary 3.6, we infer θ 0 (t) = -λ 2 0 t . Substituting (3.12) in (3.11) , we obtain

c = 1 + 2 n 1 n 1 -1 k=0 λ k . c = 1 + 2 n 2 n 2 -1 k=0 λ k .
That is,

n 2 n 1 -1 k=0 λ k = n 1 n 2 -1 k=0 λ k , or (n 2 -n 1 ) n 1 -1 k=0 λ k = n 1 n 2 -1 k=n 1 λ k
But recall by (2.5) , λ n+1 > λ n , for all n . Combining this fact with the last equality, we conclude

n 1 (n 2 -n 1 ) λ n 1 -1 > n 1 (n 2 -n 1 ) λ n 1 ,
leading to a contradiction. As a consequence, for any traveling wave solution u(t, x) := u 0 (x -ct) of (CS -) , there exists at most one N ∈ N such that

⟨u 0 | f u 0 N ⟩ ̸ = 0 ,
where (f u 0 n ) is any orthonormal basis of L 2 + (T) consisting of the eigenfunctions of Lu 0 . Moreover, u travels with the speed Indeed, since ⟨u 0 | f u 0 n ⟩ = 0 for all 1 ≤ n < N , then by Corollary 2.6 ,

c = 1 + 2 N N -1 k=0 λ k . ( 3 
λ n = λ n-1 + 1 , ∀1 ≤ n < N .
leading to the fact that (3.13) is equivalent to (3.14) . Besides, since Lu is a nonnegative operator, then λ 0 ≥ 0 , which implies that the speed of the traveling wave solution satisfies c ≥ N . However, as will be observed in Subsection 3.3, the speed c = N can only be reached by traveling waves of the form u(t, x) = e iN (x-N t) .

Explicit formulas of the traveling waves.

Recall by Remark 3.2 , any elements of the Hardy space, in particular u 0 , can be written as

u 0 (z) = (Id -zM ) -1 X | Y , (3.15) 
where X , Y are infinite column vectors, M is an infinite matrix :

X := ⟨u 0 | f u 0 n ⟩ , Y := ⟨1 | f u 0 n ⟩ , M = f u 0 p | Sf u 0 n . (3.16)
In the following, we denote by G 1 the set of the semi-trivial traveling waves, made up from the constant and the plane wave solutions

G 1 = C e iN (x-N t) | C ∈ C , N ∈ N ≥0 .
(3.17)

Theorem (1.1). The traveling waves u(t, x) = u 0 (x-ct) of (CS -) are the potentials u(t, x) ∈ G 1 and

u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , θ ∈ T ,
where N ∈ N , c := -N 1 + 2α β , and (α, β) are two real constants satisfying

αβ + β 2 1 -|p| 2 = -N .
(3.18)

Proof. The proof is based on the inversion spectral formula

u 0 (z) = (Id -zM ) -1 X | Y ,
of (3.15) , and on the spectral characterization of u 0 described in Theorem 3.4. In the sequence, to make the notation less cluttered, we denote f n := f u 0 n . Let u(t, x) := u 0 (x -ct) . As a first step, we prove that the infinite matrices X , Y and M reduce to finite matrices in the context of a traveling wave solution. Indeed, by Theorem 3.4 , there exists at most one N ∈ N , such that ⟨u 0 | f N ⟩ ̸ = 0 . We focus on the case where such an N exists, that is:

   ⟨u 0 | f N ⟩ ̸ = 0 ⟨u 0 | f n ⟩ = 0 , ∀n ∈ N\ {N } . (3.19)
The case where ⟨u | f n ⟩ = 0 for all n ∈ N can be handled similarly, leading also to the reduction of the study to finite matrices. From now on, we suppose (3.19) holds. Therefore, it follows by Lemma 2.3 , that λ n ⟨1 | f n ⟩ = 0 , implying that

⟨1 | f n ⟩ = 0 , ∀n ∈ N\ {N } ,
as the eigenvalues λ n are all positive for any n ∈ N since Lu is a non-negative operator. Therefore, the two infinite column vectors X and Y of (3.16) reduces to

X =             ⟨u 0 | f 0 ⟩ 0 . . . 0 ⟨u 0 | f N ⟩ 0 . . .             , Y =             ⟨1 | f 0 ⟩ 0 . . . 0 ⟨1 | f N ⟩ 0 . . .             . (3.20)
On the other hand, since ⟨u 0 | f n ⟩ = 0 , for all n ∈ N\ {N } , then by Corollary 2.6 , we have λ n = λ n-1 + 1 for all n ∈ N\ {N } . Whence, Sf n-1 // f n for all n ∈ N\ {N } , thanks to Proposition 2.4 . More specifically,

f n // S n f 0 , 1 ≤ n ≤ N -1 f n // S n-N f N , n ≥ N . (3.21)
As a consequence, the set (S n f 0 ) n=0 ,... ,N -1 , (S n f N ) n≥0 is an orthonormal basis of L 2 + (T) and the matrix

M = ⟨f p | Sf n ⟩ reduces to M =              0 1 0 . . . 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 . . . 1 0 ⟨f 0 | S N f 0 ⟩ 0 . . . 0 f N | S N f 0 0 0 . . . . . . 0 1 0 0 . . . . . . 0 0 1 0 . . . . . . . . . . . . . . .              .
Hence, the infinite matrices X , Y and M in formula (3.15) can be restrained to finite matrices involving only the first N + 1 coordinates of X , Y , and M [GK21] . Indeed, denoting ξ := (Id -zM ) -1 X , we have

(Id -zM ) ξ = X . That is,           1 -z 0 . . . 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 . . . -z 0 -⟨f 0 | S N f 0 ⟩z 0 . . . 1 -f N | S N f 0 z 0 0 . . . . . . 1 -z 0 0 . . . . . . 0 1 -z 0 . . . . . . . . . . . . . . .           •        ξ 0 . . . ξ N -1 ξ N ξ N +1 . . .        =          ⟨u 0 | f 0 ⟩ 0 . . . 0 ⟨u 0 | f N ⟩ 0 . . .         
Thus, for all n ≥ N + 1 , the n th coordinate of ξ is ξ n = z ξ n+1 , i.e.

ξ N +1 = z n-N -1 ξ n , ∀n ≥ N + 1 .
And since n≥0 |ξ n | 2 < ∞ , then

ξ n = 0 , ∀n ≥ N + 1 .
As a result,

(Id -z(M mn ) m,n≥N +1 ) -1 (X n ) n≥N +1 | (Y m ) m≥N +1 = 0 , (3.22) 
and therefore

u 0 (z) = (Id -zM ≤N ) -1 X ≤N | Y ≤N C N +1 ×C N +1 ,
where

M ≤N := (M mn ) 0≤m,n≤N , X ≤N := (X n ) 0≤n≤N and Y ≤N := (Y N ) 0≤n≤N .
Consequently, u 0 is a rational function

u 0 (z) = P (z) det (Id -zM ≤N )
,

where

P (z) = Y * ≤N • Com(Id -zM ≤N ) T • X ≤N .
Computing the numerator P and the denominator of u 0 via these finite matrices, we obtain that u 0 is of the form

u 0 (z) = az N + b 1 -pz N , a, b ∈ C , (3.23) 
where p = f 0 | S N f 0 , |p| < 1 .

If p = 0 . Namely, if f 0 | S N f 0 = 0 , then

S N f 0 = n≥n S N f 0 | f n f n = S N f 0 | f N f N ,
since by (3.21) , the set (S n f 0 ) n=0 ,... ,N -1 , (S n f N ) N ≥0 is an orthonormal basis of L 2 + (T) . Thus, the two vectors f N and S N f 0 are collinear, leading to : for all n ∈ N ≥0 , f n //S n f 0 , thanks to (3.21) . Consequently, {S n f 0 , n ∈ N ≥0 } is an orthonormal basis of L 2 + (T) , which means, the vector f 0 is necessarily collinear to 1 . Besides, recall from (3.20) ,

u 0 = ⟨u 0 | f 0 ⟩ f 0 + ⟨u 0 | f N ⟩ f N = ⟨u 0 | f 0 ⟩ f 0 + u 0 | S N f 0 S N f 0 , = ⟨u 0 | 1⟩ + u 0 | e iN x e iN x
and, as p = 0 i.e. f 0 | S N f 0 = 0 , we have by the second identity of Lemma 2.3 , either

⟨u 0 | f 0 ⟩ = 0 or u 0 | S N f 0 = 0 . i.e. ⟨u 0 | 1⟩ = 0 or u 0 | e iN x = 0 .
Therefore, either u 0 (x) is a complex constant, or u 0 (x) = Ce iN x , with C ∈ C , N ∈ N . Taking, u(t, x) = u 0 (x -ct) = C e iN (x-ct) , and substituting it in the defocusing Calogero-Sutherland DNLS equation (CS -) , we infer, since the nonlinearity DΠ(|e iN (x-ct) | 2 ) e iN (x-ct) vanishes,

N c e iN (x-ct) -N 2 e iN (x-ct) = 0 , and thus c = N . As a result, if p = 0 then the traveling waves u(t, x)

:= u 0 (x -ct) are u(t, x) = C e iN (x-N t) , C ∈ C , N ∈ N ≥0 .
Let us move, to the case where p ̸ = 0 . The potential u 0 of (3.23) can be rewritten as

u 0 = α + β 1 -pz n , α, β ∈ C , p, z ∈ D ,
In order to find the relation between α, β and obtain the speed c , we substitute u(t, z) := u 0 (e -ict z) into the defocusing Calogero-Sutherland DNLS equation (CS -). This equation can be rewritten as

i∂ t u -(z∂ z ) 2 u -2z∂ z Π(|u| 2 )u = 0 , (3.24) 
after observing that D = -i∂ x can be expressed as D ≡ z∂ z . Thus, starting from

u := u(t, z) = α + β 1 -p e -iN ct z N ,
and computing i∂ t u and (z∂ z ) 2 u , we find

i∂ t u = -cβN 1 1 -p e -iN ct z N - 1 (1 -p e -iN ct z N ) 2 , (z∂ z ) 2 u = βN 2 1 1 -p e -iN ct z N - 3 (1 -p e -iN ct z N ) 2 + 2 (1 -p e -iN ct z N ) 3 .
For the nonlinear part,

|u| 2 = |α| 2 + α β + α β p e iN ct z N -p e iN ct + α β 1 -p e -iN ct z N + |β| 2 z N (1 -p e -iN ct z N )(z N -p e iN ct )
.

Recall that Π is an orthonormal projector into the Hardy space (in particular to a subspace of the holomorphic functions on D). Thus, applying Π , it follows

Π(|u| 2 ) = |α| 2 + α β + α β 1 -p e -iN ct z N + |β| 2 1 -|p| 2 1 1 -p e -iN ct z N .
And hence,

z∂ z Π(|u| 2 ) • u = A -α 1 -p e -iN ct z N + -β + α (1 -p e -iN ct z N ) 2 + β (1 -p e -iN ct z N ) 3 , where A = N ᾱβ + |β| 2 1 -|p| 2 .
Substituting the expressions of i∂ t u , (z∂ z ) 2 u and z∂ z Π(|u| 2 )u into (3.24) , and comparing the terms 1 (1 -p e -iN ct z N ) n for n = 1, 2, 3 , we deduce

• With n = 3 , A = -N 2 . That is, ᾱβ + |β| 2 1 -|p| 2 = -N • With n = 2 and n = 1 , c = -N 1 + 2α β .
As a result, for p ̸ = 0 , u(t, z)

:= α + β 1 -p e -iN ct z N , p ∈ D * , θ ∈ T ,
where N ∈ N , c := -N 1 + 2α β , and (α,

β) ∈ C × C satisfy αβ + |β| 2 1 -|p| 2 = -N . (3.25)
Finally, observe by (3.25) , the two complex constants (α, β) satisfy ᾱβ ∈ R . Thus, by making a slight abuse of notation on α and β, we have obtained that the traveling waves of (CS -) with p ̸ = 0 are given by

u(t, z) := e iθ α + β 1 -p e -iN ct z N , p ∈ D * , θ ∈ T ,
where N ∈ N , c := -N 1 + 2α β , and (α,

β) ∈ R × R satisfy αβ + β 2 1 -|p| 2 = -N . □ 3.
3. The L 2 -norm and the speed. In this subsection, we analyze how the traveling waves of (CS -) behaves, by providing information regarding their L 2 -norm and their speed c. Recall that the set of traveling wave solutions of the defocusing Calogero-Sutherland DNLS equation are made up by the trivial solutions

G 1 = C e iN (x-N t) | C ∈ C , N ∈ N ≥0 ,
and by the set of functions

u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , θ ∈ T , (3.26)
where N ∈ N , c := -N 1 + 2α β , and (α, β) are two real constants satisfying (3.18) .

For u ∈ G 1 , it is easy to see that the L 2 -norm of the semi-trivial solution can be arbitrarily small or large in [0, +∞) , and its speed c is given as c = N ∈ N ≥0 .

The following proposition aims to provide those for the nontrivial traveling waves of (CS -) . Proposition 3.7 (L 2 norm of a non-trivial traveling wave and the speed).

(i) For any r > 0 , there exists a non-trivial traveling waves u(t, x) := u 0 (x -ct)

for (CS -) with

∥u 0 ∥ L 2 = r .
In other words, the traveling waves of (CS -) can be arbitrarily small or large in L 2 + (T) . (ii) Let u be a traveling wave for (CS -) of the form (3.26) , then u propagates to the right with a speed c > N . In addition, when ∥u∥ L 2 → ∞ then c → ∞ and when ∥u∥ L 2 → 0 then c → N .

Remark 3.4 (Non-existence of stationary solution for (CS -)). Since for any traveling wave u 0 (x -ct) of the defocusing Calogero-Sutherland DNLS equation (CS -) we have c ≥ N , where N is the numerator's degree of u 0 , then there is no stationary solution (i.e. u(t, x) = u 0 (x)) for the (CS -)-equation . Another way to see this, is by observing that if c = 0 , which occurs when α = -β 2 according to Theorem 1.1, then we have by (3.18)

1 + |p| 2 1 -|p| 2 β 2 = -N , which is impossible as p ∈ D * .
Proof. (i) The L 2 -norm of the non-trivial traveling wave can be arbitrarily small or large. Let u be a traveling wave of the form (3.26)

u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , N ∈ N ,
where (α, β) ∈ R 2 satisfies the identity (3.18) . Recall that any function u in the Hardy space can be seen as an analytic function on the open unit disc D , whose trace on the boundary ∂D is in L 2 . Hence,

∥u∥ 2 L 2 = z∈C (0,1) |u(z)| 2 dz 2πiz ,
where

|u(z)| 2 = α + β 1 -p e -iN ct z N α + β z N z N -p e iN ct = α 2 + αβ + αβ e iN ct p z N -p e iN ct + αβ 1 -p e -iN ct z N + β 2 z N (1 -p e -iN ct z N )(z N -p e iN ct )
Writing

β 2 z N (1 -p e -iN ct z N )(z N -p e iN ct ) = β 2 1 -|p| 2 1 1 -p e -iN ct z N + p e iN ct z N -p e iN ct , we infer |u(z)| 2 = α 2 +αβ+ αβ + β 2 1 -|p| 2 1 1 -p e -iN ct z N + αβ + β 2 1 -|p| 2 e iN ct p z N -p e iN ct .
Therefore,

∥u∥ 2 L 2 = α 2 + αβ + αβ + β 2 1 -|p| 2 , (3.27) since for N ∈ N , 1 1 z N -p e iN ct = z∈C (0,1) z N 1 -p e -iN ct z N dz 2πiz = 0 .
Consequently, by (3.18) ,5 

∥u∥ 2 L 2 = α 2 + αβ -N .
(3.28)

In addition, since by (3.18)

α = - N β - β 1 -|p| 2 , then, ∥u∥ 2 L 2 = - N β - β 1 -|p| 2 2 + - N β - β 1 -|p| 2 β -N = |p| 2 1 -|p| 2 β 2 1 -|p| 2 + 2N + N 2 β 2 .
Observe that, ∥u∥ 2 L 2 is a continuous function of |p| 2 and β 2 . Moreover, by taking β → 0 then ∥u∥ 2 L 2 → ∞ . And if we take |p| 2 → 0 then

∥u∥ 2 L 2 ∼ |p| 2 →0 N 2 β 2
which can be arbitrary small when β >> 1.

(ii) Speed : c > N . By Theorem 1.1 , the speed of the traveling waves of the form (3.26) is given by c

= -N (1 + 2α β ) . Besides, recall from (3.18) , α β = - N β 2 - 1 1 -|p| 2 .
Substituting the latter identity in the expression of c , it follows

c = N 1 + |p| 2 1 -|p| 2 + 2N β 2 > N . (3.29)
It remains to prove that

• when ∥u∥ L 2 → +∞ , we have c → +∞ ,

• and when ∥u∥ L 2 → 0 then c → N .

where the (g t n ) denotes the orthonormal basis defined in the previous lemma.

Lemma 4.3 (The analog of Corollary 3.6 in the focusing case). Let u 0 be a function such that the eigenvalues (ν n (u 0 )) are simple. Then, for all n , p ∈ N ≥0 , t ∈ R , we have

(1) If ⟨1 |f u 0 n ⟩ ̸ = 0 then θ n (t) = -ν 2 n t . (2) If ⟨u 0 |f u 0 n ⟩ ̸ = 0 then θ n (t) = -ν 2 n t . (3) If ⟨Sf u 0 p |f u 0 n ⟩ ̸ = 0 then θ n (t) = ((ν p + 1) 2 -ν 2 n )t -ct + θ p (t)
, where θ n (t) is the angle obtained in (4.2) .

At this stage, we are equipped with the necessary tools to footstep the proof of the defocusing equation. However, it is important to emphasize two fundamental differences between the Lax operators L u and Lu , which ultimately offer a considerably expanded set of traveling waves for (CS + ) in comparison to (CS -) :

• The gap between the eigenvalues differ between the focusing and the defocusing case (Proposition 2.1). • The fact that the eigenvalues λ n of Lu are not zero for any n ∈ N . Indeed, in the defocusing case, since all the eigenvalues satisfy λ n > λ n-1 + 1 2 (Inequality (2.5)) and λ n ̸ = 0 for all n ∈ N , then we obtained in Lemma 2.5 ,

I(u) = ∅ , ∀u ∈ H 2 + (T)
, where I(u) was defined in (2.12) . As a consequence, we inferred that if u(t, x) = u 0 (x -ct) is a traveling wave of (CS -) , then there exists at most one N ∈ N such that ⟨u 0 | f u 0 n ⟩ = 0 for all n ∈ N\{N } . Now, for the focusing equation, recall we have previously observed in the second point of Remark 2.3 , that I(u) is of finite cardinal for all u ∈ H 2 + (T) . In particular, for u 0 ∈ H 2 + (T) , we denote by m 1 , . . . , m n its elements

I(u 0 ) = {m 1 , . . . , m n } .
Theorem 4.4 (Toward the Characterization of the traveling waves of (CS + )). The traveling waves u 0 (x -ct) of (CS + ) are either rational functions or the plane waves u(t, x) = C e iN (x-N t) . In addition, the potentials

u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * , θ ∈ T , N ∈ N , (4.3) 
where c = -N 1 + 2α β , (α, β) ∈ R × R such that αβ + β 2 1 -|p| 2 = N , (4.4) 
and the potentials

u(t, z) = e iθ e im(x-ct) α + β 1 -p e i(x-ct) p ∈ D * , θ ∈ T , m ∈ N , (4.5 
)

where c = m , (α, β) ∈ R × R such that αβ + β 2 1 -|p| 2 = 1 , β(m -1) = 2α ,
are parts of the set of the traveling waves of (CS + ) .

Proof.

Step 1. (Spectral characterization of the traveling waves of (CS + )). Let u(t, x) := u 0 (x -ct) be a traveling wave for (CS + ) . Our goal is to prove that there exists N ∈ N such that ⟨u 0 | f u 0 n ⟩ = 0 for all n ≥ N . Once more, in order to simplify the notation, we denote in the following f n instead of f u 0 n . Recall by the second point of Remark 2.3 , I(u 0 ) is of finite cardinal, that is there exists m

1 < . . . < m j ∈ N such that ⟨Sf n-1 | f n ⟩ = 0 , ∀n ∈ {m 1 , . . . m j } ⟨Sf n-1 | f n ⟩ ̸ = 0 , ∀n ∈ N\{m 1 , . . . m j } .
Suppose that there exists an integer ℓ >> 1 , ℓ > m j such that ⟨u 0 | f ℓ ⟩ ̸ = 0 . Otherwise, we already have what we claim to prove. Then,

• For all n ≥ ℓ + 1 , the quantities ⟨Sf n-1 | f n ⟩ ̸ = 0 . • Since ℓ >> 1 , then by inequality (2.7) , the eigenvalues (ν n ) n≥ℓ+1 are simple.

This implies that Lemma 4.2 holds for n ≥ ℓ + 1 .

Therefore, using the third point of Lemma 4.3 , we obtain, for all n ≥ ℓ + 1 ,

θ n (t) = -ν 2 n t + (ν n-1 + 1) 2 t -ct + θ n-1 (t) = -ν 2 n t + (ν n-1 + 1) 2 t -ν 2 n-1 t + (ν n-2 + 1) 2 t -2ct + θ n-2 (t) = . . . = -ν 2 n t + (n -ℓ)t + ν 2 ℓ t -(n -ℓ)ct + 2t n-1 k=ℓ ν k + θ ℓ (t) ,
where θ n (t) is the angle obtained in Lemma 4.2 , and θ ℓ (t) = -ν 2 ℓ t thanks to the second point of Lemma 4.3 . Hence, for all n ≥ ℓ + 1 ,

θ n (t) = -ν 2 n t + (n -ℓ)t -(n -ℓ)ct + 2t n-1 k=ℓ ν k , (4.6) 
As a consequence, there exists at most one integer N ≥ ℓ such that

⟨u 0 | f N ⟩ ̸ = 0 .
Indeed, suppose for the sake of contradiction that there exist n 2 > n 1 > ℓ , such that ⟨u 0 | f n 1 ⟩ ̸ = 0 and ⟨u 0 | f n 2 ⟩ ̸ = 0 . Then, combining the second point of Lemma 4.3 , and equation (4.6) , we obtain

c = 1 + 2 n 1 -ℓ n 1 -1 k=ℓ ν k . c = 1 + 2 n 2 -ℓ n 2 -1 k=ℓ ν k . Hence, (n 2 -ℓ) n 1 -1 k=ℓ ν k = (n 1 -ℓ) n 2 -1 k=ℓ ν k , or (n 2 -n 1 ) n 1 -1 k=ℓ ν k = (n 1 -ℓ) n 2 -1 k=n 1 ν k . As a result, (n 1 -ℓ)(n 2 -n 1 ) ν n 1 -1 ≥ (n 1 -ℓ)(n 2 -n 1 ) ν n 1 ,
leading to a contradiction, since for k ≥ ℓ , we have ν k+1 > ν k . Therefore, there exists N ∈ N such that ⟨u 0 | f n ⟩ = 0 for all n ≥ N .

Step 2. (They are rational functions or potentials in G 1 ) Since ⟨u 0 | f n ⟩ = 0 for all n ≥ N , it follows by Corollary 2.6 that ν n = ν n-1 + 1 for all n ≥ N 2 . Note that the potentials satisfying ν n = ν n-1 + 1 for all n ≥ N 2 , are referred to be "finite gap potentials" for (CS + ), and are studied deeply in Section 5. In particular, Theorem 1.3 provides a full characterization of these potentials in the state space. They are either u(x) = C e iN x , C ∈ R * , N ∈ N ≥0 , or rational functions

u(x) = e im 0 x r j=1 e ix -p j 1 -p j e ix m j -1 α + r j=1 β j 1 -p j e ix , p j ∈ D * , p k ̸ = p j , k ̸ = j , (4.7)
where, for N ∈ N , m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N , such that m 0 + r j=1 m j = N , and (α, β 1 , . . . , β r ) ∈ C × C r satisfy for all j = 1 , . . . , r ,

α β j + r k=1 α j α k 1 -p j p k = m j .
It remains to verify that (4.3) and (4.5) are traveling waves for (CS + ) . To do so, one can simply substitute them into the equation (CS + )-equation and check that they satisfy the equation. □

Remark 4.1. As was observed in the previous proof all the traveling waves u 0 (x-ct) of (CS + ) are either u(t, x) = C e iN (x-N t) or the rational functions u(t, x) := u 0 (x -ct) where u 0 is defined in (4.7) and the constants α, β j and c can be described by substituting u in the (CS + )-equation.

4.2.

The L 2 -norm and the speed. In this subsection, we analyze the L 2 -norm and the speed of the traveling waves of (CS + ) and establish the existence of stationary solutions for the focusing Calogero-Sutherland DNLS equation (CS + ) .

Proposition 4.5.

(i) For any r > 0 , there exists a non-trivial traveling wave u(t, x) := u 0 (x -ct) for (CS + ) with

∥u 0 ∥ L 2 = r .
(ii) Let u be a traveling wave for (CS + ) of the form (4.3) , then u can propagate to the right or to the left with any speed c ∈ R .

Remark 4.2. Contrary to the defocusing case, we do not necessarily have that the traveling wave propagate with a speed c → ∞ when ∥u∥ 2 L 2 → ∞ . For instance, take

u(t, x) := N β - β 1 -|p| 2 + β 1 -p e iN (x-ct) , β 2 := 2N 1+|p| 2 1-|p| 2 -c N .
The proof of this statement will be achieved in the end of the following proof.

Proof of proposition 4.5. The L 2 -norm . Let u be a traveling wave for (CS + ) of the form (4.3) ,

u(t, x) := e iθ α + β 1 -p e iN (x-ct) , p ∈ D * .
Our goal is to prove that the L 2 norm of these traveling waves can be arbitrary small or large. The computation of its L 2 -norm has been performed in the proof of Proposition 3.7. Therefore, by identity (3.27),

∥u∥ 2 L 2 = α 2 + αβ + αβ + β 2 1 -|p| 2 , (4.8) 
where the two reals (α, β) satisfies condition (4.4)

αβ + β 2 1 -|p| 2 = N . That is, ∥u∥ 2 L 2 = |p| 2 1 -|p| 2 β 2 1 -|p| 2 -2N + N 2 β 2 .
(4.9)

Like for the defocusing case, ∥u∥ 2 L 2 is a continuous function of β 2 and |p| 2 . And by taking β → 0 one has ∥u∥ 2 L 2 → ∞ . In addition, if |p| → 0 then

∥u∥ 2 L 2 ∼ |p| 2 →0 N 2 β 2 .
Hence, it is sufficient to take β big enough so that ∥u∥ L 2 can be arbitrary small.

Speed : c ∈ R . By Theorem 4.4 , there exists traveling waves for (CS + ) that propagates with a speed c = -N 1 + 2α β where N ∈ N and the two reals (α, β) satisfy

αβ + β 2 1 -|p| 2 = N , 0 < |p| < 1 .
That is

c = -N 1 + 2N β 2 - 2 1 -|p| 2 = -N - 1 + |p| 2 1 -|p| 2 + 2N β 2 .
(4.10) By taking, for example β = |p| , we infer

c = N |p| 4 + (2N + 1)|p| 2 -2N |p| 2 (1 -|p| 2 )
Assume that N = 1 , and by taking x = |p| 2 ∈ (0, 1) , we infer that the continuous function

c(x) := x 2 + 3x -2 x(1 -x) , satisfies inf x∈(0,1) c(x) = -∞ and sup x∈(0,1) c(x) = +∞ .
Proof of Remark 4.2 . For a traveling wave u of the form (4.3),

u(t, x) := α + β 1 -p e iN (x-ct) , αβ + β 2 1 -|p| 2 = N ,
where N ∈ N , one has by (4.10) , that u propagates with a speed

c = -N - 1 + |p| 2 1 -|p| 2 + 2N β 2 .
Thus, for any N ∈ N , let

β := 2N 1+|p| 2 1-|p| 2 -λ N , p ∈ D ,
where λ is a parameter in R , and with |p| 2 big enough so that β is well defined. Hence, one computes

c = -N    - 1 + |p| 2 1 -|p| 2 + 2N 2N 1+|p| 2 1-|p| 2 -λ N    = λ ∈ R .
That is, u can propagate with any speed in R , regardless of the valued attained by the L 2 -norm of u □ Corollary 4.6. The potentials

u(t, x) := e iθ N (1 -|p| 2 ) 2(1 + |p| 2 ) 1 - 2 1 -p e iN x , p ∈ D * , N ∈ N , θ ∈ T ,
are stationary solutions for (CS + ) . Conversely, the defocusing (CS -) equation does not exhibit stationary wave solutions except the complex constant functions.

Proof. Through a straightforward calculation, one can easily check that the obtained waves satisfy the (CS + )-equation. On the other side, for the defocusing equation, we already established via Remark 3.3 or the second point of Proposition 3.7 , the non-existence of stationary waves u(t, x) = u 0 (x) for (CS -) . □

The finite gap potentials

This section aims to examine the finite gap potentials associated with the Calogero-Sutherland DNLS equation (CS) in both the focusing and defocusing cases. Remarkably, these potentials manifest as rational functions containing the traveling and solitary waves of (CS).

In the following, we adopt a slight abuse of notation, where for all n ∈ N, we denote

γ n (u) := ν n -ν n-1 -1 , (5.1) 
the gap between the consecutive eigenvalues in the focusing context, and

γ n (u) := λ n -λ n-1 -1 ,
as the gap in the defocusing context. At this point, several observations can be made. First, recall that in the defocusing case, the (λ n ) satisfies inequality (2.5), and thus, for all n ∈ N , γ n (u) is non-negative in the defocusing case . Second, notice that since the eigenvalues (ν n ) and (λ n ) of the Lax operators L u and Lu are invariant by the evolution, then for all n ∈ N , γ n (u(t)) = γ n (u 0 ) , ∀t .

Definition 5.1 (Finite gap potential). A function u ∈ L 2 + (T) is said to be a finite gap potential of (CS) if there exists m ∈ N such that

γ n (u) = 0 , ∀n ≥ m , (5.2) 
where γ n is defined in (5.1) .

Recall that any function in the Hardy space L 2 + (T) can be seen as a holomorphic function on the unit disc D whose trace on the boundary ∂D is in L 2 . Hence, in what follows, we denote by B N the set of finite Blaschke products of degree N :

ψ(x) = e iθ N k=1 e ix -p k 1 -p k e ix , θ ∈ R , p k ∈ D ,
which can be identified as the set of functions

ψ(z) = e iθ z N Q( 1 z ) Q(z) , z ∈ D := {|z| ≤ 1} , θ ∈ R .
where

Q(z) := N j=1
(1 -p j z) , p j ∈ D .

In other words, z N Q( 1 z ) is a Schur polynomial 6 of degree N . Remark 5.1. By convention, we suppose that a finite Blaschke product of degree 0 is a constant in C.

Proposition 5.2. Let u be a finite gap potential of (CS + ) . There exist (ν, ψ) ∈

R × B n , n ∈ N ≥0 such that L u S k ψ = (ν + k) S k ψ , ∀k ∈ N ≥0 .
(5.3)

In addition, the same goes for the defocusing Calogero-Sutherland DNLS equation (CS -).

Proof. Let u be a finite gap potential, that is ν n = ν n-1 + 1 for all n ≥ m . We denote by n 0 the eventual indices where ν n 0 may vanish. Then, by Proposition 2.4 ,

Sf n-1 //f n , ∀n ≥ N := max{m, n 0 } + 2 ,
as the eigenvalues (ν n ) are simple for n ≥ m + 1 . Therefore, letting ψ := f N -1 , we have

L u S k ψ = (ν N -1 + k)S k ψ ∀ k ∈ N ≥0 .
(5.4)

It remains to prove that ψ is a finite Blaschke product. Observe that, by taking the inner product of both sides of the previous identity with ψ ,

S k ψ | ψ = 0 , ∀k ∈ N . (5.5) That is |ψ| 2 | e ikx = 0, ∀k ∈ N . or |ψ| 2 | e ikx = 0, ∀k ∈ Z\{0} ,
as |ψ| 2 is real value. Consequently, |ψ| 2 is a real constant, which can be supposed equal to 1 since we have assumed that the eigenfunctions of L u constitute an orthonormal basis of L 2 + (T) . Thus, |ψ| = 1 on T. In order to conclude, we need the following lemma. Note that a Blaschke product is a rational inner function.

Proof. Given a holomorphic function ϕ on the open unit ball that extends continuously to the unit circle while satisfying |ψ| = 1 > 0 on T , we know that its zeros are finite, isolated and all localized inside the open unit disk D. We denote them by p 1 , . . . , p n . Hence, ϕ can be factorized as

ϕ(z) = υ(z) • n k=1 z -p k 1 -p k z ,
where υ is a holomorphic function without zeros on D . Therefore, 1/υ is a holomorphic function on D , which continuously extends to the unit circle while satisfying |1/υ| = 1 on T . Thus, by the maximum principle, we infer that |1/υ| ≤ 1 on D .

Using the same argument on υ instead of 1/υ , we deduce that |υ| ≤ 1 on the unit disc. As a consequence, |υ| = 1 on the close unit disc {|z| ≤ 1} and so

ϕ(z) = e iθ • n k=1 z -p k 1 -p k z , θ ∈ R .

□

Coming back to the proof of Proposition 5.2, we denote ψ the function obtained by the isometric isomorphism map where P r denotes the Poisson Kernel

ψ(z) = k≥0 ψ(k)z k , z ∈ D -→ ψ(x) := k≥0 ψ(k) e ikx
P r (x -θ) = 1 -r 2 1 -2r cos(x -θ) + r 2 .
Note that the function ψ ∈ Dom(L u ) := H 1 + (T) is continuous on T as

Dψ = L u ψ + uΠ(ūψ) ∈ L 1 + (T) .
(5.6) Therefore, the Poisson Theorem [Gi04, Theorème 30] implies that the holomorphic function ψ(r e ix ) extends continuously to ψ(e ix ) as r → 1 . In addition, recall that |ψ| = 1 on T . Thus, applying the previous lemma, we infer that ψ is a Blaschke product and so is ψ . □ At this stage, we aim to characterize the finite gap potentials of (CS) . To this end, we regroup them according to the following procedure : for any finite gap potential u of (CS) , we denote by N (u) the non-negative integer

N (u) := min n ∈ N ≥0 | ∃ ψ ∈ B n , L u S k ψ = (ν + k)S k ψ , ∀k ≥ 0 , (5.7)
and we define, for N ∈ N ≥0 , the set

U N := {u finite gap potential , N (u) = N } .
This means that for any u ∈ U N , there exists a finite Blaschke product ψ u of minimal degree N , satisfying

L u S k ψ u = (ν u + k)S k ψ u , ∀k ∈ N ≥0 , (5.8) 
where ν u is the corresponding eigenvalue of ψ u . That is S k ψ u | k ∈ N ≥0 are parts of the orthonormal basis of L 2 + (T) . Besides, observe that, since deg ψ u = N , then there exists N eigenfunctions f 0 , . . . f N -1 of L u that generate the model space (ψ u L 2 + ) ⊥ which is of dimension N [GMR16, Corollary 5.18] . We denote ν 0 , . . . , ν N -1 the associated eigenvalues. Note that the latter N eigenvalues are not necessarily smaller than ν u . We summarize this discussion by the following diagram. For any u ∈ U N ,

- ν u ψ u t ν u + 1 Sψ u t t ν u + 2 S 2 ψ u . . . ν u + n S n ψ u t ν u + n + 1 S n+1 ψ u t . . . ν 0 f 0 t ν 1 f 1 t ν N -1 f N -1 t
Of course, the same goes for the defocusing equation with Lu instead of L u , up to the fact that the remaining N eigenvalues ν 0 , . . . ν N -1 are necessarily smaller than ν u , since the eigenvalues of Lu satisfy the property (2.5) . Besides, note that by taking the minimum in (5.7) we guarantee that:

(

1) If u ∈ v finite gap potential , L v S k ψ = (ν + k) S k ψ , ψ ∈ B N , then u / ∈ v finite gap potential , L v S k ψ = (ν + k) S k ψ , ψ ∈ B N -1 .
(2) The set U N is invariant under the evolution of (CS) . (See Proposition 5.6).

The following theorem aims to characterize the finite gap potentials of the Calogero-Sutherland DNLS (CS) in the state space.

Theorem 5.4. Let N ∈ N . A potential u is in U N if and only if u(x) = C e iN x , C ∈ C * , or u is a rational function u(x) = e im 0 x r j=1 e ix -p j 1 -p j e ix m j -1 a + r j=1 c j 1 -p j e ix , p j ∈ D * , p k ̸ = p j , k ̸ = j ,
(5.9) where m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N , such that m 0 + r j=1 m j = N , and (a, c 1 , . . . , c r ) ∈ C × C r satisfy for all j = 1 , . . . , N -m , (i) In the focusing case,

a c j + r k=1 c j c k 1 -p j p k = m j , (5.10) 
(ii) In the defocusing case,

a c j + r k=1 c j c k 1 -p j p k = -m j , (5.11) with a ̸ = 0 if m 0 ∈ 1, N -1 . Besides, if N = 0 , then u is a complex constant function.
Remark 5.2. As we shall see in Step 4 of the proof of Theorem 5.4, if u ∈ U N , then the eigenvalue of L u associated

• with the Blaschke product ψ u = e iθ e iN x if u = C e iN x , is given by (i) ν u = N -C 2 in the focusing case.

(ii) λ u = N + C 2 in the defocusing case.

• with the Blaschke product

ψ u = e iθ e im 0 •x r j=1 e ix -p j 1 -p j e ix m j , θ ∈ R , p j ̸ = p k , j ̸ = k ,
if u is the rational function (5.9) , is given by

(i) ν u = m 0 -|a| 2 - r j=1
a c j in the focusing case.

(ii) λ u = m 0 + |a| 2 + r j=1 a c j in the defocusing case.

In order to establish this theorem, we recall a specific case of formula (3.15) .

Remark 5.3. Let (f n ) be an orthonormal basis of L 2 + (T) . For any n ≥ 0 ,

f n (z) = (Id -zM ) -1 1 n | Y ℓ 2 , z ∈ D ,
where 1 n and Y are the column vectors

1 n := (δ pn ) p≥0 , Y := (⟨1 | f m ⟩) m≥0
and M is the matrix representation of the operator S * in the (f m )-basis

M = (M mp ) mp≥0 , M mp = ⟨f p | Sf m ⟩ .
In what follows, we denote by C ≤N [X] the set of polynomials P in complex coefficients with degree at most N and by C N [X] those of degree N .

Proof of Theorem 5.4. We present the proof for the focusing case. Note that the same arguments can be performed to deduce the result in the defocusing case. The key ingredient is the inversion spectral formula (3.15)

u(z) = (Id -zM ) -1 X | Y ,
(5.12)

where X , Y and M are defined in (3.16) . The proof will be split in 5 steps.

Let u ∈ U N , then by Proposition 5.2 there exists a finite Blaschke product

ψ u (z) = e iθ e iN x Q(1/z) Q(z) ; Q(z) := N j=1
(1 -p j z) , p j ∈ D , (5.13) such that (5.3) is satisfied

L u S k ψ u = (ν u + k) S k ψ u , ∀k ∈ N ≥0 .
Step 1. As a first step, we prove that any u ∈ U N must be a rational function

u(z) = P (z) Q(z) , P ∈ C ≤N [z] ,
where Q(z) is the same denominator of the Blaschke product ψ u (z) associated with u ∈ U N . Indeed, first observe that combining (5.3) with the commutator identity (2.2) leads to u | S k ψ u = 0 , ∀k ≥ 1 .

(5.14)

Hence, we infer thanks to Lemma 2.3 , that the infinite matrices M , X , and Y of (5.12) written in the basis (f k ) N -1 k=0 ∪ (S k ψ u ) k≥0 are of the form

M =           ⟨f 0 | Sf 0 ⟩ . . . ⟨f n-1 | Sf 0 ⟩ ⟨ψ u | Sf 0 ⟩ . . . . . . . . . ⟨f 0 | Sf N -1 ⟩ . . . ⟨f N -1 | Sf N -1 ⟩ ⟨ψ u | Sf N -1 ⟩ 0 . . . . . . 0 1 0 . . . . . . 0 0 1 . . . . . . . . . . . .           , n ∈ N X =           ⟨u | f 0 ⟩ . . . ⟨u | f N -1 ⟩ ⟨u | ψ u ⟩ 0 . . .           , Y =           ⟨1 | f 0 ⟩ . . . ⟨1 | f N -1 ⟩ ⟨1 | ψ u ⟩ 0 . . .           .
Therefore, following the same procedure presented in the proof of Theorem 1.1 , one can observe that the infinite matrices M , X and Y can be reduced to finite matrices that involve only the first N + 1 coordinates of each of these matrices. That is,

u(z) = (Id -zM ≤N ) -1 X ≤N | Y ≤N C N +1 ×C N +1 ,
where a ̸ = 0 if m 0 ̸ = 0 , and we infer by (5.16) of Step 2 that, for all j = 1 , . . . , r ,

ac j + r k=1 c k c j 1 -p k p j = m j .
(5.19) Indeed, by applying Π to (5.16) ,

Π(|u| 2 ) = Π(z∂ z log ψ u -ν u ) ,
Observe, on the one hand,

Π(z∂ z log ψ u -ν u ) = r j=1 m j 1 -p j z + m 0 -ν u .
And on the other hand,

Π(|u| 2 ) = Π a + r j=1 c j 1 -p j z = |a| 2 + r j=1 āc j + ā r j=1 c j 1 -p j z + r j=1 r k=1 c j c k (1 -p j p k )(1 -p j z) .
Therefore, for all j = 1, . . . , r , the request conditions (5.19) and

ν u = m 0 -|a| 2 - r j=1 āc j .
Step 5. We prove the converse. For N ∈ N , let u = Cz N , C ∈ C * , or

u(z) = z m 0 r j=1 z -p j 1 -p j z m j -1 a + r j=1 c j 1 -p j z , p j ∈ D * , p k ̸ = p j , k ̸ = j ,
where m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N , such that m 0 + r j=1 m j = N , and (a, c 1 , . . . c r ) ∈ C × C r , satisfy

ac j + r k=1 c k c j 1 -p k p j = m j , (5.20) 
with a ̸ = 0 if m ̸ = 0 . Our aim is to prove that u ∈ U N , that is

• ∃ ψ ∈ B N such that L u S k ψ = (µ + k)S k ψ for all k ∈ N ≥0
, where µ is a real constant. • ψ is of minimal degree, i.e. there does not exist ϕ ∈ B ℓ with ℓ < N , such that ϕ satisfies L u S k ϕ = (µ 1 + k)S k ϕ for all k ∈ N ≥0 .

For the moment, let us deal with the more complicated case, i.e. u is a rational function. We start by proving the first point. Let where µ := m 0 -|a| 2 -a r k=1 c k . It remains to prove that ψ is of degree minimal. Suppose for the seek of contradiction that there exists ϕ ∈ B ℓ , with ℓ < N , such that L u S j ϕ = (µ 1 + k)S j ϕ for all j ∈ N ≥0 . By comparing the latter identity to (5.23), and thanks to (2.7) we infer that there exists k ′ , k ∈ N such that S k ψ = S k ′ ϕ , i.e. Proof. Let u 0 be a finite gap potential in U N , that is there exists ψ u 0 ∈ B N of minimal degree N satisfying L u 0 S k ψ u 0 = (ν u 0 + k)S k ψ u 0 , ∀k ≥ 0 .

ψ := e iθ z m 0 r j=1 z -p j 1 -p j z m j ∈ B N , θ ∈ R , p k ∈ D * . ( 5 
(5.25)

Our aim is to prove that there exists ϱ(t) ∈ B N of minimal degree8 such that L u(t) S k ϱ(t) = (ν u 0 + k)S k ϱ(t) , ∀k ≥ 0 .

Let ϱ(t) be a solution of the Cauchy problem

∂ t ϱ(t) = B u(t) ϱ(t) ϱ(0) = ψ u 0 .
Hence, by Remark 3.1 , L u(t) ϱ(t) = ν u 0 ϱ(t) .

( S k ϱ(0) = S k ψ u 0 .

Besides, observe that ϱ(t) ∈ B N . Indeed, by applying Lemma 4.1 , S k ϱ(t) | ϱ(t) = S k ψ u 0 | ψ u 0 e i((νu 0 +k) 2 -ν 2 u 0 ) t = 0 , ∀k ∈ N , leading to e ikx | |ϱ(t)| 2 = 0 , k ∈ Z\ {0} .

Thus, following the same lines of the proof of Proposition 5.2, we deduce that ϱ(t) is a finite Blaschke product. To infer that the degree of this finite Blaschke product is N , we should notice that each of ψ u 0 and ϱ(t) enjoys an inverse spectral formula (Remark 5.3)

ψ u 0 = (Id -zM ≤N (u 0 )) -1 1 N | Y ≤N (u 0 ) , ϱ(t) = (Id -zM ≤N (u(t))) -1 1 N | Y ≤N (u(t)) .
where M ≤N (u 0 ) and M ≤N (u(t)) are the finite matrix of order (N + 1) × (N + 1) obtained respectively from the representation matrix of S * in the L 2 basis (h k ) N -1 k=0 ∪ (S k ψ u 0 ) k≥0 constituted of the eigenfunctions of L u 0 at t = 0 , and from the eigenfunctions (e k (t)) N -1 k=0 ∪ (S k ϱ(t)) k≥0 of L u(t) at any time t . Therefore, in view of the fourth identity of Lemma 4.1 , we infer M ≤N (u(t)) = Diag(e -i(νn+1) 2 t ) M ≤N (u 0 ) Diag(e -iν 2 n t ) .

That is, det M ≤N (u 0 ) = det M ≤N (u(t))

and so, deg det(Id -zM ≤N (u(t))) = deg det(Id -zM ≤N (u 0 )) = N .

(5.28)

As a result, u(t) ∈ U n with n ≤ N . It remains to show that u(t) / ∈ U n with n < N . Suppose that there exists ϕ(t) ∈ B n with n < N such that L u(t) S k ϕ(t) = (ν u + k)S k ϕ(t) , then applying the same above procedure, we infer that ϕ(0) ∈ B n with n < N and L u 0 S k ϕ(0) = (λ u + k)S k ϕ(0) , leading to u 0 ∈ U n , n < N which is a contradiction.

Note that the same proof works in the defocusing case. □

Remark on the regularity of u

Recall that in the beginning of Section 2 , we have supposed for more convenience that u is a function with enough regularity, typically in H 2 + (T) . However, the same strategy adopted to derive the traveling waves of the Calogero-Sutherland DNLS equation (CS) and to characterize the finite gap potentials can be extended to less regularity spaces. In this section, we discuss some remarks that allow the extension of the main results to the critical regularity L 2 + (T) . First, we recall from [START_REF] Badreddine | On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation[END_REF] the following Theorem.

Theorem ( [START_REF] Badreddine | On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation[END_REF]). For any 0 ≤ s ≤ 2, let u 0 ∈ H s + (T) . Then, there exists a unique potential u ∈ C(R, H s + (T)) solution of (CS -) such that, for any sequence

(u ε 0 ) ⊆ H 2 + (T) , ∥u ε 0 -u 0 ∥ H s -→ ε→0 0 ,
we have for all T > 0 ,

sup t∈[-T,T ] ∥u ε (t) -u(t)∥ H s → 0 , ε → 0 .
Moreover, the L 2 -norm of the limit potential u is conserved in time :

∥u(t)∥ L 2 = ∥u 0 ∥ L 2 , ∀t ∈ R.
Furthermore, the same holds for (CS + ) under the additional condition ∥u 0 ∥ L 2 < 1 .

At a second stage, recall that Lemma 3.2 , Proposition 3.5 and Corollary 3.6 have been the keys to characterize the traveling waves for the defocusing equation (CS -) , and Lemma 4.1 , Proposition 4.2 and Corollary 4.3 for the focusing equation (CS + ) . As a result, we need to extend these Proposition/lemma/Corollary to less regular potentials u . Hence, we recall from [Ba23, Corollary 3.12] the following result.

  Π = Id +iH+⟨• | 1⟩ 2 on the circle T, where ⟨u | 1⟩ = 2π 0 u dx 2π and H is the Hilbert transform Hu(x) := n∈Z -i sign(n) u(n)e inx , sign(0) = 0 . (1.3)

  one can interpret any element of the Hardy space as an analytic function on the open unit disc D , whose trace on the boundary ∂D is in L 2 . 2 We will frequently utilize this property in various proofs. Furthermore, we denote by D the open unit disc on C , D * := {z ∈ C ; 0 < |z| < 1} . Moreover, N denotes the positive integers 1, 2, 3, . . . And for all a ∈ N ∪ {0} , N ≥a refers to the set of integer numbers {n ∈ Z ; n ≥ a} .

□

  .13) Remark 3.3. In view of the previous Theorem and Corollary 2.6 , it follows that any traveling wave solution u of (CS -) propagates with a speed c = N + 2λ 0 .(3.14)

Lemma 5. 3 .

 3 Let ϕ be an analytic function on the open unit ball that extends continuously to an inner function 7 on the closed unit disc. Then ϕ ∈ B n . 6 A polynomial q(z) = N k=1 a k z k is called a Schur polynomial if all its roots are in the open unit disc D . 7 A bounded analytic function ψ on D is said to be inner if |ψ(e ix )| = 1 for almost every x .

  , x ∈ T , In particular, since ψ ∈ L 2 + (T) then ψ ∈ H 2 (D) , where H 2 (D) := u ∈ Hol(D) ; sup 0≤r<1 2π 0 |u(r e iθ )| 2 dθ 2π < ∞ , Hence, by [Ch, Theorem 4.5.3], ψ(r e ix ) = 1 2π 2π 0 P r (x -θ)ψ(e iθ ) dt , 0 ≤ r < 1 ,

cL

  .21) Observe that ūψ extends as a holomorphic function on D as p k ∈ D . Then, by definition of L u , L u ψ = z∂ z ψ -|u| 2 ψ ,wherez∂ z ψ = m 0 ψ + k c j z (1 -p k z)(z -p j ) = |a| 2 + a j 1 -p k p j p j z -p j = |a| 2 + a u ψ = m 0 -|a| 2 -a r k=1 c k ψAdditionally, observe that for all k ∈ N , S k ψ | u = 0 . Hence, by applying the commutator identity (2.2) , we deduce L u S k ψ = (µ + k)S k ψ , ∀k ∈ N ≥0 , (5.23)

ϕ=

  := e i θ z m 0 +k-k ′ r j=1 z -p j 1 -p j z m j , m 0 + k -k ′ + r j=1 m j = ℓ < N.Therefore, by repeating Step 1 to Step 4, we infer that u must be of the formu(z) = z m 0 +k-k ′ Corollary 5.5. Given N ∈ N , let u ∈ U N . Then, (i) In the focusing case, ∥u∥ 2 L 2 = N -ν u , (ii) In the defocusing case, ∥u∥ 2 L 2 = λ u -N ,where ν u is the eigenvalue introduced in (5.8) and λ u is the corresponding one in the defocusing case.Remark 5.4. Based on the previous statement, one can conclude that for any potential u ∈ U N , we haveν u < N (focusing case)λ u > N (defocusing case) .(5.24)Proof. Let u ∈ U N . Then in light of the previous theorem, we have either u = C e iN x , C ∈ C * or u is the rational function (5.9) . Thus, if u = C e iN x then the results follow easily by Remark 5.2. Now, if u is the rational function (5.9) , then by computing the L 2 -norm of u in the focusing case, we infer via (5.22) , |a| 2 + a r k=1c k + N -m ,which is equal to -ν u + N by (i) of Remark 5.2 . For the defocusing case, we shall have N + m , which is equal to λ u -N by (ii) of Remark 5.2 . □ Proposition 5.6. For any N ∈ N ≥0 , the set of finite gap potential U N is conserved along the flow of the (CS)-equation.

Table 1

 1 

	) .	
	Focusing (CS + ) on R	Defocusing (CS + ) on R

  , B u ] denotes the commutator S * B u -B u S * , B u and Bu are the two skew-adjoint operators of the Lax pairs, defined respectively in (1.10) and (1.11) .

	with Π is the Szegő projector defined in (1.1) , and L u and Lu are defined in (1.10)
	and (1.11) . In addition, we also have from the same lemma [Ba23, Lemma 2.3] ,
	[S * , B u ] = i S * L 2 u -(L u + Id) 2 S * ,	(2.4)
	[S * , Bu ] = i S * L2 u -( Lu + Id) 2 S * ,	
	where [S Proposition 2.1 (Multiplicity of (λ n ) and (ν n )).	
	Defocusing case. The eigenvalues (λ n ) of Lu are all simple. More precisely,	
			.1)
	Thus, for all u ∈ H 2 + (T) , we have from [Ba23, Lemma 2.3] ,	
	Lu S = S Lu + S + ⟨ • | S * u⟩ u ,	(2.2)
	L u S = SL u + S -⟨ • | S * u⟩ u ,	
	where S * denotes the adjoint operator of S	
	S * : L 2 + (T) → L 2 + (T) ,	S * h(x) = Π(e -ix h(x)) ,	(2.3)

* 

  5.26)In addition, recall by Lemma 4.1 ,⟨Sϱ(t) | u(t)⟩ = ⟨Sψ 0 | u 0 ⟩ e -iν 2 u 0 t ,where here ⟨Sψ 0 | u 0 ⟩ vanishes after combining the commutator identity (2.2) and equation (5.25) . Therefore, by (2.2) , L u(t) Sϱ(t) = (ν u 0 + 1)Sρ(t) . Lu + Id) 2 ϱ(t) , which is equal to ∂ t Sϱ(t) = B u(t) Sϱ(t) thanks to (5.26) and (5.27) . Consequently, by repeating the same procedure, we obtain for all k ∈ N ≥0 , L u(t) S k ϱ(t) = (ν u 0 + k)S k ϱ(t) ,

		(5.27)
	This yields to	
	∂ t Sϱ(t) = B u(t) Sϱ(t) Sϱ(0) = Sψ u 0	.
	Indeed, by the commutator identity (2.4) ,	
	∂ with	
	∂	

t Sϱ(t) = SB u(t) ϱ(t) = B u(t) Sϱ(t) -i L2 u S -S( t S k ϱ(t) = B u(t) S k ϱ(t)

For a simple introduction to the different definitions of Hardy space, we refer to[START_REF] Garcia | Ross Introduction to model spaces and their operators[END_REF] Chapter 3.] 

As we shall see in Corollary 5.5 of Section 5, this corresponds to ∥u∥ 2 L 2 = λ N -N where λ N > N + λ 0 > N .

In the sense, that there does not exist ϕ(t) ∈ B ℓ with ℓ < N , such that ϕ(t) satisfiesL u S k ϕ(t) = (µ 1 + k)S k ϕ(t) for all k ∈ N ≥0 .

[START_REF] Garcia | Ross Introduction to model spaces and their operators[END_REF] Corollary 5.18] 

Indeed, observe that ∥u∥ 2 L 2 → ∞ when β 2 → 0 or |p| 2 → 1 , and in both cases c → ∞ .

On the other side, ∥u∥ 2 L 2 is arbitrary small when |p| 2 → 0 and β is big enough. Hence, by passing to the limit |p| 2 → 0 in (3.29) , we infer c ∼

which can arbitrary close to N as ∥u∥ 2 L 2 is arbitrary close to 0 . □ 4. Traveling waves for the focusing (CS + ) 4.1. Toward the characterization of the traveling waves for (CS + ). Recall that to characterize the traveling waves of the defocusing equation (CS -), a spectral analysis was initially conducted, followed by the derivation of explicit formulas.

Here, we aim to footstep the same strategy. But before proceeding, we shall require some analogous lemmas to the defocusing case.

Lemma 4.1 (The analog of Lemma 3.2). Let u ∈ C t H 2 + (T) x solution of (CS + ). Then, for all n , p ∈ N ≥0 ,

(4.1)

where the (g t n ) denotes the orthonormal basis of L 2 + (T) solution to the Cauchy problem

and (f u 0 n ) is an orthonormal basis of L 2 + (T) made up of the eigenfunctions of L u 0 and B u(t) is the skew-adjoint operator defined in (1.11) .

Proof. Since the focusing Calogero-Sutherland DNLS equation can also be rewritten in terms of its Lax operators [Ba23, Lemma 2.4]

u u , then one can repeat exactly the same proof of Lemma 3.2 and obtain the same results. □ Lemma 4.2 (The analog of Proposition 3.5). Let u := τ ct u 0 be a traveling wave of (CS + ) such that the eigenvalue ν n (u 0 ) is simple. Then, there exists

where

Note that det (Id -zM ≤N ) coincides with the denominator of the eigenfunction

since by Remark 5.3 , ψ u is also expressed via the inversion spectral formula

and hence det (Id -zM ≤N ) = Q(z) . Thus,

(5.15)

Step 2. In this step, we prove that if u ∈ U N then

(5.16) Indeed, recall that L u ψ u = ν u ψ u . Then by definition of

(5.17)

On ∂D ,

extends as a holomorphic function on D . Hence, Π(u ψ u ) = u ψ u , and so identity (5.17) can be read as

implying that identity (5.16) holds.

Step 3. In this step, we prove that the rational function u obtained in Step 1 can be rewritten either as

where

and such that deg(q) = r if m 0 ̸ = 0 . Indeed, we write (5.13) as ψ u = e iθ z N (if all the p k in (5.13) vanish), or

where m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N , such that m 0 + r j=1 m j = N . As a first point, we prove when m 0 ≥ 1 , then the numerator P of u can be factorized as

because otherwise there exists a Balschke product ϕ u = S * ψ u of degree N -1 , such that by the commutator identity (2.2) ,

, which is a contradiction with the fact that u ∈ U N . Hence, ⟨u | ψ u ⟩ ̸ = 0 . This leads to (i) The numerator P of u(z) must be degree N .

Indeed, for (i) , it is sufficient to note that

For (ii), observe by Lemma 2.3 ,

where the right-hand side vanishes since ψ u = Sϕ , ϕ ∈ L 2 + (T) for m 0 ≥ 1 . Therefore, if m 0 = 1 , then by (i) and (ii),

Taking the inner product of the latter identity with ψ u ,

Note that for m 0 = 2 we have ⟨z | ψ u ⟩ = 0 . This implies that ⟨1 | v⟩ = 0 leading to u = S 2 w with w ∈ L 2 + (T) . Therefore, if m 0 = 2 , then u can be decomposed as

Now, if m 0 = 3 then by repeating the same above procedure and taking the inner product of

with ψ u , one obtains

where

And if m 0 = N i.e. all the p j in (5.18) vanish, then u(z) = Cz N , C ∈ C * . Finally, it remains to prove that (z -p j ) m j -1 divides the numerator of u . Indeed, by identity (5.16) of Step 2 , u(z)ū 1 z = z∂ z log ψ u -ν u where one computes by (5.18) ,

That is, for all m 0 ∈ 0, N -1 ,

where p j ∈ D * , p k ̸ = p j for k ̸ = j . Observe that in the right-hand side, 1 p j is a pole of multiplicity one. Then, the same should hold for the left-hand side as well. Therefore, if m j ≥ 2 , j = 1, . . . r , this implies that 1 p j in the left-hand side must be a root of multiplicity (m j -1) of P N -m 0 ( 1 z ) . That is,

where P

N -m 0 is the m th derivative of P N -m 0 . As a result, (z -p j ) m j -1 divides P N -m 0 (z) , and so

with m 0 ∈ 0, N -1 , m 1 , . . . , m r ∈ 1, N , m 0 + r j=1 m j = N , and such that deg(q) = r if m 0 ̸ = 0 thanks to (i) .

Step 4. In this step, we write the rational function u obtained in Step 3 on its partial fractional decomposition

Corollary (Corollary 3.12 of [START_REF] Badreddine | On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation[END_REF]). For any 0 ≤ s ≤ 2, let u 0 ∈ H s + (T) . There exists an orthonormal basis (g t n ) of L 2 + (T) constituted from the eigenfunctions of L u(t) , such that for all n ∈ N ≥0 ,

where u(t) is the solution of (CS -) starting at u 0 at t = 0 . Furthermore, the same holds for (CS + ) under the additional condition ∥u 0 ∥ L 2 < 1 .

Remark 6.1. Note that there is a point hidden in the previous corollary, namely, the fact that L u is well-defined with u ∈ L 2 + (T) . We refer the readers to [GL22, Appendix A] for the construction of this operator and to [Ba23, Corollary 3.2] for a way to identify its spectrum.

By repeating the same analysis of the proof of [Ba23, Corollary 3.12], one can establish the existence of an orthonormal basis (g

Finally, in Section 5 , more precisely in (5.6) , we made use of the fact that the domain of the Lax operator L u with u ∈ H 2 + (T) is H 1 + (T) in order to infer that Π(ūψ) ∈ L 2 . However, it should be noted that the lax operator L u with u ∈ L 2 + (T) has its domain a subset of H 1 2 + (T) [GL22, Appendix A] . Hence, we need the following lemma to infer the result.

where we recall T u was defined in (1.12) .

Open problems

1. The full characterization of the traveling waves u 0 (x -ct) of (CS + ) is still an open problem.

2. Note that along this paper, we have treated the case where the traveling waves of the Calogero-Sutherland DNLS equation (CS) are of the form

But, one may wonder if there exist traveling wave solutions with a phase factor, such as u(t, x) := e iφ(t) u 0 (x -ct) , φ(t) , c ∈ R . (7.1) However, let us underline the following feature : observe that the mean ⟨u | 1⟩ is conserved along the flow of the Calogero-Sutherland DNLS equation (CS) , for any solution u in the Hardy space of the circle T . Indeed, by applying an integration by parts and since u is in the Hardy space, then

• If ⟨u 0 | 1⟩ ̸ = 0, then φ(t) in (7.1) must be a constant in time. • In regard to the case where ⟨u 0 | 1⟩ = 0 , the question of the existence of traveling waves of (CS) of the form (7.1) remains an open problem. However, one can easily prove that (φ(t), c) are related via the following identity

where N is the positive integer appearing after rewriting u 0 as u 0 = S N v 0 with ⟨v 0 | 1⟩ ̸ = 0 , as ⟨u 0 | 1⟩ = 0 . Indeed, by writing the solution u(t, x) as

one observes that if u satisfies (CS) , then

We conclude by taking the inner product of the last identity with 1 , that

Appendix

(1) The following counterexample illustrate the necessity of the condition ν n ̸ = 0 in order to obtain the first point in Proposition 2.4 .

Consider the 0-gap potential (i.e. a potential satisfying γ n (u) = 0 for all n ∈ N ≥0 , where γ n (u) is defined in (5.1))

and that, for all k ∈ N ≥0 , L u S k ψ = k S k ψ where

Therefore, the spectrum of L u is given by

where notice ν 1 = ν 0 + 1 and Sf 0 ̸ ≡ ψ .

(2) In this part of the Appendix we prove that the two integers N 1 and N 2 appearing in Corollary 2.6 are not necessarily equal.

Let u(z) := 2(1 -|p| 4 ) z 1 -p 2 z 2 , p ∈ D * .

For such u , one can check that