
Supplementary material for the article
"A Deep Dynamic Latent Block Model for the Co-clustering of

Zero-Inflated Data Matrices"

Giulia Marchello1, Marco Corneli1,2, and Charles Bouveyron1

1 Université Côte d’Azur, Inria, CNRS, Laboratoire J.A.Dieudonné,
Maasai team, Nice, France.

2 Université Côte d’Azur, Laboratoire CEPAM, Nice, France.

1 Proofs

1.1 Likelihood of complete data

The model described so far can be adapted to any zero-inflated distribution. The first formulation as
well as the most well-known concerns the Zero-Inflated Poisson, from an article by Lambert (1992). How-
ever, other distributions such as Zero-Inflated Negative Binomial (Ridout et al., 2001), Zero-Inflated Beta
(Ospina and Ferrari, 2012), Zero-Inflated log-normal (Li et al., 2011) could be coupled with the present
modeling.
In the following to ease the readability of the inference procedure we make use of the Zero-Inflated Poisson
(ZIP) formulation to illustrate our approach. Hence, we can writeXij(t)|Zi(t),Wj(t) ∼ ZIP (ΛZi(t),Wj(t), π(t))
and develop Eq. 2 as follows:{

Xij(t)|Zi(t),Wj(t) = 0 with probability π(t)
Xij(t)|Zi(t),Wj(t) ∼ P(ΛZi(t),Wj(t)) with probability 1− π(t)

(1)

where Λ is a Q× L matrix, denoting the block-dependent Poisson intensity function and π(t) represents
the sparsity at any given time period, with t = 0, . . . , T . Then, we rewrite Eq. (1) by introducing the
hidden random matrix, A ∈ {0, 1}N×M , where for all i and j:

Aij(t) ∼ B(π(t)),

with B(π) denoting the Bernoulli probability mass function of parameter π and such that

Aij(t) = 1⇒ Xij(t)|Zi(t),Wj(t) = 0

Aij(t) = 0⇒ Xij(t)|Zi(t),Wj(t) ∼ P(ΛZi(t),Wj(t)).
(2)

As expressed in Section 2.1 of the main paper, the likelihood of the complete data can be written as

p(X,A,Z,W |θ) = p(X|A,Z,WΛ, π)p(A | π)p(Z|α)p(W |β), (3)

the components can be further developed as

p(X|A,Z,W,Λ, π) =
N∏
i=1

M∏
j=1

T∏
t=1

1
Aij(t)

{Xij(t)=0}


ΛXij(t)

Zi(t)Wj(t)

Xij(t)!
exp(−ΛZi(t)Wj(t))

(1−Aij(t))
 , (4)

p(A|π) =
N∏
i=1

M∏
j=1

T∏
t=1

π(t)Aij(t)
(
1− π(t))

)(1−Aij(t))

, (5)

2 Giulia Marchello, Marco Corneli, and Charles Bouveyron

p(Z|α) =
N∏
i=1

Q∏
q=1

T∏
t=1

αq(t)
Ziq(t), (6)

p(W |β) =
M∏
j=1

L∏
`=1

T∏
t=1

β`(t)
Wj`(t). (7)

1.2 Optimization of the factor q(A)

Let us consider the derivation of the update equation for the factor q(A). The sequential update for the
factor q(A) can be computed through the log of the optimized factor, where all the terms that do not
depend on A are absorbed in the constant term. Starting from Eq. 13, we use the decomposition in Eq.
10 of the main paper, then we substitute the conditional distributions on the right-hand side.

log(q∗(A)) = EW,Z [log(p(X,Z,W,A|θ)] + const;

= EW,Z [log(p(X|Z,W,A,Λ, π)] + EW,Z [log(A|π)] + const

=

N∑
i=1

M∑
j=1

T∑
t=1

{
Aij(t)[log 1{Xij(t)=0}] + (1−Aij(t))

[
Q∑
q=1

L∑
`=1

[
E[Ziq(t)]E[Wj`(t)]Xij(t) logΛq`

− E[Ziq(t)]E[Wj`(t)]Λq`

]
− logXij(t)!

]
+Aij(t) log π(t) + (1−Aij(t)) log(1− π(t))

}
+ const

=

N∑
i=1

M∑
j=1

T∑
t=1

{
Aij(t) log π1{Xij(t)=0} + (1−Aij(t))

[
Q∑
q=1

L∑
`=1

[
E[Ziq(t)]E[Wj`(t)]Xij(t) logΛq`

− E[Ziq(t)]E[Wj`(t)]Λq`

]
− logXij(t)! + log(1− π(t))

]}
+ const

=

N∑
i=1

M∑
j=1

T∑
t=1

{
Aij(t) log π1{Xij(t)=0} +Aij(t)

[
Q∑
q=1

L∑
`=1

[
− E[Ziq(t)]E[Wj`(t)]Xij(t) logΛq`

+ E[Ziq(t)]E[Wj`(t)]Λq`

]
+ logXij(t)!− log(1− π(t))

]}
+ const

=

N∑
i=1

M∑
j=1

T∑
t=1

{
Aij(t)

[
log π1{Xij(t)=0} +

Q∑
q=1

L∑
`=1

[
− E[Ziq(t)]E[Wj`(t)]Xij(t) logΛq`

+ E[Ziq(t)]E[Wj`(t)]Λq`

]
+ logXij(t)!− log(1− π(t))

]}
+ const.

(8)

We can then recognize the functional form of the Bernoulli distribution by indicating:

log q∗(A) ∝
N∑
i=1

M∑
j=1

T∑
t=1

Aij(t) log δij(t) + (1−Aij(t)) log(1− δij(t)),

∝
N∑
i=1

M∑
j=1

T∑
t=1

Aij(t)
log δij(t)

1− log δij(t)

(9)

Title Suppressed Due to Excessive Length 3

where δij(t) is defined as:

δij(t) =
exp(Rij(t))

1 + exp(Rij(t))
, (10)

with Rij(t) defined as:

Rij(t) = log(π(t)1{Xij(t)=0}) +

Q∑
q=1

L∑
`=1

[
− E[Ziq(t)]E[Wj`(t)]Xij(t) logΛq`+

+ E[Ziq(t)]E[Wj`(t)]Λq`

]
+ logXij(t)!− log(1− π(t)).

(11)

1.3 Optimization of the factor q(Z)

Let us now consider the derivation of the update equation for the factor q(Z). The sequential update for
the factor q(Z) can be computed through the logarithm of the optimized factor, where all the terms that
do not depend on Z are absorbed in the constant term. Starting from Eq. 14, we use the decomposition
in Eq. 10 of the main paper, then we substitute the conditional distributions on the right-hand side.

log q∗(Z|θ) = EW,A[log p(X,A,Z,W | θ)]
= EW,A[log(p(X | A,Z,W,Λ, π) + log p(Z | α)]

= EW,A

[
N∑
i=1

M∑
j=1

T∑
t=1

{
(1−Aij(t))

Q∑
q=1

L∑
`=1

{
Ziq(t)Wj`(t)Xij(t) log(Λq`)− Ziq(t)Wj`(t)Λq`

}

− (1−Aij(t)) log(Xij(t)!)

}]
+

N∑
i=1

Q∑
q=1

Ziq(t) log(αq(t)) + const,

=

N∑
i=1

M∑
j=1

(1− E[Aij(t)])

[
Q∑
q=1

L∑
`=1

{
Ziq(t)E[Wj`(t)]Xij(t) log(Λq`)+

− Ziq(t)E[Wj`(t)]Λq`

}]
+

N∑
i=1

Q∑
q=1

Ziq(t) log(αq(t)) + const,

=

N∑
i=1

Q∑
q=1

Ziq(t)

[
M∑
j=1

L∑
`=1

{
(1− E[Aij(t)])

[
E[Wj`(t)]Xij(t) log(Λq`)+

− E[Wj`(t)]Λq`

]}
+ log(αq(t))

]
+ const.

(12)

We can then recognize the functional form of the multinomial distribution. Thus, we can write:

log q∗(Z|θ) =
∑
i

∑
t

∑
q

Ziq(t) log riq(t) + const. (13)

Taking the exponential on the two sides, we obtain:

q(Zi) =

T∏
t=1

Q∏
q=1

riq(t)
Ziq(t), (14)

4 Giulia Marchello, Marco Corneli, and Charles Bouveyron

where riq(t) is denoted by:

riq(t) ∝ exp

(
M∑
j=1

L∑
`=1

{
(1− E[Aij(t)])

[
E[Wj`(t)]Xij(t) log(Λq`)− E[Wj`(t)]Λq`

]}
+ log(αq(t))

)
. (15)

However, this distribution needs to be normalized because the matrix Z(t) is a binary matrix and the
elements sum to 1 over the values of Q. We can then obtain:

q(Zi) =

T∏
t=1

Q∏
q=1

τiq(t)
Ziq(t), (16)

where

τiq(t) =
riq(t)∑Q

q0=1 riq0(t)
. (17)

1.4 Optimization of the factor q(W)

Let us now consider the derivation of the update equation for the factor q(W). The sequential update for
the factor q(W) can be computed through the log of the optimized factor, where all the terms that do
not depend on W are absorbed in the constant term.

Proposition 1. Denoting by ηj`(t) := q(Wj`(t) = 1) the variational probability of success of Wj`(t), the
optimal update of is:

ηj`(t) =
sj`(t)∑L

`o=1 sj`o(t)
, (18)

where :

sj`(t) ∝ exp

(
N∑
i=1

Q∑
q=1

{
(1− E[Aij(t)])

[
E[Ziq(t)]Xij(t) log(Λq`)− E[Ziq(t)]Λq`

]}
+ log(β`(t))

)
. (19)

The proof is symmetric to the one developed for τiq(t) in Proposition 2.

1.5 Derivation of the lower bound

In order to obtain the updating of the parameter set θ, the objective of the M-Step is the maximization of
the lower bound L(q, θ) with respect to θ = (Λ,α(t), β(t), π(t)), while holding the variational distribution
q(·) fixed.

Title Suppressed Due to Excessive Length 5

Proposition 2. By developing the Eq. 11 of the main paper, the variational lower bound L(q, θ) can be
written as

L(q, θ) =
T∑
t=1

N∑
i=1

M∑
j=1

{
δij(t) log(π(t)1{Xij(t)=0}) + (1− δij(t))

[
log(1− π(t))+

+

Q∑
q=1

L∑
`=1

{
τiq(t)ηj`(t)Xij(t) logΛq` − τiq(t)ηj`(t)Λq`

}]
+

− (1− δij(t)) log(Xij(t)!)

}
+

T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log(αq(t))+

+

T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(β`(t))−
T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log τiq(t)+

−
T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(ηj`(t))−
T∑
t=1

N∑
i=1

M∑
j=1

(
δij(t) log(δij(t)) + (1− δij(t)) log(1− δij(t))

)
.

(20)

Proof. Starting from Eq. 11 we obtain the final expression of the variational lower bound L(q, θ) by
developing the expression

L(q, θ) =
∑
A,Z,W

q(A,Z,W) log
p(X|A,Z,W,Λ)p(A | π)p(Z|α)p(W |β)

q(A,Z,W)

= EA,Z,W

[
log

p(X|A,Z,W,Λ)p(A | π)p(Z|α)p(W |β)∏N
i=1

∏M
j=1

∏T
t=1 q(Aij(t))

∏N
i=1

∏T
t=1 q(Zi(t))

∏M
j=1

∏T
t=1 q(Wj(t))

]
= EA,Z,W [log p(X|A,Z,W,Λ)] + EA[log p(A | π)] + EZ [log p(Z|α)]+

+ EW [log p(W |β))]− EZ [log
∏
i

q(Zi)]+

− EW [log
∏
j

q(Wj)]− EA[log
∏
i

∏
j

q(Aij)].

(21)

Then we substitute the results obtained in the VE-Step, denoting E[Aij(t)] = δij(t), E[Ziq(t)] = τiq(t)
and E[Wj`(t)] = ηj`(t), in order to obtain the final expression of the lower bound that can be written as
follows:

L(q, θ) =
T∑
t=1

N∑
i=1

M∑
j=1

{
δij(t) log(π(t)1{Xij(t)=0}) + (1− δij(t))

[
log(1− π(t))+

+

Q∑
q=1

L∑
`=1

{
τiq(t)ηj`(t)Xij(t) logΛq` − τiq(t)ηj`(t)Λq`

}]
+

− (1− δij(t)) log(Xij(t)!)

}
+

T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log(αq(t))+

+

T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(β`(t))−
T∑
t=1

N∑
i=1

Q∑
q=1

τiq(t) log τiq(t)+

−
T∑
t=1

M∑
j=1

L∑
`=1

ηj`(t) log(ηj`(t))−
T∑
t=1

N∑
i=1

M∑
j=1

(
δij(t) log(δij(t)) + (1− δij(t)) log(1− δij(t))

)
.

(22)

6 Giulia Marchello, Marco Corneli, and Charles Bouveyron

1.6 Update of Λ

Here our goal is to derive the update of the Zero-inflated Poisson intensity parameter, Λ. The variational
distribution q(A,Z,W) is kept fixed, while the lower bound is maximized with respect to Λ, to obtain
its update, Λ̂. To find the optimal update expression of Λ we compute the derivative of the lower bound
L(q, θ) in Eq. 20 of this Appendix, with respect to Λ

∂ logL(q, θ)
∂Λq`

=

N∑
i=1

M∑
j=1

T∑
t=1

(1− δij(t))
[τiq(t)ηj`(t)Xij(t)

Λq`
− τiq(t)ηj`(t)

]
, (23)

Equaling ∂ logL(q,θ)
∂Λq`

to zero leads to:

N∑
i=1

M∑
j=1

T∑
t=1

(1− δij(t))
[
τiq(t)ηj`(t)Xij(t)− τiq(t)ηj`(t)Λq`

]
= 0, (24)

and then
N∑
i=1

M∑
j=1

T∑
t=1

(1− δij(t))τiq(t)ηj`(t)Λq` =
N∑
i=1

M∑
j=1

T∑
t=1

τiq(t)ηj`(t)
[
Xij(t)−Xij(t)δij(t)

]
. (25)

We finally get:

Λ̂q` =

∑N
i=1

∑M
j=1

∑T
t=1 τiq(t)ηj`(t)

(
Xij(t)− δij(t)Xij(t)

)
∑N
i=1

∑M
j=1

∑T
t=1 τiq(t)ηj`(t)

(
1− δij(t)

) . (26)

2 Numerical experiments

The main purpose of this section is to highlight the most important features of our zero-inflated dLBM
algorithm over simulated data sets in the Poisson scenario. We aim at demonstrating the validity of the
inference algorithm and model selection criterion presented in the previous sections. The first experiment
consists in applying ZIP -dLBM to a specific data set with evolving block pattern and sparsity to show
that it recovers the data structure. The second experiment shows that ZIP -dLBM is able to uncover
clusters being initially empty, filling up over time, then emptying again. The third experiment shows
the robustness of ZIP -dLBM when the initial number of clusters is not the actual one, thus testing the
performance of the model in case of poor initialization. The fourth experiment demonstrates the model
selection procedure on 50 simulated date sets. In the fifth experiment, we finally compare the performances
of ZIP -dLBM with the dLBM model in two simulated scenarios, with constant and evolving sparsity,
respectively. All the experiments on simulated data were realized on data sets with N = 600 rows,
M = 400 columns and T = 50 time instants.

2.1 Introductory example

As a first example, we simulate a data set with dimension 600 × 400 × 50 and with Q = 3 groups of
rows, L = 2 groups of columns. The level of sparsity ranges from 80% to 90% in the time period. The
values of the other simulated parameters in this experiment are:

Cluster α β

1 0.2 to 0.8 0.1 to 0.99
2 0.18 to 0.14 0.99 to 0.1
3 0.6 to 0.06 -

Λ =

6 4
1 2
7 3



Title Suppressed Due to Excessive Length 7

We apply ZIP -dLBM to the simulated data set with the actual values of Q and L to show the ability
of the model to fully recover the model parameters.
Figure 1 shows the evolution of the the lower bound, expressed in Eq. 20, that ZIP -dLBM aims to
maximize. We can notice the convergence is reached in less than 10 iterations, in this example.
Figure 2, displays the reorganized incidence matrices at time instants t = 10 and t = 30, respectively: the
rows and columns of the incidence matrix are permuted according to the estimates of the latent variables Ẑ
and Ŵ , in such a way that nearby rows (columns) belong to the same cluster of rows (columns). The
blocks are also delimited by black dashed lines. The density of points in each block depends on the
intensity function of the Poisson distribution Λ.
Figure 3 shows the evolution of the estimated mixture parameters ˆα(t), ˆβ(t) and ˆπ(t) along the time
period, represented on the x-axes. These parameters are estimated through the stochastic gradient descent
technique, linked with the neural networks. By looking at these figures, we see the true parameters on
the left column, the output of the initialization procedure in the middle and the results the ZIP -dLBM
estimates on the right. The comparison between the simulated and estimated parameter evolution shows
that the model fully recovers the actual values over time, modulo the switched labels for the mixture
proportions.
From these results we can clearly see that our algorithm perfectly identifies the composition of the original
clusters and it recovers the evolution of the mixing proportion over time.

0 10 20 30 40 50−
83

00
00

0
−

81
00

00
0

−
79

00
00

0

Lower Bound

Iterations

Fig. 1: Lower bound maximization throughout the iterations of the ZIP -dLBM algorithm.

2.2 Robustness of the initialization procedure

In this section we perform two experiments to test the robustness of the model to initialization. In the first
experiment, we initialize parameters with wrong number of clusters, while in the second experiment the
data are simulated with particularly complex dynamics. In fact, we test the model’s ability to identify a
cluster that is empty at the beginning of the period, which fills up and then empties again. As for the first
experiment to test the robustness of our initialization strategy, ZIP -dLBM was intentionally initialized
with a higher than the optimal number of clusters. In fact, although the data were simulated with Q = 3
and L = 2, both the initialization process and ZIP -dLBM were run with Q = 5 and L = 4. Figure 4
shows on the left column the evolution of the simulated mixture proportions and the sparsity parameter,

8 Giulia Marchello, Marco Corneli, and Charles Bouveyron

100 200 300 400

10
0

20
0

30
0

40
0

50
0

60
0

Time instant t = 10

Clusters of columns

C
lu

st
er

s
of

 r
ow

s

100 200 300 400

10
0

20
0

30
0

40
0

50
0

60
0

Time instant t = 30

Clusters of columns
C

lu
st

er
s

of
 r

ow
s

Fig. 2: Reorganized incidence matrices at time instants t = 10 and t = 30 according to the estimates
of the cluster memberships. Nearby rows (columns) belong to the same cluster of rows (columns). The
blocks are also delimited by black dashed lines.

in the middle column their initialization, and on the right column the results of the estimates provided
by ZIP -dLBM. We can see that the initialization of α(t) in Figure 4b is rather poor. Nevertheless, ZIP -
dLBM finds the right trend of the mixture proportions over time, effectively emptying the two superfluous
clusters. Furthermore, to evaluate the quality of the clustering, we use a measure called CARI, recently
introduced by ?. This new criterion is based on the Adjusted Rand Index (?) and it was developed
especially for being applied to co-clustering methods. The closer the index is to 1, the more both the row
and column partitions are close to the actual ones, whereas the closer the value is to 0, the greater the
difference between the true and estimated labels. In this experiment a CARI index value was calculated
for each time instant; the obtained CARI index is 0.98.

Now, as for the second experiment of testing the robustness of the model to initialization, we simulate
the data in such a way that in the clusters in line there is one that is empty at the beginning of the period
under consideration, then fills up towards the middle of the period, and then empties again at the end,
Figure 5a shows this dynamic. Through this experiment we want to show how ZIP -dLBM is able to find
the right evolution of mixture proportions despite the complex dynamics. Figure 5 depicts the simulated
parameters on the left, the initial estimates in the middle, and the final estimates on the right. Looking
at the middle part, in Figure 5b, we can see that the initialization process is not particularly helpful to
the model because of the switched labels and a poor parameters estimation. Despite the initialization,
we see in Figure 5c that ZIP -dLBM is perfectly able to recognize the initially empty cluster which then
gradually fills up and empties again. In this experiment, the CARI index, obtained by averaging the
indexes over time, is 0.95.

2.3 Model selection experiment

Previous experiments have allowed us to attest that the initialization strategy is globally robust and that
the application of ZIP -dLBM allows us to correct for poor initializations with respect to the number of
clusters in rows or columns. Therefore, in this experiment we test the global capability in choosing the

Title Suppressed Due to Excessive Length 9

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

True alpha

Time (t)

(a) True α(t).

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8

Initialization of alpha

Time (t)

(b) Initialization of α(t).

0 10 20 30 40 50

0
.2

0
.4

0
.6

0
.8

Estimated alpha

Time (t)

(c) Estimated α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True beta

Time (t)

(d) True β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initialisation of beta

Time (t)

(e) Initialization of β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated beta

Time (t)

(f) Estimated β(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

True pi

Time (t)

(g) True π(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Initialisation of pi

Time (t)

(h) Initialization of π(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Estimated pi

Time (t)

(i) Estimated π(t).

Fig. 3: Evolution of the true (left), initialized (center) and estimated (right) proportions of the parameters
α(t), β(t) and π(t), respectively.

10 Giulia Marchello, Marco Corneli, and Charles Bouveyron

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True alpha

Time (t)

(a) True α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Alpha Initialization

Time (t)

(b) Initialization of α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated alpha

Time (t)

(c) Estimated α(t) .

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True beta

Time (t)

(d) True β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta after Init

Time (t)

(e) Initialization of β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated beta

Time (t)

(f) Estimated β(t).

Fig. 4: Evolution of the true (left), initialized (center) and estimated (right) proportions of the parameters
α(t) and β(t), respectively.

Title Suppressed Due to Excessive Length 11

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

True alpha

Time (t)

(a) True α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Alpha initialization

Time (t)

(b) Initialization of α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated alpha

Time (t)

(c) Estimated α(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True beta

Time (t)

(d) True β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta initialization

Time (t)

(e) Initialization of β(t).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated beta

Time (t)

(f) Estimated β(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

True pi

Time (t)

(g) True π(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Pi initialization

Time (t)

(h) Initialization of π(t).

0 10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Estimated pi

Time (t)

(i) Estimated π(t).

Fig. 5: Evolution of the true (left), initialized (center) and estimated (right) proportions of the parameters
α(t), β(t) and π(t), respectively.

12 Giulia Marchello, Marco Corneli, and Charles Bouveyron

optimal number of clusters in rows and columns over a larger number of simulated datasets through the
combination of the initialization procedure and the application of the ZIP -dLBM algorithm. Let us recall
that, as mentioned in Section 3, the ICL criterion identifies the optimal number of clusters only at one time
instant in order to initialize the parameters optimally. Subsequently, ZIP -dLBM is run with a higher num-
ber of clusters than those identified by ICL. Hence, to validate the performances on the component activa-
tion, 50 independent data sets are generated with the setup explained in Section 2.1, with Q = 3 row clus-
ters and L = 2 column clusters, a level of sparsity varying between 80% and 90% and the other model pa-

rameters equal to: Cluster α β

1 0.2 to 0.8 0.1 to 0.99
2 0.18 to 0.14 0.99 to 0.1
3 0.6 to 0.06 -

Λ =

6 4
1 2
7 3



Then, ZIP -dLBM is applied on those simulated data sets using values of Q and L equal to 10. Table 1
shows the percentage of selections. The highlighted cell corresponds to the actual value of Q and L. ZIP -
dLBM succeeds 86% of the time to identify the correct model. Specifically, to evaluate the results of this
experiment, we averaged the membership probability of the two estimated mixing parameters, α(t) and
β(t); exceeding clusters having an average membership probability of less than 1e-3 were considered to
be off. Among the results of the 50 simulated data sets, we report in Figure 6, as an illustrative example,
one of the component activation results. We see that not only the unnecessary clusters remained empty,
but also the estimates of the α(t) and β(t) are good, as ZIP -dLBM manages to identify the evolution of
the two mixing parameters over time, despite the number of clusters given as input is not the optimal one.

Q/L 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 86 0 0 0 0 0 0 0 0
4 0 2 0 0 0 0 0 0 0 0
5 0 2 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 4 0 0 0 0 0 0 0 0
9 0 2 0 0 0 0 0 0 0 0

10 0 4 0 0 0 0 0 0 0 0
Table 1: Model selection. Percentage of activated components on 50 simulated data sets. The highlighted
cell corresponds to the actual value of Q and L.

2.4 Benchmark study

The goal of this last experiment is to compare ZIP -dLBM with two state-of-the-art methods to recover
the data structure. First, ZIP -dLBM is compared with a model based on the same assumptions but which
does not take into account the sparsity modeling over time. Denoted by Zip-dLBMπ(·)=0, the model does
not take into account the excess of zeros in the data and it is obtained by setting the sparsity parameter
π(t), with t in [0, T], equal to zero. The other model ZIP -dLBM is compared with is dLBM proposed by
Marchello et al. (2022) where not only the sparsity is not taken into account but the cluster memberships

Title Suppressed Due to Excessive Length 13

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Component activation: alpha

time(t)

R
ow

 c
lu

st
er

 p
ro

po
rt

io
ns

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Component activation: beta

time(t)

C
ol

um
n

cl
us

te
r

pr
op

or
tio

ns

Fig. 6: View of a model selection result: the useful clusters are activated while the useless ones lie empty
on the basis of the figure.

Z and W are not time-dependent, i.e. cluster switches are not allowed. However, the expected number of
interactions between co-clusters (the parameter Λ) changes in time in dLBM.
We chose to evaluate the results with the CARI index. In order to compare the affectations to the clusters
over time, the cluster labels in dLBM were repeated as many times as the number of time instants, and
then compared to the affectations of the simulated data using the CARI index. To make this comparison
more complete, we defined two simulation scenarios. In Scenario A, the data are simulated as described
in Section 2.1 but with a constant sparsity level of 80%, fixed in time. In Scenario B the sparsity evolves
in time from 80% to 90% . Table 2 displays the results of this comparison, in terms of average CARI
values, reported with standard deviations.
In Scenario A, ZIP -dLBM performs well reaching a CARI value of 0.93, on the other hand ZIP -
dLBMπ(·)=0 suffers from the excessive number of zeros, whose treatment is not considered, probably
affecting the clustering performance. Even worse for dLBM whose CARI index is 0. This is certainly due
to the fact that the two latent clustering variables, Z and W , do not evolve over time.
In scenario B, ZIP -dLBM performs comparably with the previous scenario, with an average CARI in-
dex of 0.94 and a smaller standard deviation. Thus, we see that an increasing level of sparsity does not
degrade the performance of the model since it is able to distinguish structural zeros from those coming
from the Poisson process. This could even help in improving clustering performance. On the contrary,
Zip-dLBMπ(·)=0 performs worse than the results obtained in the scenario A probably due to the increased
sparsity in the data.

ZIP -dLBM Zip-dLBMπ(·)=0 dLBM
Scenario A 0.93± 0.13 0.27± 0.1 0± 0
Scenario B 0.94± 0.03 0.16± 0.11 0± 0.01

Table 2: Co-clustering results for ZIP -dLBM, Zip-dLBMπ(·)=0 and dLBM on 50 simulated data according
to the two scenarios. Average CARI values are reported with standard deviations.

