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Abstract. The simultaneous clustering of observations and features of
data sets (a.k.a. co-clustering) has recently emerged as a central ma-
chine learning task to summarize massive data sets. However, most ex-
isting models focus on stationary scenarios, where cluster assignments
do not evolve in time. This work introduces a novel latent block model
for the dynamic co-clustering of data matrices with high sparsity. The
data are assumed to follow dynamic mixtures of block-dependent zero-
inflated distributions. Moreover, the sparsity parameter as well as the
cluster proportions are assumed to be driven by dynamic systems, whose
parameters must be estimated. The inference of the model parameters
relies on an original variational EM algorithm whose maximization step
trains fully connected neural networks that approximate the dynamic
systems. Due to the model ability to work with empty clusters, the se-
lection of the number of clusters can be done in a (computationally)
parsimonious way. Numerical experiments on simulated and real world
data sets demonstrate the effectiveness of the proposed methodology in
the context of count data.

Keywords: Co-clustering · Latent Block Model · zero-inflated distribu-
tions · dynamic systems · VEM algorithm.

1 Introduction

1.1 Context and related works

In a wide range of applications (e.g. signal processing, recommending systems,
genetics, etc.) there is a growing need to develop machine learning models to
treat time-dependent high dimensional data, in contexts of extreme data sparsity.
By the simultaneous clustering of the the rows (observations) and the columns
(features) of a data matrix, co-clustering proved to be an useful tool for high-
dimensional data analysis thanks to its ability to provide useful summaries and
visualisations of the data. However, the development of dynamic co-clustering
methods for sparse data sets still remains almost an unexplored territory.

The cornerstone of model-based co-clustering is the popular latent block
model (LBM, Govaert and Nadif, 2003), initially introduced for the co-clustering
of binary data matrices. LBM is based on the assumption that rows and columns
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of a matrix are grouped in hidden clusters and that the observations within a
block (intersection of a row cluster and a column cluster) are independently and
identically distributed. Whereas the original formulation of the model dealt with
binary data only, the model has been extended in the last two decades to count
data (Govaert and Nadif, 2010), continuous data (Lomet, 2012), categorical
data (Keribin et al., 2015), ordinal data (Jacques and Biernacki, 2018; Corneli
et al., 2020), functional data (Bouveyron et al., 2018) and textual data (Bergé
et al., 2019). In the dynamic context, Boutalbi et al. (2020) proposed the tensor
latent block model (TLBM) for the co-clustering of rows and columns of a 3D
array, with covariates accounting for the third (temporal) dimension. TLBM was
also implemented for different types of data: continuous, binary and counting.
Recently, Marchello et al. (2022) proposed an extension of LBM allowing one
to perform the simultaneous clustering of rows, columns and slices of a three
dimensional counting array. Although being a first attempt to expand the LBM
model to the dynamic case, this model has the limitation of not allowing cluster
switches of rows/columns. In a different framework, Casa et al. (2021) prolong
the latent block model to deal with longitudinal data, relying on the shape in-
variant model (Lindstrom, 1995). Boutalbi et al. (2021) developed a model-based
co-clustering method for sparse three-way data, where the third dimension can
be seen as a discrete temporal one. Here, the sparsity is handled following the
same assumption as in Ailem et al. (2017) that all blocks outside the main di-
agonal share a common parameter.

1.2 Contribution of this work

The model that we introduce brings two major contributions in the field of
dynamic co-clustering: first, observations (rows) and features (columns) are al-
lowed to leave/join clusters over time; second, the data sparsity is explicitly
taken into account by means of block dependent zero-inflated distributions. Be-
fore describing our model in more details, in the next section, we just point out
the importance of the first contribution. Capturing the data dynamics is crucial
in order to detect atypical phenomena that may have affected the underlying
generative process. For instance, if at a given time t the value of some features
suddenly increases for just one observation in a cluster, this suggests that the
observation is likely to have switched to another cluster. A change point should
be detected, leaving space for further analysis to inspect the causes. Thus, our
aim was to develop a highly interpretable co-clustering method allowing prac-
titioners to obtain faster visualizations of the results in order to automate the
data analysis.

2 A Zero-Inflated dynamic LBM

The observed data are assumed to be collected into time evolving matrices, over
the the interval [0, T ]. We work in discrete time and assume that we have a time
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partition of equally spaced points

0 = t0 < t1 < tu ≤ tU = T.

Now up to rescaling, we can assume without loss of generality, that tu+1 − tu =
1. Moreover, to simplify the exposition we omit the subscript u and, with a
slight abuse of notation, we denote by t the generic time point tu and by T the
number of time points U . Thus, at (discretized) time t, we introduce the incidence
matrix X(t) ∈ NN×M whose entry Xij(t) describes the (binary, counting, real)
interaction between the observation i and the feature j took place between t
and t − 1. The rows of X(t) are indexed by i = 1, ..., N and the columns by
j = 1, ...,M .

We aim at simultaneously clustering the rows and columns of the collection
of the time indexed data matrices {X(t)}t.

Cluster modeling. The rows (i.e. observations) and columns (i.e. features) ofX(t)
are clustered into Q and L groups, respectively. Although Q and L are assumed
fixed over time, each row/column is nevertheless allowed to change its cluster
membership over [0, T ]. More formally, a latent matrix Z(t) := {Ziq(t)}i∈1,...,N ;q∈1,...,Q
represents the clustering of N rows into Q groups at a given time point t, with
Ziq(t) = 1 if row i belongs to the q-th cluster in t, zero otherwise. We assume
that the i-th row of Z(t) (say Zi(t)) follows an evolving multinomial distribution,
parameterized by α(t)

Z(t) ∼M(1, α(t) := (α1(t), . . . , αQ(t))), (1)

where αq(t) = P{Ziq(t) = 1} and
∑Q
q=1 αq(t) = 1, for all t.

In a similar fashion, we introduce a latent matrixW (t) ∈ {0, 1}M×L, labelling
the column clusters at time t, and whose j-th row Wj(t) follows a multinomial
distribution of parameter β(t) := (β1(t), . . . , βL(t)).

The two random matrices Z and W are further assumed to be independent.

Sparsity modeling. In order to model a potentially extreme data sparsity, the
observed data are modeled by mixtures of block-conditional Zero-Inflated distri-
butions, with conditionally independent entries Xij(t). In more detail we intro-
duce a latent vector π of length T , whose entry π(t) indicates the proportion of
data sparsity at time t. Then we assume that, with probability π(t), Xij(t) = 0
a.s., whereas with probability 1− π(t) we have1

Xij(t)|Zi(t),Wj(t) ∼ ϕ(Xij(t); ζZi(t),Wj(t)), (2)

independently for all (i, j), where ϕ(Xij(t), ·) is some probability distribution
function with parameter ζ ∈ RQ×L. In a compact notation:

Xij(t)|Zi(t),Wj(t) ∼ ZIϕ(ζZi(t),Wj(t), π(t)) , (3)

1 We adopt in Eq (2) a quite common convention in the clustering literature: Zi(t)
denotes both the i-th row of Z(t) and a random variable whose value is q if row i is
in the q-th row cluster at time t.
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where ZI stands for Zero-Inflated. Among the distributions ϕ(·) that could be
considered, we can cite the zero-inflated versions of the log-normal and the
Gamma distributions for continuous data, or the zero-inflated Poisson (ZIP)
distribution (Lambert, 1992) for count data.

In order to ease the illustration of the inference routine we finally provide a
third, equivalent formulation of the above equations in terms of a hidden random
matrix, A ∈ {0, 1}N×M , where independently for all i and j

Aij(t) ∼ B(π(t)),

with B(p) denoting the Bernoulli probability mass function of parameter p and
such that

Aij(t) = 1⇒ Xij(t)|Zi(t),Wj(t) = 0

Aij(t) = 0⇒ Xij(t)|Zi(t),Wj(t) ∼ ϕ(Xij , (t), ζZi(t),Wj(t)).
(4)

Modeling the parameters dynamics. The mixing parameters α and β as well as
the sparsity proportions π (all vectors of length T ) are assumed to be driven by
systems of ordinary differential equations (ODEs). In this way, we are able to
capture the temporal evolution of both the cluster proportions and the (excess
of) sparsity. In continuous time, the three dynamic systems would read as:

d

dt
a(t) = fZ(a(t)), (5)

d

dt
b(t) = fW (b(t)), (6)

d

dt
c(t) = fA(c(t)), (7)

where t ∈ [0, T ], fZ : RQ → RQ, fW : RL → RL and fA : R → R are
three unknown continuous functions and a : [0, T ] → RQ, b : [0, T ] → RL and
c : [0, T ]→ R are three continuously differentiable functions such that

αq(t) :=
eaq(t)∑Q
q=1 e

a
q (t)

β`(t) :=
eb`(t)∑L
`=1 e

b
`(t)

, (8)

and

π(t) :=
ec(t)

1 + ec(t)
. (9)

Then, since (as stated at beginning of Section 2) we work with discrete time
points, the above dynamic systems reduce to their Euler schemes. A graphical
representation of the model described so far, and named Zero-Inflated dLBM,
can be seen in Figure 1.

2.1 The joint distribution

The model described so far can be adapted to any zero-inflated distribution. The
first formulation as well as the most well-known concerns the Zero-Inflated Pois-
son (Lambert, 1992). However, other distributions such as Zero-Inflated Negative
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Fig. 1: Graphical representation of the Zero-Inflated dLBM model.

Binomial (Ridout et al., 2001), Zero-Inflated Beta (Ospina and Ferrari, 2012),
Zero-Inflated log-normal (Li et al., 2011) could be coupled with the present mod-
eling. In the following to ease the readability of the inference procedure we make
use of the Zero-Inflated Poisson (ZIP) formulation to illustrate our approach.
Hence, we can write

Xij(t)|Zi(t),Wj(t) ∼ ZIP(ΛZi(t),Wj(t), π(t)),

where P(·) denotes the probability mass function of a Poisson distribution and
Λ is a Q×L matrix, denoting the block-dependent Poisson intensity parameter.
The whole set of the model parameters is denoted by θ := (Λ,α, β, π) and the
latent variables used so far are A, Z andW . Thus, the likelihood of the complete
data reads

p(X,A,Z,W |θ) = p(X|A,Z,W,Λ, π)× p(A | π)p(Z|α)p(W |β). (10)

The terms on the right hand side of the above equation can be further developed.
Details are postponed in Appendix 1.1 for lack of space.

3 Inference

In order to infer the model parameters, two main problems occur. First, we
can’t adopt the EM algorithm (Dempster et al., 1977; Bishop, 2006) in order
to numerically compute ML estimates from the intractable quantity p(X|θ).
This issue is common to all stochastic and latent block models (see for instance
Govaert and Nadif, 2003) due to the intractability of the posterior distribution of
the latent variables (here A,Z and W ). Second, although variational strategies
(Jaakkola and Jordan, 1997; Jordan et al., 1998) could be employed, α, β and
π cannot be updated explicitly, in the M step, due to the dynamics in Eqs. (5)-
(7). This is why we combine variational inference with a Gradient Descent (GD)
optimization for the ODE part.

3.1 Variational decomposition

Since we cannot compute the joint posterior distribution p(A,Z,W |X, θ), we in-
troduce a variational distribution q(·) over the latent variables (A,Z,W ) and
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adopt the following standard variational decomposition of the observed log-
likelihood

log p(X|θ) = L(q; θ) +KL(q(·)||p(·|X, θ)),
where L denotes a lower bound of the term on the left hand side of the equality
and is defined as:

Eq(A,Z,W )

[
log

p(X,A,Z,W |θ)
q(A,Z,W )

]
(11)

and KL indicates the Kullaback-Liebler divergence between the approximate and
the true posterior distribution of (A,Z,W ). Although the above equations hold
for any distribution q(·), we look for one that maximizes L(·; θ) (or equivalently,
that minimizes the KL divergence) while keeping the maximization problem
tractable. Hence, we adopt the following mean-field assumption

q(A,Z,W ) = q(A)q(Z)q(W ) =
∏
i,j,t

q(Aij(t))
∏
i,t

q(Zi(t))
∏
j,t

q(Wj(t)). (12)

Thus, we introduce a variational expectation-maximization algorithm that al-
ternates an expectation step (VE) maximizing the lower bound in Eq. (11)
with respect to the variational distribution q(·), while keeping θ fixed and a
maximization step (VM), maximizing the lower bound L(q, θ) with respect to
θ = (Λ,α, β, π), while holding the variational distribution q(·) fixed. The two
steps are now described in much detail.

3.2 VE-Step

The optimal variational updates of q(·), under the assumption in Eq. (12), can
be obtained as Bishop (2006):

log q(A) := EW,Z [log p(X,A,Z,W | θ)], (13)

log q(Z) := EA,W [log p(X,A,Z,W | θ)], (14)
log q(W ) := EA,Z [log p(X,A,Z,W | θ)]. (15)

Optimization of q(A) The expectation in Eq. (13) can be explicitly computed
leading to the following
Proposition 1. Denoting by δij(t) := q(Aij(t) = 1) the variational probability
of success for Aij(t), the optimal update is:

δij(t) =
exp(Rij(t))

1 + exp(Rij(t))
, (16)

with:

Rij(t) := log(π(t)1{Xij(t)=0}) +
∑
q,`

[
E[Ziq(t)]E[Wj`(t)](Λq`+

−Xij(t) logΛq`)
]
+ logXij(t)!− log(1− π(t))

(17)

where 1{·} denotes the indicator function.
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The proof is provided in the Appendix 1.2. Note that, formally, when Xij(t) 6= 0,
Rij(t) = −∞ and δij(t) = 0, which makes sense: non-null observations inX come
from a Poisson distribution with probability one (see Eq. (4)).

Optimization of q(Z) and q(W) Regarding the factor q(Z), the expectation
in Eq. (14) can be explicitly computed leading to the following

Proposition 2. Denoting by τiq(t) := q(Ziq(t) = 1) the variational probability
of success of Ziq(t), the optimal update is:

τiq(t) =
riq(t)∑Q
v=1 riv(t)

, (18)

with

riq(t) ∝ exp

(∑
j,`

F iqjl + log(αq(t))

)
(19)

and
F iqjl := (1− E[Aij(t)])

[
E[Wj`(t)](Xij(t) log(Λq`)− Λq`)

]
. (20)

The proof is provided in the Appendix 1.3. In a similar way, for the factor
q(W ), the expectation in Eq. (15) can be explicitly computed leading to the
following

Proposition 3. Denoting by ηj`(t) := q(Wj`(t) = 1) the variational probability
of success of Wj`(t), the optimal update is:

ηj`(t) =
sj`(t)∑L
v=1 sjv(t)

, (21)

with

sj`(t) ∝ exp

(∑
i,q

Gj`iq + log(β`(t))

)
. (22)

Gj`iq := (1− E[Aij(t)])
[
E[Ziq(t)](Xij(t) log(Λq`)− Λq`)

]
. (23)

The proof is provided in the Appendix 1.4.

3.3 Variational M-Step

The lower bound can be explicitly computed as stated in Proposition 2 in Ap-
pendix 1.5 for lack of space. From that bound, we can optimize the model pa-
rameters θ, while keeping q(·) fixed, as stated in the reminder of this section.
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Update of Λ We now report the update of the Zero-inflated Poisson parameter
Λ. Note that in case other zero-inflated distributions are chosen, this step must
be adapted to the corresponding distributions.

Proposition 4. The updating formula of Λ is:

Λq` =

∑
i,j,t τiq(t)ηj`(t)

(
Xij(t)− δij(t)Xij(t)

)
∑
i,j,t τiq(t)ηj`(t)

(
1− δij(t)

) . (24)

The proof is provided in the Appendix 1.6. We just wish to point out that
the above update formula is indeed very intuitive: it corresponds to a sample
mean accounting for both the probability that null Xij(t)s come from a Poisson
distribution (via 1− δij(t)) and the probability that non-null Xij(t)s come from
co-cluster (q, l).

Update of α, β and π through deep neural networks The mixture pro-
portions α and β, as well as the sparsity parameter π are driven by three systems
of differential equations, in Eqs. (5),(6) and (7), respectively. As we assumed that
the functions fA, fW and fZ are continuous, we propose to parametrize them
with three fully connected neural networks (Gent and Sheppard, 1992), with
two hidden layers of 200 neurons each, equipped with ReLu activation functions,
with parameters ωA, ωZ and ωW , respectively. Thus, optimizing the lower bound
L(q; θ) with respect to α, β and π reduces to maximize it with respect to the
parameters of the neural nets as well as to the initial values a(0), b(0) and c(0).

For k ∈ {A,Z,W}, if we denote by ωk(h) the set of weights of the corre-
sponding neural network at iteration h of the GD algorithm, then

ωk(h) = ωk(h− 1)− γ∇ωk
L, (25)

where γ is a user defined learning rate, ∇ωk
(·) is the gradient operator, with

respect to ωk and ωk(0) is randomly sampled. In the experiments, this update
is implemented in PyTorch via automatic differentiation (Paszke et al., 2017)
and relies on stochastic optimisation (ADAM, Kingma and Ba, 2014). The
learning rates are fixed at γ = 1e−4. Once the neural nets are trained via back-
propagation they provide us with the ML estimates of α, β and π. The inference
procedure is summarized in Algorithm 1.

3.4 Initialization and model selection

When dealing with clustering methods based on the EM algorithm, the initial-
ization and the selection of the appropriate numbers of clusters (for rows and
columns here) are two issues which deserve an appropriate treatment. The issues
related to these two points are slightly complicated here by the use of deep neural
networks for modeling the dynamics of cluster and sparsity proportions. Despite
this apparent difficulty due to the intrinsic complexity of these networks, they
will nevertheless offer some unexpected flexibilities that we may use to lower
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Algorithm 1 VEM-GD Algorithm (Zero-Inflated Poisson)
Require: X,Q,L, n_iter, nb_epochs and α, β, π, Λ from Algorithm 2.

I Initialization of τ and η, sampled fromM(N,α) andM(M,β), respectively;
I Initialization of δ as ones(N,M), then setting δij = 0 when Xij > 0;
while not L converges do

VE-Step:
for counter = 1 to n_iter do

alternatively update δ, τ , η % fix point eqs
end for
M-Step:
Update Λ via Eq. (24)
Update α, β, π via ADAM % over nb_epochs

end while

the computational cost of the whole algorithm. Indeed, and as it is illustrated
in the numerical experiments (Appendix 2), the use of deep neural networks for
modeling the row and column cluster proportions will allow our algorithm to
work with some empty clusters. Therefore, in the objective of avoiding the usual
computationally demanding procedure of testing all pairs of row and column
cluster numbers, we propose the following strategy for both initialization and
model selection. First, we select a single specific slice of the data Xtinit

fit to it
a static version of our ZIP -dLBM (technically a ZIP -LBM) for a list of pairs of
cluster numbers, i.e. (q, `) for q = 2, . . . , Qmax and ` = 2, . . . , Lmax. We then use
the ICL criterion (Integrated Classification Likelihood, Biernacki et al., 2000)
to select the most appropriate row and column clusters’ numbers for this spe-
cific slice of data. Let us remind that the ICL criterion aims at approximating
the complete-data integrated log-likelihood and can be derived for ZIP -LBM as
follows:

ICL(Q,L) = log p(X, Ẑ, Ŵ ; θ̂)−Q− 1

2
logN− L− 1

2
logM−QL− 1

2
log(NM). (26)

The pair (Q̂, L̂) that leads to the highest value of the ICL is retained for the data
Xtinit

. Remark that, unless a further specific notice, the slice Xtinit
considered

for this step in our experiments will be the first slice of the data, i.e. Xt0 . Second,
in order to initialize our VEM-GD algorithm (see Algorithm 1) with useful initial
values of the model parameters, we adopt a cascade process in order to propagate
the parameters estimates obtained on the slice Xtinit

to other slices. In more
detail, fixing for the moment the numbers of row and column clusters to (Q̂, L̂),
we fit the static ZIP -LBM to the next slice Xtinit+1 with parameters θ̂tinit as
initial values. Then, the estimated parameters θ̂tinit+1 are used as initialization
for a static ZIP -LBM fitted to the slice Xtinit+2, and so on up to XT . This
strategy allows us to obtain initial values (say θ̂(t) ) for all the model parameters
for t = 0, ..., T . Finally, as we expect that the choice of Q̂ row and L̂ column
cluster components could not be the best when considering the data set as a
whole, the VEM-GD algorithm (see Algorithm 1) is run with more components
than considered in the initialization. Indeed, we run the VEM-GD algorithm
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with Qmax ≥ Q̂ and Lmax ≥ L̂ cluster components. Then, part of the model
parameters are initialized with θ̂(t) obtained via the initialization procedure
described above (see Algorithm 2) and the remaining parameters, corresponding
to the additional row and column clusters are set to zero. Thus, we aim at
exploiting the potential "blessing" of the use of deep neural networks allowing
our VEM-GD algorithm to start with some empty clusters. These empty clusters
will have the possibility to be activated later in the inference process, if needed.
Therefore, we avoid the usual computationally demanding procedure of running
the whole algorithm with all pairs of row and column cluster numbers for the
whole data set. This strategy allows our approach to scale to massive data sets
in a reasonable computational time and with satisfying results, as shown in the
next section.

Algorithm 2 Initialization
Step 1: Static model selection

Require: X,Qmin, Qmax, Lmin, Lmax,max_iter, n.sim.
for Q =Qmin, to Q=Qmax do

for L =Lmin, to L=Lmax do
Initialize randomly α, β, π, Λ;
Run ZIP -LBM on X1 and compute ICL;

end for
end for

Ensure: (Q∗, L∗) that gives the highest ICL value.
Step 2: Cascade process

Require: X , Q∗, L∗, max_iter.
for t = 1 to T do

if t =1 then
Initialize randomly α, β, π, Λ;
Run ZIP -LBM(Q∗, L∗) on X1;
Store α̂(1), β̂(1), π̂(1), Λ̂.

else
Initialize with α̂(t− 1), β̂(t− 1), π̂(t− 1), Λ̂;
Run ZIP -LBM(Q∗, L∗) on Xt;
Store α̂(t), β̂(t), π̂(t), Λ̂.

end if
end for

4 Analysis of the adverse drug reaction dataset

In Appendix 2, there are in-depth experiments to verify the performances of
the model on simulated data in different scenarios. This section focuses on the
application of ZIP -dLBM to a large-scale pharmacovigilance data set, with the
aim of illustrating the potential of the tool.
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4.1 Protocol and data

This section considers a dataset consisting of an adverse drug reaction (ADR)
data set, collected by the Regional Center of Pharmacovigilance (RCPV), lo-
cated in the University Hospital of Nice (France). A time horizon of 7 years is
considered, from January 1st, 2015 to March 3th, 2022, the unity measure for the
time interval is a trimester. The overall dataset is made of 27,754 declarations,
for which the market name of the drug, the notified ADR and the reception
date are considered. Moreover, we only considered drugs and ADRs that were

Histogram of complete data (2015−2022)
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Fig. 2: Number of declarations received by the pharmacovigilance center
from 2015 to 2022, sorted by trimester.

notified more than 20 times over the 7 years. The resulting dataset contains 236
drugs, 324 ADRs and 29 time intervals with 12,336 non-zero entries. Looking at
Figure 2, it can be clearly noticed that there are two peaks, one in 2017 and the
other in 2021. In 2017, an unexpected rise of reports for ADRs happened con-
cerning a specific drug called Lévothyrox®. This has been marketed in France
for about 40 years as a treatment for hypothyroidism and, in 2017, a new formula
was introduced on the market. The Lévothyrox® case had a huge media cov-
erage in France: Lévothyrox® spontaneous reports represent the 90% of all the
spontaneous notifications that the RCPV received in 2017 (Viard et al., 2019). In
addition, since the end of the year 2020, vaccinations against Covid-19 have been
introduced. At that time, three vaccines are licensed in Europe, Comirnaty®

was the first Covid-19 vaccine available in France in December 2020, followed by
Moderna® in January 2021 and Vaxzevria® in February 2021. From Figure 2,
one can understand the difficulty to work with such data which contain signals
of very different amplitude. Indeed, behind those very visible effects, many ADR
signals need to be detected for obvious public health reasons. In particular, those
data also contain ADR reports regarding another health scandal happened in
2017, involving Mirena®, which is here far less visible than Lévothyrox®, but
also led to many avoidable serious health issues.
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Fig. 3: Evolution of the estimates α̂.
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Fig. 4: Evolution of the estimates β̂.

4.2 Summary of the results

To the initialize the algorithm, as explained in Section 3.4, we computed the
ICL criterion on one data slice, corresponding to the first trimester, where the
optimal numbers of clusters identified by the model selection criterion are Q̂ = 4
and L̂ = 4. Then, we initiated the model parameters through the cascade process
described in Algorithm 2 and we ran ZIP -dLBM with Q = 7 and L = 7 to allow
the model to fill or empty clusters as needed. Figure 5 depicts the estimated
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Fig. 6: Evolution of the estimates π̂.

Poisson intensities Λ for ZIP -dLBM, focusing on 4 drug clusters (D) and 4
ADR clusters (A) that are activated during the inference. Each color represents
a drug or ADR cluster, with higher values indicating stronger relationships (i.e.,
expected number of declarations received per time unit) between the respective
clusters. The figure reveals varying degrees of association, for example, cluster D3
of the drug clusters is highly related with cluster A1 of ADR clusters. Figures 3, 4
and 6 show the estimates of the model parameters α̂, β̂ and π̂, respectively.
Figure 3 shows the estimation of the mixing parameter α. Cross-referencing the
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information from these results, we note that the clusters that have the highest
intensity are also the less populated. For example, cluster D3 of drugs has a very
high intensity of interactions with cluster A1 of adversarial effects, yet cluster D3
turns out to be very small in Figure 3. This is due to the fact that this cluster
contains drugs that are declared with an an unusually high intensity. In fact,
this cluster contains the drugs that are the causes of the major health crises
that occurred during the reporting period: Mirena® in the first half of 2017,
Lévothyrox® in the second part of 2017, and Covid-19 vaccines throughout 2021.
Similarly, by analyzing the composition of cluster A1, it is possible to identify
which ADRs were the most reported in each of the aforementioned crises. For
instance, the most reported side effects during the Mirena® health crisis are
mostly hormonal ones, such as anxiety, heat shock, and aggressive behavior.
Then, looking at Figure 4, during the Lévothyrox® health crisis we notice a peak
in the A1 cluster of adversarial effects, probably because the great media coverage
that the scandal had in those years made people declare the most disparate
side effects. Also, we see that in 2021 there is another peak, corresponding to
the period of the Covid-19 vaccination. Here, the adversarial effects found in
cluster A1 are mostly linked to problems related to the vaccination site (e.g.
arm pain, arm inflammation, skin reaction) and flu syndrome as a result of
the vaccine. Cluster D2, on the other hand, contains a few but very common
and, consequently, much-reported drugs, for example, paracetamol and some
of the most popular anticoagulants. From Figure 5 we note that this cluster
has a stronger intensity of interactions with cluster A1 and A2 of undesirable
effects. Looking at Figure 4, we note that cluster A2 is thinly populated and
seems to follow the trend of health crises discussed above less closely. In fact,
this cluster contains less severe and more common adversarial effects, which can
occur even with the more frequent medications (e.g., itching, headache, weight
gain, etc.) Clusters D1 and D4, on the other hand, are characterized by very
low interaction intensities and are densely populated by all other drugs. Then,
looking at Figures 5 and 4, we see that the behavior of cluster A3 of adversarial
effects is very peculiar. It is characterized by almost zero interaction intensity
with drug clusters D1 and D4. After the Lévothyrox® crisis, the number of
reported adversarial effects significantly decreased, indicating a turning point in
pharmacovigilance as people became more aware of its importance and started
reporting side effects more frequently. Moreover, analysing its composition, it
was noticed that at the beginning of the period it also contained all the specific
side effects of Covid-19 vaccines, which were not yet known. Later, in 2021, those
side effects, changed clusters moving to cluster A1 as previously described. On
the other hand, Figure 6 shows the estimated evolution of the sparsity parameter
over time. We see that, at the beginning of the period, in 2015, the sparsity is
at 98%, then as we approach the 2017 peak, the number of declarations increases
and consequently the sparsity decreases. In 2019, it again increases slightly (97%)
and then decreases as we approach the peak due to the Covid-19 vaccines. In
fact, at the beginning of 2021 the sparsity level reaches its minimum at a level
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of 90%. Therefore, from the large initial data matrix, ZIP -dLBM was able to
identify meaningful clusters of such data.

4.3 Benchmark on real data

This section focuses on comparing ZIP -dLBM with state of the art models on
real-world data. We therefore carried out such an experiment by comparing
ZIP -dLBM with Zip-dLBMπ(·)=0 and dLBM discussed in appendix B.3. We also
included in the comparison two models that do not consider the dynamic aspect:
LBM (Robert et al., 2021), baseline for model-based co-clustering methods, and
k-means (MacQueen, 1967), applied on rows and columns separately. As we
are in an unsupervised context, the model performances are evaluated by the
silhouette score using cosine distance on rows and columns. Table 1 displays
the results of this comparison, in terms of average silhouette scores, reported
with standard deviations. From the reported results, one sees that ZIP -dLBM
outperforms its competitors. Also, it is worth noticing that unlike ZIP -dLBM,
LBM and k-means, being independently applied at each time instant, suffer from
label switching, which is not penalized in the silhouette score. This should make
the interpretation of these results even more in favor for ZIP -dLBM.

ZIP -dLBM Zip-dLBMπ(·)=0 dLBM kmeans LBM
Silhouette Score - Rows 0.37 ± 0.12 0.31 ± 0.12 -0.46 ± 0.25 0.21 ± 0.36 0.33 ± 0.12
Silhouette Score - Cols 0.36 ± 0.23 0.31 ± 0.25 -0.15 ± 0.06 0.31 ± 0.3 0.29 ± 0.23

Table 1: Results of ZIP -dLBM, Zip-dLBMπ(·)=0, dLBM, LBM and k-means
on pharmacovigilance data. Average silhouette scores are reported with standard
deviations.

5 Conclusion

We have developed a dynamic co-clustering technique for simultaneously clus-
tering rows and columns along the time dimension of a dynamic matrix. The
proposed zero-inflated dynamic latent block model can be adapted to several
zero-inflated probability distributions. We use a Variational EM algorithm with
GD optimization to perform inference on the model’s parameters, then the model
is applied to a real dataset from the Regional Center of Pharmacovigilance of
Nice (France) to segment drugs and adverse drug reactions based on their dy-
namic interactions over time. The proposed model provided a meaningful seg-
mentation of drugs and adverse drug reactions.
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