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General context

Cancer growth modeling

▸ Modeling cancer dynamics using (ODE’s, PDE’s...)

▸ Compartmental modeling of cancer dynamics

▸ Experimental tests for cancer are highly expensive

▸ Modeling cancer dynamics helps to:

1. Analyze the different involved mechanisms
2. Predict the cancer behavior
3. Provide systematic approaches for cancer drug scheduling
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General context

Region of attraction (RoA) estimation for cancer models

▸ RoA is the set of all initial
conditions for which there
exists a control such that
the state trajectory is
driven to a stable
equilibrium

▸ It is highly important in
the context of cancer
dynamics to find the set of
initial health indicators
that can be healed
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▸ x : The number of tumor cells

▸ y : The density of immune cells
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General context

Outline

1 Modeling cancer immune interactions

2 Probabilistically certified region of attraction of a cancer model

3 Take-away messages & perspectives
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Modeling cancer immune interactions

Classical cancer-immune interactions model

ẋ1 =

µCx1 (1 −
x1
x∞
) − γX x1x2 − κX x1u1

ẋ2 =

αY − δY x2 + µI x1x2 − βY x
2
1x2 + κY x2u2

− ηY x2u1

x2 : density of immune cells

u2 : immune stimulation agent

x1 : number of tumor cells

u1 : cytotoxic agent

Tumor x1Immune cells x2

µC

αY
γX

µI

βY
δY

u1
κX

u2
κY

ηY

A. d’Onofrio, U. Ledzewicz, H. Schättler, On the Dynamics of Tumor-Immune System
Interactions and Combined Chemo- and Immunotherapy, New Challenges for Cancer Systems
Biomedicine, Springer, 2012
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Probabilistically certified region of attraction of a cancer model

Chance-constrained optimization problems

Robust optimization problem

min
θ∈Θ

J(θ)

s.t. ∀p gc(θ,p) = 0

gc(θ,p) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if all the constraints
are satisfied

1 otherwise

▸ θ is the decision variable

▸ gc is an indicator function
on the constraints violation

▸ η is the precision

Chance-constrained optimization
problem

min
θ∈Θ

J(θ)

s.t. PrP{gc(θ,p) = 1} ≤ η
(1)

Simplified optimization problem

min
θ∈Θ

J(θ)

s.t.
∑

N
i=1 gc (θ,p

(i)
)

N
≤
m

N

(2)

▸ m is the number of violations

▸ Choosing N s.t. (1) is satisfied
with confidence δ
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Probabilistically certified region of attraction of a cancer model

Validation guaranties

▸ θ ∈ Θ is the decision variable
with cardinality nΘ

▸ m is the number of violations

Theorem [Álamo, 2015 ]

Take N satisfying

N ≥
1

η
(m + ln(

nΘ
δ
) + (2m ln(

nΘ
δ
))

1
2

)

then any solution of (2) satisfies
PrP{gc(θ,p) = 1} ≤ η with a
probability ≥ 1 − δ

▸ {p(j)}Nj=1 are i.i.d following P

▸ δ ∈ (0,1) is the confidence

nΘ η = 0.1 η = 0.01 η = 0.001

10 146 1451 14503
100 174 1732 17312
1000 201 2008 20073
10000 228 2280 22796

for m = 1 and δ = 0.001
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Probabilistically certified region of attraction of a cancer model

Pharmacokinetics/ Pharmacodynamics

ẋ1 = µC (1 − x1
x∞
) x1 − γX x1x2 − κX ( x4

γc

x4γc +C
γc
50c

) x1

ẋ2 = µI (1 − βx1) x1x2 + αY − δY x2 − ηY x2x3 + κY (
x
γi
5

x
γi
5
+C

γi
50i

) x2
ẋ3 = − (k1 + k2) x3 + s1 u1

V1

ẋ4 = k12 V1
V2

x3 − k2x4
ẋ5 = −cix5 + s2u2

u1: Chemo. infusion rate
≠

x3: Chemo. concentration in
the plasma

≠
x4: Chemo. concentration in

the tumor effect-site
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Probabilistically certified region of attraction of a cancer model

Treatment protocol & decision variable

Time1 2 3 4 TcT

dI

Drug dosage

Hospitalization Rest

σI

σC

dC

νC

θ = [νC , σC ,dC , σI ,dI ]
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Probabilistically certified region of attraction of a cancer model

Probabilistically certified RoA framework

ẋ(t) = F (x(t),u(t),p), x(0) = x0

x ∈ X, u ∈ U, x(T ) ∈ Ω

▸ Uncertainties: x0 and p

▸

Ω

: certified target set

▸ θ defines the drug protocol u

▸ Consider NC therapeutic cycles

▸ p ∼ N (pnom,0.01) truncated in [0.9pnom,1.1pnom]

▸ Ω0 is the certified safe region

▸ We derive a sequence {Ωk}
NC
k=1

▸ x0 ∼ U (Ωk)

▸ θΩk+1→⋃k
j=0 Ωj

▸ ΩC = ⋃
NC
i=0Ωi
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Probabilistically certified region of attraction of a cancer model

Validation of the certified target set Ω0 without control
▸ 5000 Monte-Carlo tests were performed

Probability of success: 99.78%
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Probabilistically certified region of attraction of a cancer model

Problem setup

Constraints:

x2(t) ≥ c , with c ∈ R+
0 ≤ u1(t) ≤ 1

0 ≤ u2(t) ≤ 1

Failure indicator:

gc ∶= {
0 if x2(t ∣x0,p, θ) ≥ c ∀t

and x(T ∣x0,p, θ) ∈ Ω
1 otherwise

▸ The number of control protocols
is nΘ = 300

▸ Accepted failures m = 1

▸ Precision parameter η = 10−2

▸ Confidence parameter δ = 10−3

▸ Number of scenarios N ≥ 1863

▸ Nsim = N ⋅ nΘ = 558900
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Probabilistically certified region of attraction of a cancer model

Probabilistically certified RoA

θ = [νC , σC ,dC , σI ,dI ]

▸ dC , dI : concentration of chemo-
and immunotherapy

▸ σI : duration of immunotherapy
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⎨
⎪⎪⎪⎪⎩

σI ∈ {0,0.16,0.32,0.48,0.64,0.8},
σC = 0.5, νC = 0.2,
dI ∈ {0,0.25,0.5,0.75,1},
dC ∈ {0,0.11,0.22,0.33,

0.44,0.56,0.67,0.78,0.89,1}.
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Probabilistically certified region of attraction of a cancer model

Validation of the estimation of ΩC

▸ 5000 Monte-Carlo tests were performed

Probability of success: 99.4%
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2 Probabilistically certified region of attraction of a cancer model
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Take-away messages & perspectives

Take-away messages & perspectives

▸ A framework of probabilistic certification for RoA

+ Avoid conservatism
+ Provide the certified control law
– Might be computationally expensive
→ use Matlab Coder or parallel computing
→ use iterative algorithms to avoid enumeration

Future perspectives:

▸ Application of the probabilistic framework to other models

▸ Other types of set generators in the RoA probabilistic certification

▸ Derive formal bounds on the final convergence probability
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Take-away messages & perspectives

Thank you for your attention!
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