Regions of Attraction Estimation for Tumor Immune Dynamical Systems

Tutorial session: Modeling and Treatment of Cancer

Kaouther Moussa¹, Mirko Fiacchini², Mazen Alamir²

¹ UPHF, CNRS, UMR 8201 - LAMIH, F-59313 Valenciennes, France ² Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

Cancer growth modeling

- Modeling cancer dynamics using (ODE's, PDE's...)
- Compartmental modeling of cancer dynamics
- **Experimental tests** for cancer are highly expensive
- Modeling cancer dynamics helps to:
 - 1. Analyze the different involved mechanisms
 - 2. Predict the cancer behavior
 - 3. Provide systematic approaches for cancer drug scheduling

Region of attraction (RoA) estimation for cancer models

- RoA is the set of all initial conditions for which there exists a control such that the state trajectory is driven to a stable equilibrium
- It is highly important in the context of cancer dynamics to find the set of initial health indicators that can be healed

- x: The number of tumor cells
- y: The density of immune cells

Outline

2 Probabilistically certified region of attraction of a cancer model

3 Take-away messages & perspectives

 $\dot{x}_1 = \dot{x}_2 =$

 x_2 : density of immune cells

 x_1 : number of tumor cells

Immune cells x_2

A. d'Onofrio, U. Ledzewicz, H. Schättler, On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_1 = \mu_C \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{x}_\infty} \right)$$
$$\dot{\mathbf{x}}_2 =$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

Immune cells x_2

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_1 = \mu_C \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{x}_\infty} \right)$$
$$\dot{\mathbf{x}}_2 = \alpha_Y - \delta_Y \mathbf{x}_2$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_1 = \mu_C \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{x}_\infty} \right) - \gamma_X \mathbf{x}_1 \mathbf{x}_2$$
$$\dot{\mathbf{x}}_2 = \alpha_Y - \delta_Y \mathbf{x}_2$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

A. d'Onofrio, U. Ledzewicz, H. Schättler, On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_1 = \mu_C \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{x}_\infty} \right) - \gamma_X \mathbf{x}_1 \mathbf{x}_2$$
$$\dot{\mathbf{x}}_2 = \mathbf{0} \mathbf{x}_1 - \delta_X \mathbf{x}_2 + \mu_U \mathbf{x}_1 \mathbf{x}_2$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_1 = \mu_C \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{x}_\infty} \right) - \gamma_X \mathbf{x}_1 \mathbf{x}_2$$
$$\dot{\mathbf{x}}_2 = \alpha_Y - \delta_Y \mathbf{x}_2 + \mu_I \mathbf{x}_1 \mathbf{x}_2 - \beta_Y \mathbf{x}_1^2 \mathbf{x}_2$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

A. d'Onofrio, U. Ledzewicz, H. Schättler, On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{x}_1 = \mu_C x_1 \left(1 - \frac{x_1}{x_\infty} \right) - \gamma_X x_1 x_2$$
$$\dot{x}_2 = \alpha_Y - \delta_Y x_2 + \mu_I x_1 x_2 - \beta_Y x_1^2 x_2$$

 x_2 : density of immune cells

- x_1 : number of tumor cells
- *u*₁ : cytotoxic agent

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_{1} = \mu_{C} \mathbf{x}_{1} \left(1 - \frac{\mathbf{x}_{1}}{\mathbf{x}_{\infty}} \right) - \gamma_{X} \mathbf{x}_{1} \mathbf{x}_{2} - \kappa_{X} \mathbf{x}_{1} \mathbf{u}_{1}$$
$$\dot{\mathbf{x}}_{2} = \alpha_{Y} - \delta_{Y} \mathbf{x}_{2} + \mu_{I} \mathbf{x}_{1} \mathbf{x}_{2} - \beta_{Y} \mathbf{x}_{1}^{2} \mathbf{x}_{2}$$

 x_2 : density of immune cells

 x_1 : number of tumor cells

*u*₁ : cytotoxic agent

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{\mathbf{x}}_{1} = \mu_{C} \mathbf{x}_{1} \left(1 - \frac{\mathbf{x}_{1}}{\mathbf{x}_{\infty}} \right) - \gamma_{X} \mathbf{x}_{1} \mathbf{x}_{2} - \kappa_{X} \mathbf{x}_{1} \mathbf{u}_{1}$$
$$\dot{\mathbf{x}}_{2} = \alpha_{Y} - \delta_{Y} \mathbf{x}_{2} + \mu_{I} \mathbf{x}_{1} \mathbf{x}_{2} - \beta_{Y} \mathbf{x}_{1}^{2} \mathbf{x}_{2}$$

 x_2 : density of immune cells u_2 : immune stimulation agent

- x_1 : number of tumor cells
- *u*₁ : cytotoxic agent

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{x}_1 = \mu_C x_1 \left(1 - \frac{x_1}{x_\infty} \right) - \gamma_X x_1 x_2 - \kappa_X x_1 u_1$$
$$\dot{x}_2 = \alpha_Y - \delta_Y x_2 + \mu_I x_1 x_2 - \beta_Y x_1^2 x_2 + \kappa_Y x_2 u_2$$

 x_2 : density of immune cells u_2 : immune stimulation agent

- x_1 : number of tumor cells
- *u*₁ : cytotoxic agent

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

$$\dot{x}_1 = \mu_C x_1 \left(1 - \frac{x_1}{x_\infty} \right) - \gamma_X x_1 x_2 - \kappa_X x_1 u_1$$
$$\dot{x}_2 = \alpha_Y - \delta_Y x_2 + \mu_I x_1 x_2 - \beta_Y x_1^2 x_2 + \kappa_Y x_2 u_2 - \eta_Y x_2 u_1$$

 x_2 : density of immune cells u_2 : immune stimulation agent

- x_1 : number of tumor cells
- *u*₁ : cytotoxic agent

A. d'Onofrio, U. Ledzewicz, H. Schättler, *On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy*, New Challenges for Cancer Systems Biomedicine, Springer, 2012

Outline

2 Probabilistically certified region of attraction of a cancer model

Robust optimization problem

$\min_{\theta\in\Theta}$	$J(\theta)$	
s.t.	$\forall p$	$g_c(\theta, p) = 0$
$_{c}(heta, p) \coloneqq$	= { 0 1	if all the constraints are satisfied otherwise

- θ is the decision variable
- g_c is an indicator function on the constraints violation

g

Robust optimization problem

$$\min_{\substack{\theta \in \Theta}} J(\theta)$$
s.t. $\forall p \quad g_c(\theta, p) = 0$

	(0	if all the constraints	
$g_c(\theta, p) \coloneqq$		are satisfied	
,	1	otherwise	

- θ is the decision variable
- g_c is an indicator function on the constraints violation
- η is the **precision**

Chance-constrained optimization problem

$$\begin{array}{l} \min_{\theta \in \Theta} & J(\theta) \\ \text{s.t.} & \Pr_{\mathcal{P}}\{g_c(\theta, p) = 1\} \leq \eta \end{array}$$
(1)

Robust optimization problem			
$\min_{\substack{\theta \in \Theta}}$ s.t.	$J(\theta)$ $\forall p$	$g_c(\theta, p) = 0$	
$g_c(heta, p) \coloneqq$	$\left\{\begin{array}{c} 0\\ 1\end{array}\right.$	if all the constraints are satisfied otherwise	

- θ is the decision variable
- g_c is an indicator function on the constraints violation
- η is the **precision**

Chance-constrained optimization problem

$$\begin{array}{l} \min_{\theta \in \Theta} & J(\theta) \\ \text{s.t.} & \Pr_{\mathcal{P}}\{g_c(\theta, p) = 1\} \leq \eta \end{array}$$
(1)

Simplified optimization problem

$$\min_{\substack{\theta \in \Theta \\ \theta \in \Theta}} J(\theta)$$

s.t.
$$\frac{\sum_{i=1}^{N} g_{c}(\theta, p^{(i)})}{N} \leq \frac{m}{N}$$
 (2)

m is the number of **violations**

Robust	optimization	problem

$$\min_{\theta \in \Theta} J(\theta)$$
s.t. $\forall p \quad g_c(\theta, p) = 0$

	0) if all the constraints	
$g_c(\theta, p) \coloneqq \{$		are satisfied	
	1	otherwise	

- θ is the decision variable
- g_c is an indicator function on the constraints violation
- η is the **precision**

Chance-constrained optimization problem

$$\begin{array}{l} \min_{\substack{\theta \in \Theta \\ \\ \text{s.t.} \end{array}} & J(\theta) \\ \text{s.t.} & \Pr_{\mathcal{P}}\{g_c(\theta, p) = 1\} \leq \eta \end{array}$$
(1)

Simplified optimization problem

$$\min_{\substack{\theta \in \Theta \\ \theta \in \Theta}} J(\theta)$$
s.t.
$$\frac{\sum_{i=1}^{N} g_c(\theta, p^{(i)})}{N} \leq \frac{m}{N}$$
(2)

- *m* is the number of **violations**
- Choosing N s.t. (1) is satisfied with confidence δ

Validation guaranties

- θ ∈ Θ is the decision variable with cardinality n_Θ
- *m* is the number of violations

Theorem [Álamo, 2015]

Take N satisfying

$$N \geq \frac{1}{\eta} \left(m + \ln \left(\frac{n_{\Theta}}{\delta} \right) + \left(2m \ln \left(\frac{n_{\Theta}}{\delta} \right) \right)^{\frac{1}{2}} \right)$$

then any solution of (2) satisfies $\Pr_{\mathcal{P}}\{g_c(\theta, p) = 1\} \leq \eta$ with a probability $\geq 1 - \delta$

• $\{p^{(j)}\}_{j=1}^{N}$ are i.i.d following \mathcal{P} • $\delta \in (0,1)$ is the **confidence**

Validation guaranties

- θ ∈ Θ is the decision variable with cardinality n_Θ
- *m* is the number of violations

• $\{p^{(j)}\}_{j=1}^N$ are i.i.d following \mathcal{P} • $\delta \in (0,1)$ is the **confidence**

Theorem [Álamo, 2015]

Take N satisfying

$$N \geq \frac{1}{\eta} \left(m + \ln \left(\frac{n_{\Theta}}{\delta} \right) + \left(2m \ln \left(\frac{n_{\Theta}}{\delta} \right) \right)^{\frac{1}{2}} \right)$$

then any solution of (2) satisfies $\Pr_{\mathcal{P}}\{g_c(\theta, p) = 1\} \leq \eta$ with a probability $\geq 1 - \delta$

n⊖	η = 0.1	η = 0.01	η = 0.001
10	146	1451	14503
100	174	1732	17312
1000	201	2008	20073
10000	228	2280	22796

for m = 1 and $\delta = 0.001$

Pharmacokinetics/ Pharmacodynamics

$$\begin{split} \dot{x}_{1} &= \mu_{C} \left(1 - \frac{x_{1}}{x_{\infty}} \right) x_{1} - \gamma_{X} x_{1} x_{2} - \kappa_{X} \left(\frac{x_{4}^{\gamma_{C}}}{x_{4}^{\gamma_{C}} + C_{50c}^{\gamma_{C}}} \right) x_{1} \\ \dot{x}_{2} &= \mu_{I} \left(1 - \beta x_{1} \right) x_{1} x_{2} + \alpha_{Y} - \delta_{Y} x_{2} - \eta_{Y} x_{2} x_{3} + \kappa_{Y} \left(\frac{x_{5}^{\gamma_{I}}}{x_{5}^{\gamma_{I}} + C_{50i}^{\gamma_{I}}} \right) x_{2} \\ \dot{x}_{3} &= - \left(k_{1} + k_{2} \right) x_{3} + s_{1} \frac{u_{1}}{V_{1}} \\ \dot{x}_{4} &= k_{12} \frac{V_{1}}{V_{2}} x_{3} - k_{2} x_{4} \\ \dot{x}_{5} &= -c_{i} x_{5} + s_{2} u_{2} \end{split}$$

Treatment protocol & decision variable

 $\theta = [\nu_C, \sigma_C, d_C, \sigma_I, d_I]$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$
$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$
$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

Uncertainties: *x*₀ and *p*

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

 $x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$

- **Uncertainties:** *x*₀ and *p*
- \triangleright Ω : certified target set

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

 $x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$

- **Uncertainties:** *x*₀ and *p*
- Ω : certified target set
- θ defines the **drug protocol** u

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

 $x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$

- **Uncertainties:** *x*₀ and *p*
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider *N_C* therapeutic cycles

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- **Uncertainties:** *x*₀ and *p*
- Ω : certified target set
- θ defines the **drug protocol** u
- Consider *N_C* therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- **Uncertainties:** *x*₀ and *p*
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider N_C therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- **Uncertainties:** *x*₀ and *p*
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider N_C therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

• Ω_0 is the certified safe region

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- **Uncertainties:** *x*₀ and *p*
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider N_C therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

- Ω₀ is the certified safe region
- We derive a sequence $\{\Omega_k\}_{k=1}^{N_C}$

 $\blacktriangleright x_0 \sim \mathcal{U}(\Omega_k)$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- Uncertainties: x₀ and p
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider N_C therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

- Ω_0 is the certified safe region
- We derive a sequence $\{\Omega_k\}_{k=1}^{N_C}$

$$\blacktriangleright x_0 \sim \mathcal{U}(\Omega_k)$$

$$\theta_{\Omega_{k+1} \to \bigcup_{j=0}^k \Omega_j}$$

$$\dot{x}(t) = F(x(t), u(t), p), x(0) = x_0$$

$$x \in \mathbb{X}, \quad u \in \mathbb{U}, \quad x(T) \in \Omega$$

- Uncertainties: x₀ and p
- Ω: certified target set
- θ defines the **drug protocol** u
- Consider N_C therapeutic cycles

▶ $p \sim \mathcal{N}(p_{nom}, 0.01)$ truncated in $[0.9p_{nom}, 1.1p_{nom}]$

- Ω_0 is the certified safe region
- We derive a sequence $\{\Omega_k\}_{k=1}^{N_C}$

$$\blacktriangleright x_0 \sim \mathcal{U}(\Omega_k)$$

$$\bullet_{\Omega_{k+1}\to\bigcup_{j=0}^k\Omega_j}$$

 $\square \quad \Omega_C = \bigcup_{i=0}^{N_C} \Omega_i$

Validation of the certified target set Ω_0 without control

5000 Monte-Carlo tests were performed

Problem setup

Constraints:

$$x_2(t) \ge c$$
, with $c \in \mathbb{R}_+$
 $0 \le u_1(t) \le 1$
 $0 \le u_2(t) \le 1$

Problem setup

Constraints:

$$x_2(t) \ge c$$
, with $c \in \mathbb{R}_+$
 $0 \le u_1(t) \le 1$
 $0 \le u_2(t) \le 1$

Failure indicator:

 $\begin{array}{ll} 0 & \text{if } x_2(t|x_0,p,\theta) \geq c \quad \forall t \\ & \text{and} \quad x(\mathcal{T}|x_0,p,\theta) \in \Omega \\ 1 & \text{otherwise} \end{array}$

Problem setup

Constraints:

$$x_2(t) \ge c$$
, with $c \in \mathbb{R}_+$
 $0 \le u_1(t) \le 1$
 $0 \le u_2(t) \le 1$

Failure indicator:

if
$$x_2(t|x_0, p, \theta) \ge c \quad \forall t$$

and $x(T|x_0, p, \theta) \in \Omega$
otherwise

- The number of control protocols is $n_{\Theta} = 300$
- Accepted failures m = 1
- **Precision** parameter $\eta = 10^{-2}$
- Confidence parameter $\delta = 10^{-3}$
- Number of scenarios $N \ge 1863$

$$\blacktriangleright N_{sim} = N \cdot n_{\Theta} = 558900$$

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ₁: duration of immunotherapy

```
\left\{ \begin{array}{l} \sigma_I \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ \sigma_C = 0.5, \quad \nu_C = 0.2, \\ d_I \in \{0, 0.25, 0.5, 0.75, 1\}, \\ d_C \in \{0, 0.11, 0.22, 0.33, \\ 0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{array} \right.
```

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ₁: duration of immunotherapy

$$\begin{split} &\sigma_I \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ &\sigma_C = 0.5, \quad \nu_C = 0.2, \\ &d_I \in \{0, 0.25, 0.5, 0.75, 1\}, \\ &d_C \in \{0, 0.11, 0.22, 0.33, \\ &0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}$$

x

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

$$\sigma_{I} \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\\sigma_{C} = 0.5, \quad \nu_{C} = 0.2, \\d_{I} \in \{0, 0.25, 0.5, 0.75, 1\}, \\d_{C} \in \{0, 0.11, 0.22, 0.33, \\0.44, 0.56, 0.67, 0.78, 0.89, 1\}.$$

 $\theta = [\nu_C, \sigma_C, d_C, \sigma_I, d_I]$

- \blacktriangleright d_C , d_I : concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

0.5 0.6 0.7 0.8 0.9

 x_1

0.4

$$\sigma_{I} \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\\sigma_{C} = 0.5, \quad \nu_{C} = 0.2, \\d_{I} \in \{0, 0.25, 0.5, 0.75, 1\}, \\d_{C} \in \{0, 0.11, 0.22, 0.33, \\0.44, 0.56, 0.67, 0.78, 0.89, 1\}.$$

$$\theta_{\Omega_1 \to \Omega_0} = (0.2, 0.5, 0, 0.64, 0.25)$$

 $x_2 = c$

 $\Omega_{\mu}^{p_{non}}$

 Ω_P

20

Note

1.4

1.2

1

0.8 ŝ

> 0.6 0.4 0.2 0 0.1 0.2 0.3

1.1

·10³

 $\theta = [\nu_C, \sigma_C, d_C, \sigma_I, d_I]$

- \blacktriangleright d_C , d_I : concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

0.5 0.6

 x_1

0.7 0.8 0.9

0.4

```
\sigma_I \in \{0, 0.16, 0.32, 0.48, {\color{red}0.64}, 0.8\},
 \begin{aligned} \sigma_C &= 0.5, \quad \nu_C = 0.2, \\ d_I &\in \{0, 0.25, 0.5, 0.75, 1\}, \\ d_C &\in \{0, 0.11, 0.22, 0.33, \\ 0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{aligned}
```


 $x_2 = c$

 $\Omega_{u}^{p_{non}}$

Ω_P

20

NCLE

14

1.2

1

0.8 S

> 0.6 0.4 0.2 0 0.1 0.2 0.3

1.1

·10³

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

```
 \begin{split} &\sigma_I \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ &\sigma_C = 0.5, \quad \nu_C = 0.2, \\ &d_I \in \{0, 0.25, 0.5, 0.75, 1\}, \\ &d_C \in \{0, 0.11, 0.22, 0.33, \\ &0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}
```


$$\begin{array}{l} \theta \\ \Omega_1 \to \Omega_0 \end{array} = (0.2, 0.5, 0, 0.64, 0.25) \\ \theta \\ \Omega_2 \to \Omega_1 \cup \Omega_0 \end{array} = (0.2, 0.5, 0.67, 0.64, 1) \end{array}$$

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

```
 \begin{split} &\sigma_I \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ &\sigma_C = 0.5, \quad \nu_C = 0.2, \\ &d_I \in \{0, 0.25, 0.5, 0.75, 1\}, \\ &d_C \in \{0, 0.11, 0.22, 0.33, \\ &0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}
```


$$\begin{array}{l} \theta \\ \Omega_1 \to \Omega_0 \end{array} = (0.2, 0.5, 0, 0.64, 0.25) \\ \theta \\ \Omega_2 \to \Omega_1 \cup \Omega_0 \end{array} = (0.2, 0.5, 0.67, 0.64, 1) \end{array}$$

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

- d_C, d_I: concentration of chemoand immunotherapy
- σ_I : duration of immunotherapy

```
 \begin{split} &\sigma_I \in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ &\sigma_C = 0.5, \quad \nu_C = 0.2, \\ &d_I \in \{0, 0.25, 0.5, 0.75, 1\}, \\ &d_C \in \{0, 0.11, 0.22, 0.33, \\ &0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}
```


$$\begin{aligned} \theta \\ \Omega_1 \to \Omega_0 \\ \theta \\ \Omega_2 \to \Omega_1 \cup \Omega_0 \end{aligned} = (0.2, 0.5, 0, 0.64, 0.25) \\ \theta \\ \Omega_2 \to \Omega_1 \cup \Omega_0 \end{aligned} = (0.2, 0.5, 0.67, 0.64, 1)$$

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

d_C, d_I: concentration of chemoand immunotherapy

•
$$\sigma_I$$
: duration of immunotherapy

 x_1

$$\begin{split} \sigma_I &\in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ \sigma_C &= 0.5, \quad \nu_C = 0.2, \\ d_I &\in \{0, 0.25, 0.5, 0.75, 1\}, \\ d_C &\in \{0, 0.11, 0.22, 0.33, \\ 0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}$$

 $x_2 = c$

 $\Omega_{\mu}^{p_{non}}$

 Ω_P

20

Acle

1.4

1.2

1

0.8

0.6

x

1.1

·10³

 $\boldsymbol{\theta} = \left[\boldsymbol{\nu}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{C}}, \boldsymbol{d}_{\boldsymbol{C}}, \boldsymbol{\sigma}_{\boldsymbol{I}}, \boldsymbol{d}_{\boldsymbol{I}}\right]$

d_C, d_I: concentration of chemoand immunotherapy

•
$$\sigma_I$$
: duration of immunotherapy

0.5 0.6 0.7 0.8 0.9

 x_1

0.4

$$\begin{split} \sigma_I &\in \{0, 0.16, 0.32, 0.48, 0.64, 0.8\}, \\ \sigma_C &= 0.5, \quad \nu_C = 0.2, \\ d_I &\in \{0, 0.25, 0.5, 0.75, 1\}, \\ d_C &\in \{0, 0.11, 0.22, 0.33, \\ 0.44, 0.56, 0.67, 0.78, 0.89, 1\}. \end{split}$$

 $\begin{array}{l} \theta \\ \Omega_1 \rightarrow \Omega_0 \end{array} = (0.2, 0.5, 0, 0.64, 0.25) \\ \theta \\ \Omega_2 \rightarrow \Omega_1 \cup \Omega_0 \end{array} = (0.2, 0.5, 0.67, 0.64, 1) \\ \theta \\ \Omega_3 \rightarrow \Omega_2 \cup \Omega_1 \cup \Omega_0 \end{array} = (0.2, 0.5, 0.56, 0.8, 0.5) \end{array}$

 $\Omega_C = \Omega_0 \cup \Omega_1 \cup \Omega_2 \cup \Omega_3$

1.1

·10³

 $x_2 = c$

 $\Omega_u^{p_{norr}}$

 Ω_P

20

Acle

1.4

1.2

1

0.8

0.6

x

Validation of the estimation of Ω_C

▶ 5000 Monte-Carlo tests were performed

Outline

3 Take-away messages & perspectives

Take-away messages & perspectives

A framework of **probabilistic certification** for **RoA**

- + Avoid **conservatism**
- + Provide the **certified control law**
- Might be computationally expensive
- \rightarrow use Matlab Coder or parallel computing
- $\rightarrow\,$ use **iterative** algorithms to avoid enumeration

Future perspectives:

Take-away messages & perspectives

A framework of **probabilistic certification** for **RoA**

- + Avoid **conservatism**
- + Provide the **certified control law**
- Might be computationally expensive
- \rightarrow use Matlab Coder or parallel computing
- $\rightarrow\,$ use **iterative** algorithms to avoid enumeration

Future perspectives:

Take-away messages & perspectives

A framework of **probabilistic certification** for **RoA**

- + Avoid **conservatism**
- + Provide the **certified control law**
- Might be computationally expensive
- \rightarrow use Matlab Coder or parallel computing
- $\rightarrow\,$ use **iterative** algorithms to avoid enumeration

Future perspectives:

- Application of the probabilistic framework to other models
- Other types of **set generators** in the RoA probabilistic certification
- Derive formal **bounds** on the final convergence probability

Thank you for your attention!