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BALANCING ECONOMIC AND EPIDEMIOLOGICAL
INTERVENTIONS IN THE EARLY STAGES OF PATHOGEN

EMERGENCE

ANDY DOBSON1,∗, CRISTIANO RICCI2, RAOUF BOUCEKKINE3, FAUSTO GOZZI4,
GIORGIO FABBRI5, TED LOCH-TEMZELIDES6, AND MERCEDES PASCUAL7

Abstract. The global pandemic of Covid-19 has underlined the need for more
coordinated responses to emergent pathogens. These responses need to balance
epidemic control in ways that concomitantly minimize hospitalizations and economic
damages. We develop a hybrid economic-epidemiological modelling framework that
allows us to examine the interaction between economic and health impacts over
the first period of pathogen emergence when lockdown, testing, and isolation are
the only means of containing the epidemic. This operational mathematical setting
allows us to determine the optimal policy interventions under a variety of scenarios
that might prevail in the first period of a large scale epidemic outbreak. Combining
testing with isolation emerges as a more effective policy than lockdowns, significantly
reducing deaths and the number of infected hosts, at lower economic cost. If a
lockdown is put in place early in the course of the epidemic, it always dominates
the “laissez faire” policy of doing nothing.
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testing, optimization.
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2 BALANCING ECONOMIC AND EPIDEMIOLOGICAL INTERVENTIONS

1. Introduction

Covid-19 has now infected nearly half a billion people globally and has led to
over 6 million fatalities, although the true total may be closer to 20 million (see
Adam 2022). Part of the economic damages associated with the pandemic stem
directly from people’s inability to work when sick. A significant proportion is also
driven by “lockdown” policies put in place to minimize disease transmission through
contact between infected hosts and potential susceptible hosts. A template for initial
response to future pandemics is needed that will avoid the mistakes and ambiguities
that occurred in the initial response to Covid-19. This is particularly important as
at least 20 pathogens have emerged as threats to human populations over the last
fifty years (see Bernstein et al. 2022). In the one to two year period before vaccines
become widely available to control a novel pathogen, the only public health measures
to control outbreaks are isolation of susceptible hosts and testing for infection once
tests have been developed and distributed. Both of these measures can generate non-
trivial financial costs associated with a reduction in employment and income. Policy
makers have the task of determining the best way to offset these costs against those
caused by sickness and possibly death of infected hosts.

There are increasing calls for better foresight of how to respond to future pan-
demics (Jones 2022; Sridhar 2022). In a recent article, Persad and Pandya (2022)
argue that combining epidemiological studies with economic cost-benefit analysis is
essential for an effective policy response. Policymakers must be equipped with tools
to rigorously compare various interventions, both when evaluating individual policies
and when determining which policies to include in a regulatory package. They argue
that Covid-related policy decisions require considering not only trade-offs between
health outcomes and the direct costs of interventions, but additional dimensions re-
lated to economic activity, social justice, and individual liberty. Decision making
always uses some type of mental model to weigh the pros and cons of different policy
options. Rigorous economic evaluation formalizes this process. Value judgments will
still be present, but economic evaluation can make the decision-making process more
systematic, comprehensive, and transparent. A particularly relevant quote in Persad
and Pandya (2022) states: “Critics of this type of approach might argue that in the
midst of a pandemic that is still killing thousands of people globally every day, we
don’t have time to engage in economic evaluation — that we should do the best we
can, without fully weighing the costs and benefits of the options under consideration.
In contrast, we believe the severity of the pandemic makes the need for evaluation all
the more urgent. Choosing optimal interventions is associated with a bigger payoff
when risks are higher.” Economic evaluations of Covid-related policies must consider
non-linear effects, as policies might have different results in combination than they
do independently.

We have developed a model that combines existing, widely-used economic models
and an expansion of the SEIR (Susceptible-Exposed-Infected-Recovered) epidemio-
logical framework. The resultant hybrid epi-econ model introduces novel features
and allows us to develop optimization methods to concomitantly minimize deaths
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and damages to the economy. Our model is innovative in two ways: first, the ex-
panded SEIR model accounts for a larger set of possible states for the hosts in an
attempt to consider the dynamics of isolating and testing contacts of infected hosts,
that may themselves develop infections. Second, we take into account that realis-
tic epidemic control policies are subject to inefficiencies resulting from “economic
frictions” inherent in the implementation of such policies. A partial list of these fric-
tions includes incomplete information, transactions costs associated with initiating
multiple rounds of lockdowns in rapid succession, incomplete enforcement, and costs
associated with transitions in and out of lockdown. By improving the realism of both
epidemic dynamics and policy modelling we can better understand the structure of
the mechanisms through which public health and economic factors interact.

Prior to the current health crisis, economic research on epidemics has been limited
and has mostly attempted to connect epidemics with economic development in the
global South (see for example, Cuddington and Hancock 1994 or Young 2005). One of
the first significant contributions connecting economics and epidemic compartmental
modeling (hereafter, epi-econ modeling) traces back to Gersovitz and Hammer in 2004
(Gersovitz and Hammer 2004). The current Covid-19 crisis has stimulated additional
research at this intersection. Most studies in the area use standard compartmental
epidemic models ranging from SIS to SEIRAD (“A” stands for asymptomatic), and
typically investigate appropriate controls to target specific aspects of the Covid-19
crisis. Examples include Acemoglu et al. (2021), Alvarez et al. (2021), Gollier (2020),
Fabbri et al. (2021), and Hritonenko et al. (2021). The policies examined in these
papers tend to focus on lockdowns as a control strategy, in line with Acemoglu et al.
(2021). Testing and/or social distancing are less frequently addressed (see Alvarez
et al. (2021) or Piguillem and Shi (2022)). These interventions are often modeled
in a stylized way (for example, lockdown controls are assumed to be continuous-
time control variables; Aspri et al. 2021 provide a notable exception). They suggest
that targeted isolation avoids the sharp economic decline of lockdown by creating
incentives for infectious individuals to isolate, while allowing unexposed individuals
to continue to consume and work. Ash et al. (2021) calibrate a dynamic economic
model to COVID-19 related epidemiological data and use it to evaluate the effects
of different scenarios, including voluntary isolation, targeted isolation, and blanket
lockdowns.

Unlike the majority of the recent epi-econ literature, we use a finite-horizon model
in order to concentrate on short-term outcomes. More precisely, we build a framework
that provides insights on how policy makers should respond in the first two years of a
novel emergent pathogen for which (A) there is very limited epidemiological informa-
tion, (B) there are no available specific drugs or vaccines, and (C) tests for infectivity
are in the early stages of development. Given these constraints, a lockdown is one
of the main tools available to policy-makers. We specifically depart here from the
common assumption that lockdown policies can be adjusted in continuous time and
consider that they take place in a finite number of phases, the lockdown parameters
(intensity of the lockdown and duration) being optimally chosen at each phase. In
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addition, we incorporate technological implementation delays (e.g. in efficient test-
ing) and capacity constraints (e.g. in test/mask production). This in turn allows to
compare optimal control policies for countries at different levels of development, or
governments with different levels of concern for the welfare of their citizens/workforce.

2. Results

Our model has two main components: an epidemiological sub-model and an eco-
nomic one. They are coupled together by the population of hosts who can either
work, or are restricted from working to full capacity by exposure to infected hosts or
by being unable to work when ill and incapacitated. In both cases we will assume
an underlying well-mixed “mean-field” structure, a framework that has been widely
used in both epidemiology and economics. The flow diagram and state variables of
the epidemiological model are described in Fig. 1. The corresponding equations are
given in the Methods.

The economic analysis is based on a standard intertemporal production model
(Methods). We postulate that a policy-maker solves an “optimal control problem.”
They maximize a function representing the society’s well-being, or “welfare,” over
time, subject to the set of differential equations describing the evolution of the epi-
demiological variables. The welfare function is a linear combination of economic and
epidemiological objectives.

The policy-maker’s objective is to optimally balance between two components. The
first involves maximizing economic well-being associated with the flow consumption of
goods and services produced in the economy. The second is to minimize the society’s
direct costs associated with deaths resulting from the pathogen. In addition to re-
ducing output as a result of declining labor supply, deaths impose several other costs
to society. Our modeling of these costs is meant to capture the intrinsic value of lives
lost, as well as the resulting social and psychological effects on families and affected
communities more broadly. As is standard in economic models, we assume that util-
ity from consumption increases at a decreasing rate as consumption increases. The
power function specification is also standard, it features constant elasticity of substi-
tution in consumption over time, which captures the willingness of the policy-maker
to switch consumption/production over time. In addition, we assume that disutility
from deaths increases at an increasing rate with the number of deaths. Finally, we
use the parameter θ to weight the importance of deaths relative to consumption of
goods and services in the evaluation of the policy maker. At one extreme, θ = 0
corresponds to a purely economic model, where costs from lives lost are not directly
taken into consideration (they reduce economic well-being indirectly, but only as a
result of lost production). As θ increases, the epidemiological objective (lives saved)
increases in importance. Different values of θ can thus trace a Pareto frontier between
economic performance and lives lost.

We use the model to examine the concomitant response of the economy and the
pathogen to three different non-pharmaceutical interventions (NPI’s) that are likely
to be available before a vaccine or anti-viral drugs can be developed. Until that
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Figure 1. We have modified the basic SEIR formulation by dividing
the exposed (E) and infectious (I) classes into two sequential classes,
E1 and E2 and I1 and I2. Exposed hosts, who are not yet infectious are
classified as E1, while asymptomatic, contagious hosts are classified as
E2. We assume that E1 individuals transform to E2 at an exponential
rate determined by φ1. The pre-symptomatic hosts, E2, transform
to symptomatic infected hosts, I1, at a rate φ2. Both E2 and I1 are
infectious. This rate largely determines the duration of time during
which exposed hosts are able to transmit infection before they show
symptoms of infection. If φ2 is large (∼ 365) (around one day), then
exposed hosts quickly exhibit signs of symptoms and can be identified as
infectious (as occurred with SARS). In contrast, if φ2 is slower (∼365/7)
(a week), then asymptomatic hosts may transmit the disease for up to
a week before showing symptoms, as in the case of Covid-19 (or many
years in the case of HIV or TB, when φ2 may range from 0.1 to 0.5). In
a similar way, infected hosts, I1, may become sick and get hospitalized,
I2. These hosts have a higher mortality rate, but are assumed to be in
relative isolation and are thus unable to transmit the pathogen, except
to unprotected health care workers. The majority of the pathogen-
induced mortality occurs in the I2 class. We also include an additional
class, C, into our model structure, these are contacts of infectious hosts
who do not develop infection. Contact tracing identifies C + E1 + E2

as contacts of infected hosts, testing is used to differentiate uninfected
contacts, C, from exposed hosts (E1 and E2); the former can return to
work, the latter remain in isolation and go on to develop infection.
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time we assume that the only interventions available are (A) a lockdown of a fraction
of the economy, (B) isolation of contacts of people known to be infected, and (C)
wearing of surgical masks. In what follows we initially ignore mask-wearing and
assume this activity is a voluntary adjunct to A and B. We discuss this further in the
conclusions (and Supplementary Material). We assume that tests will be developed
quite quickly that allow identification of infected people before symptoms appear.
This is particularly important for Covid-19, when significant levels of transmission
are undertaken by hosts who do not yet show symptoms. The efficacy of these tests
will also improve as they are more widely used. We can modify our model to include
improving levels of specificity and sensitivity in the accuracy of tests used to identify
recently infected hosts. Here we simplify by assuming average recorded values for
specificity and sensitivity for the tests used for Covid-19 (see Böger et al., 2021 and
Bastos et al., 2020).

Transient dynamics under different epidemic control policies. In this section,
we study the dynamics generated by our model under four possible scenarios: the first
benchmark we consider is to do nothing to control the epidemic (Case 0 below). This
“laissez-faire” policy is always available to policymakers, particularly if the costs of
intervention are high. This essentially represents the policies pursued against Covid-
19 in Sweden and Tanzania. The second case (Case 1) is one in which the policy-maker
responds to the presence of the pathogen only with a lock-down policy (sensu China
and North Korea). We characterize the optimal duration and intensity of the lock-
down in this context, and discuss its impact on economic dynamics. Symmetrically,
the following sections (Case 2 and 3) are devoted to the case where the policy-maker
copes with the epidemic only by testing individuals; this can be done at random,
or by focusing on those who have been in contact with hosts who have developed
symptoms that progress to illness. Finally, we investigate the case where, after some
initial delay, the policy-maker may use both tools at their disposal (Case 4). In all
scenarios we characterize the optimal sequential combination of lock-down followed
by testing.

We first consider the case where no formal attempt is made to initiate a lockdown
of the economy, nor to restrict interactions between infected and susceptible hosts,
or to isolate those who have contacted the pathogen and those who have developed
symptoms. For this scenario we also assume that no tests are available. Such a laissez-
faire scenario could, for example, be favored by those entities whose economic interests
would be most severely impacted by reductions in economic activity under lockdowns.
We use this case as a benchmark for our initial examination of the model’s dynamics,
as it provides a comparison with the different forms of intervention we introduce
later. This case also allows us to identify the conditions under which minimal policy
intervention might indeed be desirable from the perspective of maximizing social
welfare.

One view that has been put forward in support of the laissez-faire case is that the
pathogen will generate levels of “herd-immunity” among survivors of infection that
will slow the further spread of infections while allowing uninfected hosts to continue



BALANCING ECONOMIC AND EPIDEMIOLOGICAL INTERVENTIONS 7

to operate in the economy. These arguments assume relatively low rates of mortality
and prolonged periods of immunity (Fine et al. (2011); Fine (1993); Randolph and
Barreiro (2020); Fontanet and Cauchemez (2020)). Crucially, loss of immunity over
time always leads to a resurgence of the epidemic. We explore this possibility by
allowing immunity to wane at four different average rates: 6 months, and 1, 2, and 3
years. As we are only focusing on the first 3 years of the epidemic, the slowest rate
of loss of immunity is essentially equivalent to the classical studies of measles which
assume life-long immunity and form the basis of most SEIR modelling approaches.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

75

80

85

90

95

100

Pr
od

uc
tio

n 
(%

 o
f i

ni
tia

l p
ro

du
ct

io
n)

(A)

6 months immunity
1 year immunity
2 years immunity
3 years immunity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

20
30
40
50
60
70
80
90

100

Su
sc

ep
tib

le
 h

os
ts

 (%
 o

f p
op

ul
at

io
n)

(B)
6 months immunity
1 year immunity
2 years immunity
3 years immunity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

0.0

0.5

1.0

1.5

2.0

ho
sp

ita
liz

ed
 in

fe
ct

ed
 I2

 (%
 o

f p
op

ul
at

io
n) (C)

6 months immunity
1 year immunity
2 years immunity
3 years immunity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (years)

0

2

4

6

8

10

12

14

De
at

hs
 fr

om
 co

vid
 D

c (
%

 o
f p

op
ul

at
io

n) (D)
6 months immunity
1 year immunity
2 years immunity
3 years immunity

Figure 2. The laissez-faire case: impact of duration of immunity on epi-
demic dynamics and the economy in the absence of intervention. The upper
two figures illustrate (A) the impact of the pathogen on the economy for
different levels of duration of immunity, and (B) the reduction in the num-
bers of susceptible hosts in the population. The lines are coloured to reflect
different rates of loss of immunity (blue 6 months; orange 1 year; green 2
year; red 3 years). The lower figure (C) illustrates the numbers of hospital-
ized patients. Values of the economic and epidemiological parameters are
described in Table 1.

Case 0: The lassez-faire. In addition to providing a benchmark, this scenario also
quantifies the economic damages that result from reduction of the workforce due to
illness and through loss of life (Figure 3). In all cases, we emphasize that the pathogen
does not die off, but continues to generate new deaths and a continuous reduction in
economic activity. It is worth pointing out that our laissez-faire scenario is restrictive
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in the sense that it abstracts from people’s endogenous decisions to change their be-
havior, for example, by isolating or wearing face-masks. There is increasing evidence
from epidemiological models that such changes in behavior do have a significant im-
pact on reducing rates of pathogen transmission, particularly when these are driven
by reduced levels of aggregation in the host population Hollingsworth et al. 2011;
Eichenbaum et al. 2021; Fenichel et al. 2011; Yan et al. 2021. Indeed, the large
differences observed between different countries in the early months of the Covid-
19 pandemic reflect differences in both government mandated and individual choice
behaviors Anderson et al. (2020); Eichenbaum et al. (2021).

The rate at which immunity is lost has profound effects on both the dynamics of
the epidemic and it’s influence on the economy. The upper two graphs illustrate the
impact on the economy and on the number of susceptible hosts as sequential waves
of infection pass through the population (Figure 3). If immunity lasts for 3 years,
the epidemic is experienced as a short outbreak that peaks when ‘herd immunity’
is attained. As the duration of immunity shortens, it becomes progressively easier
for the pathogen to reassert itself, causing repeated waves of infection resulting in
corresponding sequential impacts on the economy. Deaths initially peak at around
4% of the population. They continue to rise after the short duration of immunity
provided by transient levels of protection begins to diminish and those who have
recovered from infection become susceptible and potentially reinfected. The deaths
are matched by a prolonged 4% reduction in economic output, as births have not yet
had time to enter the workforce. Notice that loss of economic productivity continues
in repeated waves, as each cohort loses their immunity, become sick, and transiently
leave the workplace. When immunity lasts for less than a year, economic productivity
experiences a steady long-term decline.

We have assumed that those who receive 2nd or 3rd bouts of infection have no
residual immunity to infection after their immunity has waned. This is pessimistic in
that it is likely that recovered hosts do receive some residual immunological benefits
from prior infection, but incorporating these would require additional stages to our
model that acknowledge a second and third class of resistant host.

Case 1: Lockdowns. Next, we consider the case where the policy-maker responds
to the presence of the pathogen by initiating a lockdown that closes a proportion of
the economy for a sequence of time intervals, eventually leading to the eradication
of the pathogen from the local population. Our optimization algorithm minimizes
economic losses by setting the level and duration of the lockdown, in principle for
up to ‘n’ distinct time intervals. In each case we characterize the combined optimal
duration and depth required to maximize the total social welfare functional.

Policy-makers have to make crucial decisions at the beginning of an outbreak.
These decisions trade off the political expediency of being seen to act promptly,
against the cost of slowing down economic activity, which might expose them to
claims of over-reaction, particularly if reports of an epidemic run the risk of being
false alarms.
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We assume that two weeks after the epidemic emergence is the fastest time when
lockdowns can be put in place. This allows for identification of sufficient initial cases
before it is concluded that something needs to be done, and a lockdown is the only
possible response as no treatments or vaccines are available in this scenario. We
examine the economic and human costs resulting from more extended delays (Figure
3). We do this by starting the lockdown process at sequentially later dates: 2 weeks,
4 weeks, 8 weeks, 16 weeks after initial detection of transmission.
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Figure 3. Lock-down without testing. Depth and duration of optimal
lockdown and the related impact on the economy and on the epidemic of
varying the delay in the policy response: 2 weeks (blue), 4 weeks (orange),
8 weeks (green) and 16 weeks (red). In black we illustrate the benchmark
“laissez faire” case (calibrated on the right hand axis). The table shows
(A) the optimal duration and intensity of the lock-down, (B) the related
flow of hospitalizations, (C) the cumulative production (from time 0 to each
period) in terms of the cumulative production in an epidemic-free dynamics
and (D) the utility loss (from time 0 to each period) due to epidemic-related
deaths weighted by the parameter θ. The dashed and dotted lines around
the 16-week delay illustrate the sensitivity of lockdown to θ, the index that
parameterizes the value of human life. The values of the economic and
epidemiological parameters are described in Table 1.

The first main message emerging from this analysis is quite intuitive: the longer
the delay in initiating lockdown, the deeper its impact on the economy. However, the
lockdown does not necessarily have to last longer, particularly when the delay extends
towards the natural underlying first peak of the epidemic. In practice it is not easy
to know a priori when an epidemic wave of infections will peak. A second important
finding is that lockdown levels do not have to match the levels of herd immunity.
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Eradication can be achieved by a 33 to 36% reduction in economic activity for a
period of up to 10 months. The relative insensitivity of the duration of the lockdown
is not matched by differences in initiating a lockdown: 8 times as many people are
hospitalized and 5 times as many people die if the lockdown is delayed from two to
four weeks. Delay always leads to more deaths up until the time when a lockdown
corresponds to the time when the epidemic has peaked. With delays of this duration,
transient levels of herd immunity in the recovered section of the population reduce the
number of future deaths, but not the economic cost of achieving eradication. Perhaps
a more relevant way to measure the relative efficiency of a lockdown policy with
respect to “laissez faire” is to compare cumulative costs over the whole (3 years long)
period. Figures 3(C and D), point to some important related factors. First, while the
lockdown policy is clearly outperformed in terms of production by the laissez faire
after one year (from slightly more than 5% below in the 2 weeks delay scenario to
20% in the 16 weeks delay case), this gap tends to vanish at the end of the 3-year long
period (with the notable exception of the 16 weeks delay scenario). Provided that
the lockdown starts early enough, the economic rebound offsets the initial drop in
production relative to “laissez faire” after 3 years. This is largely due to the lives saved
and the infections prevented as a result of the lockdown policy. Second, our model
asserts that a lockdown policy is more effective in reducing cumulative deaths than
the “laissez faire.” Even in the worse lockdown case, the 16 weeks delay scenario, the
cumulative death rate over the whole period is half the one generated by the “laissez
faire.” It is worth pointing out that the balance between the economic cost and the
welfare losses due to aversion to deaths in our model depends on the value of the
parameter θ. As reflected in Figure 3(C), the cumulative economic losses (relative to
“laissez faire”) also depend on this parameter: as θ rises, more human lives are saved
under a longer optimal lockdown, which in turn increases the cumulative production
losses due to the lockdown.

Our results are sensitive to the two key parameters that determine the pathogen’s
transmission efficiency: (1) the average rate of transmission per contact, β, and (2) the
duration of time for which an asymptomatic host is infectious before symptoms appear
and the host is isolated. Figure 4 A-D illustrates the effect of variation in transmission.
When transmission is relatively low, the pathogen can be eliminated by a short, deep
lockdown. As transmission efficiency increases, the depth of lockdown increases, but
the duration is relatively constant. Contrasting results emerge if the duration of
infectiousness changes. Initially, the pathogen can be controlled by deepening the
lockdown level. However, when duration of infectivity is significantly prolonged, then
the lockdown has to last longer in order to eliminate infections. This implies that the
optimal depth of a lockdown is partly driven by the pathogen transmission rate and
the lockdown’s duration is dependent on the duration of infectivity.

Case 2: Random Testing and Isolation. The development of tests to identify
people who are infectious but not yet showing symptoms is potentially a powerful
tool to contain an emerging epidemic (see Mina et al., 2020, Mina and Andersen,
2021, Larremore et al., 2021). The speed with which these tests can be developed is
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Figure 4. Lock-down without testing: effects of variations in infectious
rate and in the transition rates. Impact of varying the transmission rate and
duration of infectivity rates (from E2 to I1 and from I1 to R) on the size
of the epidemic and the optimal lockdown duration. The upper two figures
illustrate (A) the changes in production (relative to initial pre-epidemic pro-
duction) and (B) the number of hospitalized individuals for different values
of the transmission rate β. The lower figures shows the same variables for
different durations of infectivity ϕ2 (transition from E2 to I1) and δ1 (tran-
sition from I1 to R). Values of the rest of the economic and epidemiological
parameters are described in Table 1.

dependent upon obtaining viral material from infected hosts. It may then take time
for tests to be manufactured and be made widely available. There are a variety of
methods that have been used to identify contacts of infected hosts. These methods
vary in accuracy: some may simply be based on self-recognition of contacts; others
may be based on cell-phone based associations that identify when a potential contact
has been within the vicinity of a cell-phone bearing exposed host; see Ferretti et al.
(2020). We attempt to capture this range of efficiencies using a parameter, c. When
c = 0 there is “perfect knowledge” and only hosts known to be exposed and infected,
E1 and E2, are identified. As c increases (c > 0), a larger pool of potential contacts
are identified, a smaller proportion of whom are actually infected. This creates a pool
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of individuals, (C+E1+E2), who are placed in partial isolation from both susceptible
and infected hosts. Concomitantly, this reduces their contributions to the economy
by a factor ϵC . It is important to notice that we lump C, E1 and E2 together for the
purposes of our economic calculations, as they have all been exposed to infection, but
we cannot differentiate between their infectious status without testing. Once they
have been tested, they can either progress to the E2 classes of infection, if positive,
or be returned to the susceptible class, S, if they have a negative test. Larger values
of c reflect a larger degree of caution which is synonymous with a larger impact on
the economy.

We initially assume two types of testing: (1) random testing of a proportion of
uninfected hosts, and (2) contact testing of people who have been placed in the C,
E1, and E2 classes. We note that the rate at which tests identify infected hosts is
a function of the type of tests used. In the case of Covid, PCR tests would identify
all four categories of hosts as infected (E1,E2, I1, I2), although it may take several
days for the laboratory to return the results of the tests. In contrast, contacts can
run laminar flow tests for themselves and have results in 15 minutes. These tests will
likely only identify E2, I1, and some I2 hosts as positive, but these are the hosts that
are most likely to be transmitting the virus (particularly E2). Plainly, tests that can
be self-administered and that produce rapid results will minimize absences from work
and whence the impact of the pathogen on the economy.

Case 3 : Contact identification, testing and isolation. It is natural to assume
that tests are likely to be imperfect, at least initially. They will give rise to both false
positives and false negatives. We have included two parameters for sensitivity and
specificity that reflect measured value of false positive and negatives; see Larremore
et al., 2021. Contacts who have tested negative are returned to the susceptible class,
S, where they continue to work and mix at the same rate as other susceptible hosts,
S.

Our results consistently suggest that testing and isolation of infected hosts are
considerably more effective than lockdowns in controlling the epidemic outbreaks
(Figure 5 part 1). In the case of purely random testing, we again see that the longer
the policy is delayed, the larger numbers of people are identified as asymptomatically
infected and isolated from work until tested for infection status. Isolation always
reduces the number of people hospitalized and dying. However, these increase at
a more rapid rate than they do when lockdown is delayed. Crucially, the economic
costs of testing and isolation are always lower than when using a lockdown as a control
measure, particularly when testing is started early. In addition, there are significantly
fewer deaths when testing is initiated early.

If contact tracing is perfect and all contacts of infected hosts are identified and
isolated then testing is unsurprisingly highly efficient at both containing the epidemic
and in minimizing economic costs (Figure 5 part 2). However, as mentioned earlier,
it is unlikely that contact tracing is perfect, so we allow our model to test different
numbers of potential contacts when an ever-widening net of contacts is offset by a
reduction in efficiency in identifying infected contacts (we essentially assume this is
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Figure 5 part 1. Random testing without lock-down. Strength and
duration of optimal random testing and its impact on the epidemic. The fig-
ures illustrate (A) the intensity and duration of optimal random testing, (B)
resultant production compared to initial pre-epidemic production, (C) the
relative size of the susceptible population and (D) the numbers of hospital-
ized individuals. In B, C, and D the black line illustrates the “laissez-faire”
case of zero testing. In each figure we vary the initiation of testing: 2 weeks
(blue), 4 weeks (yellow), 8 weeks (green) and 16 weeks (red). Values of the
economic and epidemiological parameters are described in Table 1, r = 1,
c = 0.

linear as the time taken to test and identify all infected costs increases linearly with
the number of people tested). Delays in starting contact testing again increase the
levels of mortality and economic damages, as more people have to be isolated as
contacts when the epidemic has progressed and more hosts are infectious (Figure 5
part 2). Testing reduces the time that healthy contacts, C, are removed from the
workforce, but enhances the background force of infection as rapid testing returns
them to the pool of susceptible hosts, S. Testing not only reduces the mortality and
hospitalizations associated with the epidemic, it also minimizes the epidemic’s overall
size. Even delays of up to a month result in only 5 percent reductions in economic
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Figure 5 part 2. Targeted (“perfect”) testing without lock-down.
Strength and duration of the optimal random testing and its impact on
the epidemic in case of target testing. The figures illustrate (A) the intensty
and duration of the targeted testing, (B) resultant production with respect
to initial pre-epidemic production, (C) the relative size of the susceptible
population, and (D) the number of hospitalized individuals. In each case we
again vary the initiation of testing: 2 weeks (blue), 4 weeks (yellow), 8 weeks
(green) and 16 weeks (red). Values of the economic and epidemiological pa-
rameters are described in Table 1, r = 0, c = 0.

productivity, for periods of up to 2 years. In contrast, starting testing within 2 weeks,
generates a 3% reduction in economic growth for a period of around a year.

Case 4: Lockdown followed by testing. We now consider joint policies where
lockdown and testing/tracing are jointly optimally determined. We concentrate of
the realistic scenario where, while lockdown can be started at any point in time
after the epidemic begins, testing at full capacity and maximal efficiency requires
additional time. Accordingly we focus on the case where full-capacity testing can
only be implemented with some delay. In the results below, we have assumed that a
lockdown starts after 4 weeks and testing after 16 weeks. Our optimization algorithm
then determines the optimal length and intensity of the lockdown and of testing under
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these constraints. An interesting question concerns whether optimal lockdown and
testing policies will overlap for certain time intervals or not. We shall see that this
depends not only on the maximal testing capacity, but also on the efficiency of testing
and tracing.

The first panel presents the results for a developed country with a maximal testing
capacity τmax = 365/2, which is our reference value (see Table 1), we then consider the
case of a developing country with more limited access to testing. In addition to the
benchmark “laissez faire” case (black curves), we have considered four different types
of testing/tracing ranging from the most efficient combination of both (r = 0, c = 0,
blue curves) to less efficient combinations (e.g. r = 0, c = 2, green curves). Figures
A and B display the optimal lockdown and testing policies for these four types of
testing/tracing. In all cases, we find that the lockdown is optimally stopped as soon
as testing starts, regardless of the type of testing (random or targeted) and for all
the values of tracing efficiency considered. Even when contact-tracing casts a broad
net, c = 2, which generates higher level of an initial lockdown, it is still stopped
as soon as testing becomes available. This strongly illustrates the superiority of
testing/tracing over lockdown when testing is efficient and capacity is high. It should
be also noted that, although the optimal duration of testing may differ, optimal testing
always reaches full capacity under all parameterizations we consider. We find that
the policy leading to the highest social welfare outcome is obtained when r = c = 0.
Interestingly, we also find that (optimal) targeted testing is not always superior to
random testing from the total social welfare point of view, for example, if tracing
efficiency is sufficiently low, random testing (r = 1, c = 0) dominates contact tracing
(r = 0, c = 2) from a social welfare perspective.

As mentioned earlier, different countries have different amounts of resources to
deal with a epidemic and this includes their testing capacity. To mimic the case of
developing countries, with a smaller capacity to produce or import effective tests,
we consider the case where the testing capacity parameter is reduced by a factor
of one-third (which implies setting τmax = 365/6). This single modification leads to
significantly altered results. Under this scenario we no longer observe that lockdown is
outperformed by testing as soon as the latter is available. Indeed, as testing costs are
now more binding in relative terms, a lockdown remains in place for an initial period
after testing is introduced. The only exception is when tracing is highly efficient
at identifying contacts (r = c = 0). When tracing is less efficient, the lockdown is
optimally extended to about 6 months, which is more than two months after testing
becomes available. This finding serves as an important reminder for policy-makers.
Optimal epidemic policies might be different in developed versus developing countries
and what works well in one country might not necessarily work well in a different
context.
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Figure 6 part 1. Optimal combination of lockdown and testing in the
high testing capacity, s. Strength and duration of the optimal lockdown,
strength and duration of the optimal testing and their impact on the
epidemic varying r and c: r = 0, c = 0 (blue), r = 0, c = 1 (yellow),
r = 0, c = 2 (green), and r = 1, c = 0 (red) when the capacity of the
lock-down is high. The figures illustrate (A) the strength and duration
of the optimal random lockdown, (B) the production level relative to
initial production, (C) the strength and duration of the optimal random
testing and (D) the share of hospitalized individuals. The black line
again provides a comparison with the laisez-faire case. The value of the
economic and epidemiological parameters are described in Table 1.

3. Discussion

In his classic volume on pandemic prevention, Chris Dye quotes “Everything we
do before a pandemic will seem alarmist. Everything we do after a pandemic will
seem inadequate” (Dye 2021). The primary motivation of this paper was to develop
a quantitative framework that provides guidance for policy makers when faced with
this dilemma. Different countries pursued different strategies in their attempts to
control and minimize the damage caused by the recent Covid-19 pandemic. At the
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Figure 6 part 2. Optimal combination of lockdown and testing un-
der reduced testing capacity. Strength and duration of the optimal
lockdown, strength and duration of the optimal testing and their im-
pact on the epidemic varying the parameters r and c: r = 0, c = 0
(blue), r = 0, c = 1 (yellow), r = 0, c = 2 (green), and r = 1, c = 0
(red), when the capacity of the lockdown is reduced. The figures illus-
trate (A) the strength and duration of the optimal random lockdown,
(B) the production relative to initial production level, (C) the strength
and duration of the optimal random testing, and (D) the share of hos-
pitalized individuals. The value of the economic and epidemiological
parameters are described in Table 1.

earliest stages, the only control tool available was either a lockdown or the “laissez
faire” response of doing nothing. The primary purpose of lockdowns is to “flatten the
epidemic curve” and reduce the peak levels of hospitalizations (Koelle et al. (2022)).
Our results suggest that, when we optimize taking into account economic as well
as public health/mortality objectives, both economic damages and pathogen-induced
mortality can be significantly reduced relative to the laissez faire case if a lockdown
is put in place as swiftly as possible. This is true even if we take into account the
significant adverse economic consequences resulting from a lockdown.
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Ash et al. (2021) calibrate a dynamic economic model to COVID-19 related epi-
demiological data in order to evaluate the effects of different scenarios, including
voluntary isolation, targeted isolation, and blanket lockdowns. Their numerical find-
ings assert that voluntary isolation or blanket lockdowns suppress the epidemic nearly
as effectively as targeted isolation, but impose higher economic costs. Similar results
have been found in earlier models for influenza pandemics (Hollingsworth et al. 2011).
Our results also suggest that lockdown policies could be replaced by contact-tracing
and testing as soon as viable tests become available. Delays in initiating this transi-
tion in policy will always lead to higher economic damages and enhanced mortality.
Looking into how to best prepare for the future, this suggests that developing a ge-
netic library of potential pathogens that may cross over to humans in the future would
provide an important safety-net for minimizing the potential economic and human
costs of epidemics, particularly if they can be used to rapidly develop effective tests.
Investment in developing these tests from material gathered in broad-scale surveys of
potential novel viruses in wild reservoir hosts is likely to prove economically valuable
(Bernstein et al. 2022 and Dobson et al. 2020).

The potential magnitude of voluntary changes in behavior can be partially gauged
by considering Sweden, when our “laissez-faire” case would predict around 400,000
deaths in a population of around 10 million people. In contrast, Sweden only ex-
perienced around 20,000 deaths, strongly suggesting that people’s personal response
to the epidemic may have had a pronounced impact on buffering transmission. In
this paper, we have also chosen to study in depth the interaction of an extensive
epidemiological model and a comprehensive (frictional) epidemic control policy menu
without endogenizing individual responses. In the recent epi-econ literature, several
authors have tried to account for these endogenous responses. For example, Eichen-
baum et al. (2020), among others, calibrate their model to the US economy and
assume that agents endogenously choose to reduce their consumption and labor sup-
ply by taking the probability of infection into consideration. However, as documented
by Chetty et al. (2020), crucial aspects of individual behavior derive from hetero-
geneous characteristics, as well as strategic reactions toepidemic control policies and
local considerations. Modelling strategic behavior by both heterogeneous individuals
in the economy and the policy maker(s) is beyond the scope of our analysis. Rather
than incorporating simple ad hoc specifications of individual behavior, we focused our
present analysis on the implications of the added epidemiological factors we consider
and on a more realistic set of epidemic control policies.

Another important open question for future research concerns the connections be-
tween different pathogen characteristics and the optimal duration/depth of the lock-
down policy. The desirable lockdown depth is clearly a function of the pathogen’s
transmissibility. Our analysis pointed to the conclusion that more transmissible
pathogens require deeper lockdowns (Figure 4). We also suspect that the duration
of the lockdown would increase with the duration of infectivity. Establishing such
connections between pathogen characteristics and policy response is an important
topic for future research.
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We have not included age-, nor sex-, structure in our model; both of these are po-
tentially important extensions, as mortality from Covid-19 increases significantly with
age. Men also seem to suffer higher mortality rates than women (Davies et al. 2020a;
Promislow 2020). We are currently developing an extended version of our model that
incorporates these aspects, but our primary focus in this paper was to examine epi-
demiological and economic interactions between a generic ‘emerging pathogen’ and
a homogeneous workforce. As the sharpest increase in Covid-19 mortality occurs in
age-classes that are usually post-retirement and no longer part of the active work-
force, we do not think the addition of these important aspects of population structure
will have a major impact on our main conclusions. We do explicitly acknowledge that
older retired people will place significant additional pressure on health care services
in the early stage of a pandemic and this may lead to increased mortality within the
workforce when the capacity of the healthcare system is reduced by large numbers of
elderly sick people (Hollingsworth et al. 2011, Anderson et al. 2020).

Our model assumes asymptomatic individuals eventually exhibit symptoms of in-
fection. This is not always the case for Covid-19 where asymptomatic patients may
play a significant role in transmission. Modification of the basic structure of the epi-
demiological model can incorporate this assumption (e.g. Subramanian et al. (2021)).
Because our model was parameterized to obtain levels of transmission and hospitaliza-
tion consistent with those reported for Covid-19, such an extension would effectively
shift some of the contribution to the force of infection from pre-symptomatics to
asymptomatics. Thus, we do not expect the major results to be modified except for
further emphasizing the importance of testing efforts.

Arguably the most economical control strategy during the Covid-19 pandemic has
been the wearing of surgical masks at work and in public places (Davies et al. 2020b).
We have not incorporated the use of masks in our analysis, partly because we see
it as an important “safety play” that is unlikely to stop the pandemic. Masks may
provide some protection to those that wear them, while also significantly reducing
transmission from asymptomatic infected hosts. An important limitation here is
that we do not have good estimates of the efficacy of masks (neither for transmission
blocking, nor for protection). The best available methods suggest an average efficiency
of around 45 percent (averaged across both transmission blocking and susceptible
protection) (Eikenberry et al. 2020). Similarly, the proportion of people wearing
masks varies widely and may follow current levels of infection and perceived risk in
the population. A simple static analysis can compare the efficacy of face masks with
that of a vaccine (Supplementary Material). A high proportion of people have to wear
very efficient masks if they are to be effective in reducing R0 below unity. They will
still serve the useful function of slowing the epidemic and reducing the pressure on
health care services. Ultimately, we see them as a useful adjunct to the other forms
of NPI discussed in more detail below. If more people wear masks, then lockdown
can be shorter and impact a smaller proportion of the economy.

We have also not considered “long-Covid” in our model framework, even though
there is increasing evidence that this is a significant problem. Current estimates
suggest that between 1 and 5 percent of people who acquired Covid in the early stages
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of the epidemic continue to feel debilitated and unable to work. These symptoms last
between 6 months and the three years for which we have data. They could be included
in our model as an additional equation that diverts a proportion of people from the I2
class into a long-Covid class, rather than the recovered and immune class. Hosts would
remain in this class for a number of years and would make a reduced contribution to
the economy during this period. All of the additional terms required to include this
into our current model structure are linear, whence the additional cost to the economy
is essentially the product of the proportion of people who develop long-Covid and their
reduced ability to work. All of which makes our calculations optimistic. The spectre
of long Covid always increases the economic value of interventions that minimize the
number of hosts ever infected (as the number of people with long Covid will always
scale with the number of people ever infected).

The development of vaccines for Covid-19 have had a significant impact on the
dynamics of the pandemic. Vaccines have increased levels of personal protection and
permitted the beginnings of an economic recovery from the significant initial collapse
in the spring and summer of 2020. Unfortunately, vaccines have not provided us with
a perfect solution, as vaccinated people seem still able to transmit the pathogen, while
exhibiting considerably reduced levels of morbidity. Immunity also seems disconcert-
ingly short lived (6 to 8 months). Everything we have described above assumes we
do not yet have a vaccine for the hypothetical emergent pathogen. In a second paper
we will expand our framework to consider the role of vaccines and their efficacy, and
resistance to vaccine adoption within the host population.

Our framework is quite flexible and allows for various additional extensions. A
few illustrative examples are worth mentioning. Adding hospitalization costs and a
capacity constraint on the health system, requiring that the amount of hospitalized
people I2 remain under a given congestion threshold. This would provide an addi-
tional realistic constraint on optimal policies. We could also consider additional policy
variables, for example, regarding the modality/intensity of contact tracing. We could
further investigate the robustness of our results to the use of different utility/disutility
functions. For example, we could use linear U and V as in Alvarez et al. (2021). We
believe that the qualitative aspects of our findings related to the relative effective-
ness of lock-downs versus testing would remain intact. It is also possible to use our
framework in order to study the optimal number of lockdown phases, given certain
adjustment costs associated with introducing additional phases. In our simulations,
comparing the optimal strategies and the welfare function under different scenarios,
we observed that in most cases one lockdown phase is sufficient, even if the policy
maker could in principle implement additional lock-downs. Finally, we could pursue
a more detailed sensitivity analysis, for example, in connection to the choice of the
parameter θ. This parameter establishes the relative weights between the utility from
production and the disutility from deaths during the epidemic. An extension of the
model could vary θ in order to characterize the Pareto frontier; i.e., the policies which
cannot lead to improvements in both economic and public health objectives.

Concerns about future pandemics motivated this work (Bernstein et al. 2022 and
Dobson et al. 2020). We have therefore included sufficient flexibility within the model
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structure to allow us to adjust parameters in order to consider novel pathogens with
different characteristics such as SARS or a new influenza strain, where symptoms do
not appear until a host is infectious, or pathogens with long asymptomatic phases
(such as HIV). Our framework could also be expanded to consider vector-borne in-
fections such as those caused by the Dengue or Zika virus.

Covid-19 was not the first pandemic and it will not be the last. A huge proportion
of the impact of Covid has been driven by different governments responding to the
pandemic in an ’ad-hoc’ fashion as political pressures to maintain economic activ-
ity clash with epidemiological advice. The contrasting responses of different nations
reflect the relative magnitude of economic and epidemiological forces and national
levels of expertise in these areas. We believe that combining economic modeling,
which highlights incentive constraints, with epidemiological modeling, which focuses
on public health considerations, will be increasingly relevant in designing policy in-
terventions that are both effective and attainable during future public health crisis.
The structure described here provides crucial initial steps in this direction.

4. Methods

Epidemiological Model. Our epidemiological model is based on the standard SEIR
framework (Anderson and May 1992; Keeling and Rohani 2011). We have modified
the basic framework by dividing the exposed (E) and infectious (I) classes into two
sequential classes, E1 and E2 and I1 and I2 (Figure 2). Exposed hosts, who are not yet
infectious are classified as E1, while asymptomatic, contagious hosts are classified as
E2. We assume that E1 individuals transform to E2 at an exponential rate determined
by φ1. The pre-symptomatic hosts, E2, transform to symptomatic infected hosts, I1,
at a rate φ2. Both E2 and I1 are infectious. This rate largely determines the duration
of time during which exposed hosts are able to transmit infection before they show
symptoms of infection. If φ2 is large (∼ 365) (around one day), then exposed hosts
quickly exhibit signs of symptoms and can be identified as infectious (as occurred
with SARS). In contrast, if φ2 is slower (∼365/7) (a week), then asymptomatic hosts
may transmit the disease for up to a week before showing symptoms, as in the case of
Covid-19 (or many years in the case of HIV or TB). In a similar way, infected hosts,
I1, may become sick and get hospitalized, I2. These hosts have a higher mortality
rate, but are assumed to be in relative isolation and are thus unable to transmit the
pathogen, except to unprotected health care workers. The majority of the pathogen-
induced mortality occurs in the I2 class.

We also include an additional class, C, into our model structure, these are contacts
of infectious hosts who do not develop infection. Contact tracing identifies C+E1+E2
as contacts of infected hosts, testing is used to differentiate uninfected contacts, C,
from exposed hosts (E1 and E2); the former can return to work, the latter remain in
isolation and go on to develop infection.
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The main equations of our SCEEIIR models are the following

Ṡ = µN − µS − (1− p)2β
S (E2(1− γ) + γI1) (1 + c)

N

+ ϕR + τ

(
r +

1− r

1 + c

)
Csp + δC − τrS(1− sp) (1)

Ċ = (1− p)2β(cS − (1− ϵC)C)
E2(1− γ) + γI1

N

+ τrS(1− sp)− µC − τ

(
r +

1− r

1 + c

)
Csp − δC (2)

Ė1 = (1− p)2β(S + (1− ϵC)C)
E2(1− γ) + γI1

N

− (µ+ φ1)E1 − τ

(
r +

1− r

1 + c

)
seE1 (3)

Ė2 = φ1E1 − (µ+ φ2)E2 − τ

(
r +

1− r

1 + c

)
seE2 (4)

İ1 = φ2E2 + τse

(
r +

1− r

1 + c

)
(E1 + E2)− (µ+ µI1 + (1− η)δ1 + ηδ1)I1 (5)

İ2 = ηδ1I1 − (µ+ pMδ2 + (1− pM)δ2)I2 (where µI2 = pMδ2) (6)

Ṙ = (1− η)δ1I1 + (1− pM)δ2I2 − (µ+ µR + ϕ)R + νVw (7)

Here N denotes the size of the host population, all of whom contribute to economic
output when healthy. Once the pathogen has established, N is the sum of all possible
types of host.

N = S + C + E1 + E2 + I1 + I2 +R (8)

As the death rates of the epidemics is low, we will approximate N with N0 (the initial
size of the population, see e.g. Anderson and May (1992) and Keeling and Rohani
(2011)). In the absence of the pathogen, the total number of deaths at any time is
given by Ḋ = µN ; when the pathogen is present the additional deaths due to the
pathogen are given by ḊC = µI1I1 + pMδ2I2 + µEE2 + µRR, where severe infections
I2 last an average duration 1

δ2
with a fraction pM of individuals leaving this class

resulting in death, whereas a fraction (1− pM) are able to recover. Similarly, only a
fraction (1− η) of individuals leaving class I1 recovers, whereas η proceeds to severe
infection and hospitalization.

Lock-down intensity at time t is parameterized by p(t), the probability that an
individual, susceptible or infected, is protected from contact and therefore excluded
from transmission events. Per-capita transmission rate is given by β, and for each
infection, a number c of uninfected contacts is generated. Contacts are restricted in
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their ability to work, with only a fraction ϵ able to do so and under isolated conditions,
for example from home, which also reduces their exposure to infection.

Testing occurs at rate τ . The indicator variable r takes values of 1 or 0 to control
the respective implementation of random testing vs. contact tracing. The specificity
and sensitivity of testing are given respectively by sp and se.

Structure of Economic Model. Flow output, Y , is produced through a produc-
tion function using labor, L, as the only production factor. Abstracting from capital
accumulation seems reasonable, since our analysis concentrates on a short time hori-
zon. The short horizon of the epidemic also prevents a large-scale subsitutability
between capital and labor. Infections affect the economy by reducing labor supply
and by making the labor used less productive. The latter could result from disrup-
tions to supply chains or related shortages in necessary intermediate inputs. To model
these effects we assume that infections reduce both the labor used in the production
process and the total factor productivity parameter, A. We assume that the costs,
Φ, associated with the number of people tested, x, are subtracted from total output.
The specific form imposed on the function Φ ensures that when x is very small, the
costs of testing increase linearly with x. We assume that it is forbiddingly costly to
test the entire population. Thus, the maximum rate of testing is constrained.

The proportion of people p(t) who are in lockdown are unable to contribute to the
economy. We define the production function as:

Y (t) = A(t) [(1− p(t))L(t)]α︸ ︷︷ ︸
production function

− Φ(x(t))︸ ︷︷ ︸
testing cost

(9)

where

A(t) = A0(1− p(t))∆

L(t) = S(t) + ϵC [C(t) + E1(t) + E2(t)] +R(t)

Φ(x) = ρ0x+ exp

(
ρ1

N − x

)
− exp

(ρ1
N

)
x(t) = τ [C(t) + E1(t) + E2(t) + rS(t)] ,

In the above expression, A(t) stands for the (capital adjusted) total factor pro-
ductivity (TFP). This parameter determines the effectiveness of the labor input in
producing the consumption good. The flow labor supply consists of individuals who
are susceptible or recovered from the pathogen, as well as those who are exposed or
potentially exposed (contacts). The variable x indicates the flow of people tested.
The form of the testing cost function, Φ(x), is meant to capture the property that
at low levels of testing the costs increase linearly in the number of tests, while at the
same time it is prohibitively expensive to test the entire population. More precisely,
when ρ1 and x are small, the marginal cost of testing; i.e., the cost of administering
one additional test, is approximately ρ0. To calibrate ρ0, we convert the dollar value
of a test to units of daily US per capita GDP. As a benchmark, we use the per capita
US GDP value of 63,416 dollars in 2020, and we assume an average cost of testing
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of 174 dollars. Following Piguillem and Shi, 2022, we set ρ1 = 0.1, implying that the
cost of testing increases relatively slowly as large numbers of people are tested.

The objective of the policy-maker is to maximize the Total Social Welfare (TSW)
function, this is given by:

TSW (T ) =

∫ T

0

U(Y (t))− θV (Dc(t)) dt (10)

with:

U(Y ) =
Y 1−σ

1− σ

V (Dc) =
Dω

c

ω

In the above expressions, U(Y ) stand for the satisfaction (utility) from consuming
goods and services, while V (Dc) stands for the direct utility loss of lives lost.

Calibration. We calibrate the model using the parameters described in the Sup-
plementary Material, Table 1, these are based on those used in published studies
(Ferguson et al. (2020); Flaxman et al. (2020); Subramanian et al. (2021); Lavine
et al. (2021)) .

Optimization. The optimization problem we study is nontrivial and cannot be
treated with the standard tools used in the current literature. In the supplemen-
tary Material, we describe in detail our approach. Here we provide a brief summary.
First, our problem falls into the class of deterministic optimal control with exit time.
A description of this class of problems is provided, e.g., in (Cannarsa and Sinestrari,
2004, Chapter 8). The main ingredients of this class of problems are:

• the time horizon of the problem;
• the state/control variables and the space where they belong (the state/control
space);

• the state equation, which provides the dynamic behavior of the state variables
as a function of their initial data and of the choice of the control strategies;

• the set of admissible control strategies;
• the objective function to optimize over all admissible control strategies;
• the target set O where the epidemic ends.

The main difference with respect to the papers in the existing literature are the
following:

• the “exit time feature;” i.e., the fact that the epidemic stops when all associ-
ated variables (namely E1, E1, I1, I2) fall below 1;
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• the ”discrete control strategies;” i.e., the fact that the control strategies are
piecewise constant with a given finite number of switching times.

Both features are crucial in making the model more realistic, the first in connec-
tion to the behavior of the epidemic, and the second in order to take account of the
constraints faced by policymakers. In this context, the existence of optimal strate-
gies can be demonstrated using standard arguments, however, the uniqueness of the
optimal solution is not guaranteed. Concerning the numerical approximations, in
order to compute the objective function we rely on classical numerical methods for
ODEs. However due to the lack of regularity of the controls, we need to employ a
numerical method outside the class of those used for “stiff problems,” such as implicit
Runge-Kutta methods of high order. Instead, we approximate the continuous-time
integration using a Gauss-Kronrod quadrature rule.

The process of numerical optimization is challenging due to the lack of convexity in
the objective function. In the absence of convexity, there is no guarantee that a local
optimum will also be a global one. Therefore during the numerical optimization, we
have to rely on a global optimization algorithm, which is numerically more demand-
ing than a local numerical optimizer. Global optimization suffers from the curse of
dimensionality, that is the number of function evaluations required for a thorough
search in the state space grows exponentially with the dimension of the problem. For
the optimization procedure we employed both the DIRECT and DIRECT-L algo-
rithm proposed in Jones et al. (1993) and Gablonsky and Kelley (2001), respectively.
Both algorithms are deterministic procedures based on a subdivision of the domain
in iteratively smaller rectangles until convergence is reached. To ensure the correct-
ness of the results, we also performed additional tests based on a combination of
a brute-force approach on a very fine grid and a local refinement based on a local
optimizer. An additional confirmation of the accuracy of the optimization procedure
is that the maximum value of the objective function shifts in the expected direction
when changing some of the parameters (e.g. when increasing the delay in the control
policies the objective function decreases).
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Supplementary Material

Model Parameters

Table 1. Parameters used in the simulations, these are based on those
used in published studies (Ferguson et al. (2020); Flaxman et al. (2020);
Subramanian et al. (2021); Lavine et al. (2021)) .

Variable Value
SEIR
µ 1/70 birth and death rate
µI1 0.02 death rate of I1
µR 1/70 death rate of R
µE 0.012 death rate of E2
pM 1/3 probability of death of an individual during severe infection
γ 0,05 proportional contribution to infection of E2 and I
ϕ 1/2 transition rate from R to S
φ1 365/5 transition rate from E1 to E2

φ2 365/5 transition rate from E2 to I
δ 365/18 transition rate from C to S
δ1 365/18 duration−1 of I1
δ2 365/13 duration−1 of I2
β 150.00 per-capita transmission rate
η 0.15 hospitalization fraction during infection period

testing
c variable > 0 number of contacts per infection generated (E2 and I1)
sp 0.90 specificity of test
se 0.90 sensitivity of test
τ 365/12 default testing rate
τmax 365/2 maximum testing capacity for a developed country
r 0 or 1 contact or random testing respectively
testCost 50,00 cost for one test in $
yearly US GDP 21.5T yearly US total GDP in 2019 in $
Y0 A0N

α yearly model total GDP with no disease spread
ρ0 Y0

testCost
yearly US GDP

cost for one test in model unit

ρ1 0.1 testing cost parameter
N 1e5 total number of individuals

production
A0 1e5 (capital adjusted) total factor productivity
α 2/3 curvature of production function
∆ 1/5 short-run elasticity of capital utilization
ϵC 0.8 work efficiency of C-class

(fraction of contacts that work and do so under isolation)
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utility parameters
σ 1/2 curvature of utility from consumption
ω 3 curvature of disutility from deaths
θ 1e-4 weight of utility from consumption versus

disutility from deaths

Optimization and Numerical Analysis

Here we describe the main features of our optimization procedure, from both the
theoretical and the numerical approximation viewpoints. Although our optimization
problem falls into the class of the so-called Optimal Control Problems (OCP) in
continuous time, it is not standard in some aspects. In the next subsections, we
describe the problem, its main features, and the methods we use to find solutions and
to approximate them. We pay particular attention to the points which are non-trivial
and technically involved.

Basic ingredients of the optimal control problem. In an OCP one identifies
the key variables which describe the state of the system, or the “state” variables, and
the ones which are under the control of the optimizing agent, the “control” variables.
The state variables belong to a set Z, the “state space.” This is typically a subset of
Rn, where n is the number of state variables. The control variables belong to a set
K, the “control space.” This is typically a subset of Rm, where m is the number of
control variables. Both state and control variables may change with time, t, where
t ∈ [0, T ]. We refer to 0 as the initial time, while T is the final time, also called the
“horizon” of the problem. We term a “control strategy” a function

k(·) : [0, T ] → K

and a “state trajectory” a function

z(·) : [0, T ] → Z.

Clearly not all control strategies are suitable for a given problem. Hence, later, we
will introduce the set of admissible control strategies. Given the above, the main
ingredients of an OCP are:

• the state equations which describe the time evolution of the state variables;
i.e., the state trajectory z(·), depending on the choice of the control strategies
k(·);

• the objective functional to be optimized on the time span [0, T ] over all ad-
missible control strategies.

The state/control variables and the state equations. The control variables in
our model are

• the lockdown intensity p ∈ [0, pmax], where pmax is its maximum value;
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• the testing intensity τ ∈ [0, τmax], where τmax is the maximum rate of testing
(or testing capacity).

Hence in our setting k := (p, τ) and K = [0, pmax] × [0, τmax]. We will usually set
pmax = 1, assuming that complete lockdown is possible, and τmax = 365/2 in days−1,
which is a reasonable value for the maximum testing capacity of a developed country.
Clearly such parameters can be chosen differently, as we do for example in Section
3 where we consider the case where the maximum testing capacity is reduced by a
factor 1/3.

The state variables are the eight epidemiological variables as discussed in the main
text: S,C,E1, E2, I1, I2, R,Dc which, for brevity, will be denoted by the vector z ∈ R8,
with the components in the above order. All state variables are required to be positive
and smaller than the initial size of the population N0. Hence, the state space, Z, is
the compact subset of R8 given by Z := [0, N0]

8. For brevity we will often denote the
control strategies at time t by k(t) and the state trajectories at time t by z(t).

The state equations form a system of eight Ordinary Differential Equations (ODEs)
which we rewrite here emphasizing the time dependent variables:
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Ṡ(t) = µN(t)− µS(t)− (1− p(t))2β
S(t) (E2(t)(1− γ) + γI1(t)) (1 + c)

N(t)

+ ϕR(t) + τ(t)

(
r +

1− r

1 + c

)
C(t)sp + δC(t)− τ(t)rS(t)(1− sp) (11)

Ċ(t) = (1− p(t))2β(cS(t)− (1− ϵC)C(t))
E2(t)(1− γ) + γI1(t)

N(t)

+ τ(t)rS(t)(1− sp)− µC(t)− τ(t)

(
r +

1− r

1 + c

)
C(t)sp − δC(t) (12)

Ė1(t) = (1− p(t))2β(S(t) + (1− ϵC)C(t))
E2(t)(1− γ) + γI1(t)

N(t)

− (µ+ φ1)E1(t)− τ(t)

(
r +

1− r

1 + c

)
seE1(t) (13)

Ė2(t) = φ1E1(t)− (µ+ φ2)E2(t)− τ(t)

(
r +

1− r

1 + c

)
seE2(t) (14)

İ1(t) = φ2E2(t) + τ(t)se

(
r +

1− r

1 + c

)
(E1(t) + E2(t))

− (µ+ µI1 + (1− η)δ1 + ηδ1)I1(t) (15)

İ2(t) = ηδ1I1(t)− (µ+ pMδ2 + (1− pM)δ2)I2(t) (16)

Ṙ(t) = (1− η)δ1I1(t) + (1− pM)δ2I2(t)− (µ+ µR + ϕ)R(t) (17)

Ḋc(t) = µI1I1(t) + pMδ2I2(t) + µEE2(t) + µRR(t) (18)

where

N(t) := S(t) + C(t) + E1(t) + E2(t) + I1(t) + I2(t) +R(t), ∀t ∈ [0, T ] (19)

with N(0) = N0. It is useful to observe that in the state equations above we have,
for all t ∈ [0, T ],

N ′(t) +D′
c(t) = 0 ⇐⇒ N(t) +Dc(t) = N0.

Since Dc(·) is always positive and increasing, it follows that N(t) is decreasing.

Remark 1 If the mortality rates due to the epidemic are low, as is the case for
COVID-19 (which is our driving example), then N(t) remains very close to N0. In
that case, (see e.g. Anderson and May (1992) and Keeling and Rohani (2011)), we
can substitute N(t) with N0 in the above equations (and also below in the objective
functional). While not necessary for our numerical procedure, this step simplifies the
numerical approximations.
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For later use, we introduce the notation for the state equations. We call F :
Z ×K → R8 the function defined by the right hand side of the state equations; i.e.,

F (S,C,E1, E2, I1, I2, R,Dc; p, τ) = (20)

µN − µS − (1− p)2β S(E2(1−γ)+γI1)(1+c)
N

+ ϕR + τ
(
r + 1−r

1+c

)
Csp + δC − τrS(1− sp)

(1− p)2β(cS − (1− ϵC)C)E2(1−γ)+γI1
N

+ τrS(1− sp)− µC − τ
(
r + 1−r

1+c

)
Csp − δC

(1− p)2β(S + (1− ϵC)C)E2(1−γ)+γI1
N

− (µ+ φ1)E1 − τ
(
r + 1−r

1+c

)
seE1

φ1E1 − (µ+ φ2)E2 − τ
(
r + 1−r

1+c

)
seE2

φ2E2 + τse
(
r + 1−r

1+c

)
(E1 + E2)− (µ+ µI1 + (1− η)δ1 + ηδ1)I1

ηδ1I1 − (µ+ pMδ2 + (1− pM)δ2)I2

(1− η)δ1I1 + (1− pM)δ2I2 − (µ+ µR + ϕ)R

µI1I1 + pMδ2I2 + µEE2 + µRR


(21)

With this notation, the state equations can be rewritten more concretely as

z′(t) = F (z(t); k(t)). (22)

Remark 2 The model can be studied for any choice of the initial conditions, z0,
for the 8 state variables. Since our focus is the study of an emerging pathogen, our
initial conditions will be those typical of the beginning of an epidemic; i.e.,

S(0) ∼ N0; E1 > 0 small; E2, C, I1, I2, R,DC = 0.

See e.g. Anderson and May (1992) Keeling and Rohani (2011), Dietz and Heesterbeek
(2002)

Choosing the admissible control strategies. The set of admissible control strate-
gies, Kad, must be chosen in a way that the above system of state equations admits
a unique solution for any initial conditions z(0) ∈ Z and remains in Z at all times.
Moreover such a set of admissible strategies should be realistically implementable
by the policymakers. The typical choice (see Section III.5 of Bardi and Capuzzo-
Dolcetta, 1997) is to consider control strategies which are simply Lebesgue integrable1;
i.e.,

Kad := {k(·) : [0, T ] → K, Lebesgue integrable} .
For any such strategy, k(·) ∈ Kad, and any initial condition z0 ∈ Z the state equation
has a unique solution. We refer to this as the state trajectory corresponding to k(·)
and we denote it by zz0,k(·)(t).

1This class of functions is usually chosen in similar contexts, since it contains the piecewise con-
stant policies commonly employed by decision makers in practice. Note that piecewise constant
functions are not continuous, hence the class of continuous control strategies would not be an ap-
propriate choice in our context.
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The above set Kad consists of admissible policies that vary continuously with time.
However, since in practice our control policies cannot be changed continuously, for
our simulations in the main text we employ control policies that assume only a finite
number of values. We call an n-phase policy for n > 1 any control function that is
piecewise constant and assumes only n different values on contiguous time intervals,
excluding the value 0. Moreover, we also impose that our control policy is null
(inactive) before a fixed time, which we call delay in the main text, and which we
denote hereafter by t0. Therefore we define the set of admissible controls with n > 1
phases (assuming only one between p and τ is considered)

Kn
ad = {k(·) : [0, T ] → K, ∃(t1, . . . , tn) ∈ (t0, T ]

n, (k1, . . . , kn) ∈ Kns.t.

k(t) ≡ 0 for t ≤ t0, k(t) ≡ ki for t ∈ (ti−1, ti] for i = 1, . . . , N, k(t) ≡ 0 for t > tn} ,
where we implicitly assumed the vector of times (t1, . . . , tn) to be monotonically in-
creasing. It is clear from the previous definition that any function in Kn

ad can be
represented with 2n parameters, n for the vector of times when the policy changes,
and n for the vector of intensity of the control policy in each phase. For n = 0 we
define K0

ad = {k : [0, T ] → K, k(t) ≡ 0}, the space consisting only of the zero function;
that is, in this case the control does not affect the system.

Even if the function space Kn
ad is not finite-dimensional as a vector space, the

parameterization adopted here allows us to represent each element of Kn
ad using a

finite number of parameters (2n). However, notice that this representation is not
unique, since two different combinations of the 2n parameters may describe the same
function (in particular in the case where two consecutive ii are equal).

In the case where both (p, τ) are present, we introduce the sets Kn,p
ad and KM,τ

ad for
each of the controls and we define

Kn,M
ad = Kn,p

ad ×KM,τ
ad .

Notice in particular that the number of lockdown phases, n, can be different from the
number of testing interventions, M .

In what follows, the above sets of strategies will be denoted generically by Kad or,
in case when the specification of the number of phases is needed, by Kn,M

ad .

The objective functional to optimize: the starting problem (P0). To define
the objective functional we set

Y (t) = A0(1− p(t))∆+αL(t)α − Φ(x(t), N(t)) (23)

with N(t) as in (19) and

L(t) = S(t) + ϵC [C(t) + E1(t) + E2(t)] +R(t)

x(t) = τ(t) [C(t) + E1(t) + E2(t) + rS(t)] , the total number of people tested,

where the function Φ for the cost of testing is given by

Φ(x,N) = ρ0x+ exp

(
ρ1

N − x

)
− exp

(ρ1
N

)
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The objective functional to maximize is the Total Social Welfare (TSW) function
specified in (10) over all admissible control strategies, i.e. over all k(·) ∈ Kad. Here
we denote it by J0(k(·)) to underline its dependence on the control strategies chosen
by the policy-maker.

J0(k(·)) =
∫ T

0

U(Y (t))− θV (Dc(t)) dt (24)

with:

U(Y ) =
Y 1−σ

1− σ
σ ∈ (0, 1)

V (Dc) =
Dω

c

ω
ω > 1;

Note that the utility from production is strictly concave while the disutility from
deaths is strictly convex. Our framework allows us to consider different types of
utility/disutility functions.

In what follows, we refer to “Problem (P0)” as the problem of maximizing the
functional J0(k(·)) over all k(·) ∈ Kad, under the state equations (22). Note that,
using the above setup, we can write the so-called running cost (i.e. the function
appearing inside the integral in J0) as a function f0(z(t); k(t)) where f0 : R8×R2 → R,
more precisely (for brevity we write, as usual, N for S +C +E1 +E2 + I1 + I2 +R)

f0(S,C,E1, E2, I1, I2, R,Dc; p, τ) = (25)

U
(
A0(1− p)∆+α(S +R + ϵC [C + E1 + E2])

α − Φ (τ [C + E1 + E2 + rS], N)
)
− θV (Dc)

The objective functional to optimize: the real exit time problem (P ). As
formulated above, problem (P0) has an important drawback due to the fact that, even
if all the infected compartments (E1, E2, I1, I2) are close to zero, the epidemic may
restart. To avoid this artifact of continuous numbers of individuals, we introduce the
following modification.

We first define for any given admissible state trajectory zz0,k(·)(·) (associated to an
initial datum z0 ∈ Z and a control strategy k(·) ∈ Kad), and any closed region O ⊂ Z,
the first entry time TO as

TO(z
z0,k(·)(·)) := inf {t ≥ 0 : z(t) ∈ O}

For brevity we will write TO(z0, k(·)), or simply TO when no confusion is possible.

In our problem, as explained in the main text (see Section 3.2), we set2

O :=
{
z ∈ R8 : 0 ≤ z3, z4, z5, z6 ≤ 1

}
The idea is that after time TO the epidemic is no longer present and so both control
variables and all the state variables E1, E2, I1, I2 are set equal to 0. The system still

2Note that to apply the standard optimality conditions for exit time problems (Cannarsa and
Sinestrari, 2004, Section 8.4), the target set O should not have corners like the one we use here.
However, this does not present a problem here, as we use a discrete set of policies.
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moves in the components S,R,Dc following equations

Ṡ(t) = µN(t)− µS(t) + ϕR(t)

Ṙ(t) = −(µ+ µR + ϕ)R(t)

Ḋc(t) = µRR(t) (26)

with initial conditions given by their values at TO).

If TO < T , these components still have an influence on the utility/disutility func-
tions so we have to take them into account. Hence, we consider the following modi-
fication of the above functional J0:

J1(k(·)) :=
∫ T∧TO

0

U(Y (t))− θV (Dc(t)) dt+

∫ T

T∧TO

U(Y (t))− θV (Dc(t)) dt (27)

where in the second integral, Y (t) = A0(S(t) + R(t))α and where the variables
S(t), R(t), Dc(t) solve (26) with initial conditions given by their values at TO.

Note that the second integral, when TO < T can be expressed as a given function Ψ
(which can be explicitly computed) of TO and z

(
TO

)
so we can rewrite the functional

J1 as follows3

J1(k(·)) :=
∫ T∧TO

0

U(Y (t))− θV (Dc(t)) dt+Ψ(TO, z (TO))1[0,T )(TO) (28)

Our Problem (P ) is then maximizing J1 with the above change of state equations.

This is a standard optimal control problem with exit time (see Chapter 8 in Can-
narsa and Sinestrari (2004)). We have the following:

Definition 1 Admissible policy k∗(·) is an optimal control policy if it maximizes
J1; i.e.,

J1(k
∗(·)) ≥ J1(k(·)) ∀k(·) ∈ Kad.

We define an optimal state trajectory z∗(·) as the unique solution of the state equation
associated to an optimal control strategy.

We define the optimal (k∗(·), z∗(·)) as an ordered pair of functions where the first
is an optimal control strategy and the second is its associated state trajectory.

In some cases it is useful to emphasize in the notation the fact that the objective
functional depends, through the state equations, also on the initial condition z(0) = z0,
by writing J1(k(·); z0) in place of J1(k(·)). We then define the value function as the
function

W (z0) := sup
k(·)∈Kad

J1(k(·); z0)

defined for all z0 ∈ Z. In economic terms this will be called the welfare function.

3The notation 1A stands for the indicator function of a set A; i.e., a function which is 1 on the
set A and 0 elsewhere.
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Optimization in a finite dimensional setting (fixed number of phases). Un-
der a fixed number of control phases corresponding to the values taken by the piece-
wise constant controls (p, τ), see subsection 4, the problem can be reduced to a
finite-dimensional optimization problem with inequality constraints.

Fix N to be the number of phases of the control p, and assume M = 0; i.e.,
the control τ representing the testing policy is inactive at all times. The general
case where N,M > 0 can be treated in the same manner by using a slightly more
cumbersome notation. For every control policy p ∈ KN,p

ad , we identify by Ip and tp
as the vectors of RN that represent intensities and times of phase change associated
with the function p. We use the notation pIp,tp to denote such a policy.

Therefore, our finite dimensional optimization problem becomes

max
Ip,tp

J0,P ′(pIp,tp(·))

s.t. 0 ≤ ij ≤ 1 ∀j = 1, . . . , N,

tj ≤ tj−1 ∀j = 1, . . . , N,

tN ≤ T.

This is a standard finite dimensional optimization problem in R2N under 2N + 1
inequality constraints. The problem here is that the objective function cannot be
computed explicitly given the parameters of the controls. Hence we have to rely on
a numerical approximation to compute the objective function, as well as to perform
the numerical optimization. To compute the objective function we rely on classical
numerical methods for ODEs. However, due to the lack of regularity of the controls,
we employ a numerical method which is suitable for stiff problems, such as implicit
Runge-Kutta methods of high order. To approximate the continuous time integration
we employed a Gauss-Kronrod quadrature rule.

The process of numerical optimization is challenging due to the lack of convexity
in the objective function. In the absence of such convexity, there is no guarantee
that a local optimum will also be a global one. Therefore, during the numerical
optimization, we have to rely on a global optimization algorithm, which is numerically
more demanding than a local numerical optimizer. In figure 7, we analyze the case
of a single lockdown phase, showing the shape of the objective function for many
combinations of the parameter describing the control policy using a very fine grid. In
this case we see that concavity is indeed a feature of the objective with respect to this
parameterization. A general result concerning the shape of the objective function is
however still lacking.

It is well known that global optimization is one of the many problems suffering
from the curse of dimensionality, that is the number of function evaluations required
for a thorough search in the state space grows exponentially with the dimension
of the problem. For the optimization procedure we employed both the DIRECT
and DIRECT-L algorithm proposed in Jones et al. (1993) and Gablonsky and Kel-
ley (2001). Both algorithms are deterministic procedures based on a subdivision of
the domain in iteratively smaller rectangles until convergence is reached. To ensure
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Figure 7. Normalized objective function J0,P ′ for the control policy
consisting of a single phase lockdown (values below zero have been cut
for graphical purposes). The x-axis “durations” refers to the length of
the single lockdown phase, while the y-axis “intensities” refers to the
strength of the policy. In this case the objective function is convex with
respect to the parameterization adopted.

robustness of our results, we also performed some additional tests based on a com-
bination of a brute-force approach on a very fine grid with a local refinement based
on a local optimizer. An additional confirmation of the accuracy of the optimization
procedure is that the maximum value of the objective function shifts in the expected
direction when changing some of the parameters (e.g. when increasing the delay in
the control policies the objective function decreases).

The added benefits of wearing masks

Arguably the most economical control strategy during the Covid pandemic has been
the wearing of surgical masks at work and in public places. We have not incorporated
the use of masks in our analysis, partly because we see it as an important ’safety play’
that is unlikely to stop the pandemic; masks may provide some protection to those
that wear them, while also significantly reducing transmission from asymptomatic
infected hosts. An important limitation here is that we do not have good estimates of
the efficacy of masks (neither for transmission blocking, nor for protection). The best
available methods suggest an average efficiency of around 45 percent (averaged across
both transmission blocking and susceptible protection). Similarly, the proportion of
people wearing masks varies widely and may follow current levels of infection and
perceived risk in the population.
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We have not explicitly examined the dynamic consequences of wearing face masks
(see Eikenberry et al. (2020). Instead we present a simple static analysis that com-
pares the efficacy of face masks with that of a vaccine (Appendix 2). We do this
as there has been resistance to wearing face masks and wearing them is subject to
asymmetric and poorly quantified levels of efficacy. Specifically, when an infected
individual wears a mask it may trap a high proportion of the viral infection stages
they produce, ei, but not all of them. Similarly, uninfected hosts who wear masks
reduce their level of exposure but are unlikely to completely exclude viral particles,
their masks have a protective efficiency of ep. The efficacy of both processes will vary
with the type of mask and how it is worn. We can examine the static implications of
this by modifying the standard equation for the proportion of people who need to be
vaccinated, pc, to reduce the Basic Reproductive Number of a pathogen, R0, below
unity Fine (1993); Fine et al. (2011); Anderson and May (1992),

pc = (1− 1/R0) (30)

The proportion of people who have to wear masks at different levels of R0 is given by

pc = (1−√
epei/R0) (31)

We coarsely quantify mask efficacy as the geometric mean of the two types of
mask efficacy, this is plainly a conservative calculation as there are always more
uninfected than infected hosts. Figure 8 illustrates the relationship between the
Basic Reproductive Number, R0, of the pathogen and the proportion of people who
have to wear masks at different average levels of mask efficacy as protective devices.
A key point to notice from the earlier figure is that even when masks are 90 percent
efficient, they are always less efficient than vaccination and the proportion of people
wearing them has to increase rapidly as their efficacy declines. Nonetheless, the figure
serves to underline our main point, a high proportion of people have to wear very
efficient masks if they are to be effective in reducing R0 below unity. They will still
serve the useful function of slowing the epidemic and reducing the pressure on health
care services. Ultimately, we see them as a useful adjunct to the other forms of NPI
discussed in more detail below. If more people wear masks, then lock-downs can be
shorter and impact a smaller proportion of the economy.
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Figure 8. The relationship between the Basic Reproductive Number
of a pathogen, R0 and the proportion of people who need to wear masks
so that R0 is reduced below unity and the pathogen contained. The
dotted lines illustrate the ”classical’ curve for a totally efficient vaccine
that generates lifetime immunity. The colored lines illustrate the cases
for different levels of protective efficiency for mask-wearers; this effi-
ciency is assumed to be the geometric mean efficacy of protecting the
wearer from infection and preventing transmission from an infectious
person. The purple line signifies 90 percent mean efficacy, green 50
percent, etc.


