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Abstract. CEMAFROID is a company with a french delegated pub-
lic service, delivering conformity attestations of refrigerated transport
vehicles. It studies the ageing of those vehicles, depending on several
physiochemical and mechanical factors, for which physical models have
been proposed by researchers in thermal engineering. The DATAFRIG R©
database records more than 300 000 attestations of vehicles over 80 at-
tributes, opening the opportunity to predict the ageing by building a
numerical model using machine learning methods. During the develop-
ment of such a model, several classical questions appeared, regarding the
data quality, the field reality and the mistrust of domain experts.
In this paper, we propose to use the notion of functional dependencies
to address the aforementioned model’s limitations. In particular, we in-
vestigate how FDs could help, especially using their counterexamples,
that turn out to provide meaningful examples of such limitations, eas-
ily interpretable by domain experts. Interestingly, the existence of such
counterexamples in the dataset is a way of demystifying the numeri-
cal model with the experts, by giving them back the control over their
own data. This approach has been tested with domain experts from CE-
MAFROID, with many positive feedbacks. It is worth noting that this
attempt to better trust classification models is not limited to a particular
application, and could be generalized to others.

Keywords: Prediction model · Industrial machine learning · Applica-
tions · Functional Dependencies.

1 Introduction

Refrigerated transport vehicles’ main objective is to supply consumers with
good quality and safe perishable products. In this context, CEMAFROID of-
fers testing and calibration services, and has been designated as an approved
body for issuing conformity attestations for refrigerated transport vehicles. To
this end, researchers in thermal engineering have access to a large database,
DATATFRIG R©, recording data about more than 300 000 attestations for re-
frigerated vehicles, with tables spanning over almost 80 attributes. Among all
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these attributes, the thermal insulation of the body is a basic element of the
refrigerated equipment, characterized by an ”insulation coefficient” denoted K:
it is very important as it may be controlled as required by the ATP (the inter-
national Agreement for the Transport of Perishable foodstuff). The lower the K
coefficient the better, but due to the ageing of the vehicle, it increases over time.
To control it and allow the vehicle to continue to transport perishable food, its
thermal insulation is measured again after 12 years of service. The ratio between
this value and the initial value allows too define the ageing of the vehicle.

To explain the variability in the ageing of refrigerated vehicles, several stud-
ies have looked at the problem to identify factors to explain it, and propose
physical models for the ageing. [?] presented the factors playing a role in the
ageing process. As stated by [?], the ageing of an insulated enclosure for a refrig-
erated vehicle is mostly due to the permeability of the foam to the gases, to the
condensation of water into the foam cells and to the increase of the percentage
of the broken cells. Ageing of refrigerated vehicles also has a mechanical compo-
nent due to the movements on the road, the routes covered and the payload. A
statistical analysis carried out in [?] highlighted the influence in the ageing rate
due to the rails and to the refrigerating units.

But whereas all these studies rely on physical models to analyse the problem,
the amount of data available in the DATATFRIG R© makes it possible to build
a predictive model, using machine learning techniques: such a new approach is a
way to tackle the problem from a different angle, to possibly identify new causes
for the ageing of vehicles, and to confront new results to the one obtained with
physical models. Shifting from a physical to a numerical model is indeed a big
change of paradigm, especially for the domain experts that mainly design and
work with physical models. The ML techniques might even generate scepticism.
In this study, we therefore paid strong attention to give guaranties about the
model, and to explain its limitations. It was important to explain why the con-
sidered data could (or not) produce a satisfying model, so that the experts that
would use it afterwards could trust it and understand why its decisions made
sense. To this end, it appeared that functional dependencies could be a very
powerful tool to model knowledge on the classifier [?].

Functional dependencies (FDs) are a well-known and widely studied notion
over the years, at the foundation of the theory for relational database design (see
[?]), expressing constraints and relationships between two sets of attributes. In
the setting of this paper, we propose to use FDs to model the possible limitations
of a predictive model, by considering that FDs can determine whether a model
can actually exists over a relation, before actually trying to determine the model
using a classification algorithm. Indeed, a classification model seeks an optimal
function, with respect to a given error measure, that maps features to a class.
This process relies on a strong hypothesis, which is the existence of a function
from the features to the labels, and only seeks to determine such a function.
However, in a complementary way, FDs can be seen as a way to determine
if such a function even exists. A detailed study of the link between FDs and
classification is available in [?]. We only underline here that when there exists
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a function from a feature vector X to a label Y , it follows that the function
dependency X → Y is satisfied.

Thus, for a classification problem, it seems logical to first verify the existence
of a function using FD features→ class. Moreover, understanding what tuples
prevent the FD from being satisfied can lead to improve the results, if the iden-
tified blockages can be explained and fixed by the domain experts. This is where
the notion of counterexample is useful. Counterexamples identify pairs of tuples
for which the classifier will never be able to perform correctly, as for the same
input, it will always predict the same output. Understanding where these coun-
terexamples come from, and what can be done to avoid having such tuples in the
dataset, is then an important tool to improve the classification performances.

These notions were used in an application to CEMAFROID’s data, for which
the notion of counterexamples appeared to be central for the discussion with
thermal engineers. In this paper, we expose how we presented such counterex-
amples to the experts in thermal engineering, in order to give them back the
control over their own data, by explaining some of the limitations of the clas-
sifier. The discussion that followed allowed to identify several possible causes
for the existence of counterexamples, that are exposed in this paper, along with
possible solutions to remove them. We also measured the proportion of coun-
terexamples in the dataset, by using metrics on the error of FDs in a relation.
The feedback obtained during this discussion highlighted several interesting re-
search problems related to classification, for which FDs could be useful, such as
feature engineering and data cleaning.

Paper organisation Section ?? presents the available data and the first nu-
merical model built on it. Section ?? presents the approach used, and the results
of a discussion with thermal engineers, based on the analysis of counterexamples
to a FD in their dataset, before concluding in section ??.

2 Predicting the ageing of Refrigerated Transport
Vehicles Data

2.1 Refrigerated transport vehicle’s data

At 31 December 2017, based on the Datafrig R© data, the French fleet counted
110 000 refrigerated transport equipment with a valid ATP certification. These
equipments are divided into different categories, the main ones are: vans (vehi-
cles with a total weight allowed in charge smaller than 3.5 tons), trucks (vehicles
whose total weight allowed in charge varies from 3.5 to 29 tons) and semi-trailers
(vehicles with total weight allowed in charge higher than 29 tons). The Datafrig R©
database is managed by Cemafroid and contains all the ATP in-service equip-
ment in France.

From this database, sample of only 1158 highly curated data could be ex-
tracted from the 109 122 refrigerated equipment registered in the Datafrig R©
database. These 1158 data represent different in-service vehicles of different
firms, tested after twelve years in the laboratory of Cemafroid. For each of these
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vehicles more than 80 features are known. Ten of the most important features,
from a domain expert point of view, were analyzed including the K12, the cor-
responding Kp, the type of vehicle, the body manufacturer, the nature of the
refrigerated enclosures and their isolation, the use of the vehicles and the dif-
ferent types of transport to which they may be subjected. Most of the available
features are therefore categorical. Our selection criteria for the sample of 1158
vehicles were based on data quality requirements applied on the ten selected at-
tributes (or variables): no null values, no outliers, and no duplicates. It is worth
mentioning that we rely on knowledge domain provided by experts to identify
our ten features. A statistical analysis of this dataset is available in [?].

2.2 Initial prediction results

Fig. 1. ROC curve for the prediction of refrigerated vehicles ageing

Once the cleaned dataset obtained, a traditional classification workflow was
applied: the data was split in a training (80%) and a testing set (20%). The
objective was to sketch the construction of a first initial model, before any anal-
ysis of the dataset, using classical state-of-the-art methods. It was decided to
build a first classification model using a decision tree [?], in order to obtain an
interpretable model, that could easily be discussed with thermal engineers. To
improve the results, a boosted version of the algorithm (see [?]) was used. The
results were very encouraging, with a precision of 0.818 and a recall of 0.783. The
F1 score was of 0.800. In addition, a ROC curve of this first classifier is presented
on figure ??, also showing good performances for the ageing prediction.



An attempt to better trust classification models 5

With this first model available, it was possible to engage in a discussion with
the experts in thermal engineering. The purpose was to understand what these
result meant, but also and especially what could be done to improve the results,
and what were the blocking points in the dataset itself. For example, some tuples
might require additional cleaning, or some records in the database might cause
problem for the learning process. As checking the data manually is very tiresome,
even on a small dataset, it appeared that the notion of functional dependency
could be extremely useful to assist the data expert in this specific task.

3 Domain experts and trust in the classification model

3.1 Preliminaries

We first recall basic notations and definitions that will be used throughout the
paper. It is assumed the reader is familiar with databases notations (see [?]).

Let U be a set of attributes. A relation schema R is a name associated with
attributes of U , i.e. R ⊆ U . A database schema R is a set of relation schemas.

Let D be a set of constants, A ∈ U and R a relation schema. The domain of
A is denoted by dom(A) ⊆ D. A tuple t over R is a function from R to D. A
relation r over R is a set of tuples over R. If X ⊆ U , and if t is a tuple over U ,
then we denote the restriction of t to X by t[X]. If r is a relation over U , then
r[X] = {t[X], t ∈ R}. The active domain of A in r, denoted by ADOM(A, r), is
the set of values taken by A in r. The active domain of r, denoted by ADOM(r),
is the set of values in r.

We now define the syntax and the semantics of a FD.

Definition 1. Let R be a relation schema, X ⊆ R and C ⊆ R\X. A FD on R
is an expression of the form R : X → C (or simply X → C when R is clear
from context)

Definition 2. Let r be a relation over R and X → C a FD on R. X → C
is satisfied in r, denoted by r |= X → C, if and only if for all t1, t2 ∈ r, if
t1[X] = t2[X] then t1[C] = t2[C].

Without loss of generality, the scope is limited to crisp FDs, i.e. using only
the strict equality. However, many other extensions have been proposed (see for
example [?]). In addition, this paper only uses canonical FDs, that only have a
unique attribute in their right hand side.

Strictly speaking, it is only possible for a relation to satisfy entirely a FD:
otherwise, the dependency is not satisfied, there is no middle ground. When
dealing with real life data, it is very likely that the FD will not be satisfied, even
though a classification model might then be built with satisfying performances.
However, understanding what tuples prevent the FD from being satisfied can
then lead to improve the results, if the identified blockages can be explained and
fixed by the domain experts. Such tuples are called counterexamples, and are
defined as follows:
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Definition 3. Let r be a relation over R and X → Y a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → Y ) and defined as follows:

CE(X → Y, r) = {(t1, t2)|t1, t2 ∈ r, t1[X] = t2[X] and t1[Y ] 6= t2[Y ]}

Counterexamples identify pairs of tuples for which the classifier will never
be able to perform correctly, as for the same input, it will always predict the
same output. These pairs are therefore very important, as their number directly
impacts the quality of the classification. As a result, in order to evaluate the
impact of counterexamples on classification, it is necessary to know their pro-
portion in the dataset. Indeed, if a classifier only contains a few counterexamples,
the impact on the classification will be marginal. On the opposite, a large coun-
terexample set will significantly impact the accuracy results.

Evaluating the impact of counterexamples can be a little subtle. Indeed, a
single tuple might cause many counterexamples, if it is in conflict with many
other tuples that agree between them. On the opposite, on other relations, the
counterexamples might be all due to many different tuples that each are in
conflict with only a few other tuples. This problem is actually equivalent to
estimating the error of the FD in a relation, a problem addressed in [?], in which
three measures are presented, given a FD X → C and a relation r.

The first one, G1, gives the proportion of counterexamples in the relation:

G1(X → C, r) =
|{(u, v)|u, v ∈ r, u[X] = v[X], u[C] 6= v[C]}|

|r|2

Following this first measure, it is also possible to determine the proportion
of tuples involved in counterexamples. This measure G2 is given as follows:

G2(X → C, r) =
|{u|u ∈ r, ∃v ∈ r : u[X] = v[X], u[C] 6= v[C]}|

|r|
These two metrics are designed to evaluate the importance of counterexam-

ples in the relation. Similarly, measure G3 computes the size of the set of tuples
in r to obtain a maximal new relation s satisfying X → C. Contrary to [?] that
present this measure as an error, we propose it as follows:

G3(X → C, r) =
max({|s||s ⊆ r, s |= X → C})

|r|

In [?], it is underlined that G3 is a direct upper bound for the accuracy of a
classifier trained on the considered data, when the FD between the features and
the class is considered, exactly as for the application to CEMAFROID’s data.

3.2 Presentation of counterexamples

Using the tools presented before, the classification dataset was analyzed to dis-
cuss with the experts. A toy sample of counterexamples is presented in table
??. For sake of clarity, only five attributes are represented in this example. Each
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id Manufac-
turer

Cell
Type

Insulation type Vehicle
type

Products Ageing
t1

Ageing
t2

1 Firm 1 Integrated Polyuréthane Truck Meat High Low
2 Firm 2 Integrated Polyuréthane

with cylopentane
Van Fruits High Low

3 Firm 3 Rapportee Polyuréthane
with cylopentane

Panel
truck

Frozen
food

High Low

4 Firm 4 Integrated Polyuréthane
with cylopentane

Trailer Vegetables High Low

5 Firm 5 Rapportee Polyuréthane
with cylopentane
without CFC

Truck Cheese High Low

6 Firm 6 Rapportee Polyuréthane
with cylopentane

Remorque Dairy
products

High Low

Table 1. Subset of counterexamples from the classificationd dataset, on the ageing of
refrigerated transport vehicles.

line represents a counterexample, which is two tuples. As they both share the
same values over the classification features, only the ageing column, on which
they differ, is represented for both(Ageing t1 and Ageing t2). This is also how
the counterexamples were presented to the thermal engineers, using an interface
developped to present the counterexample. It is named LeaFF (Learning Feasi-
bility with FDs), and can be used to query the data used for prediction, retrieve
the counterexample, and obtain the metrics for FD satisfaction. A snapshot of
this interface is presented on figure ??, applied to CEMAFROID’s data: it shows
the part of the interface that can be used to enter the features and the class, so
that the FD can be checked and counterexamples retrieved if necessary.

3.3 Measuring the counterexamples rate

The three aforementioned metrics were computed over the refrigerated vehi-
cles dataset. The proportion of counterexamples, G1 = 9.02%, is low, showing
that the pairs of tuples in the dataset are not a big proportion. However, as
G2 = 100%, all tuples from the dataset are involved in at least one counterex-
amples: this is likely because a few tuples are in conflicts with almost all the
other. This is confirmed by measuring G3 = 86.73%: this shows that to obtain
a counterexamples-free dataset, the vast majority of the data can be saved.

When presented with the measures, the domain expert had many questions
regarding what exactly each measure meant, and how to know whether the
results were good or not: is it good if the score is low ? Or should it be higher
to be better ? Indeed, these measures are not trivial, and the meaning they
carry over the pairs of tuples is not intuitive right the first time. This interaction
therefore highlighted that it will be interesting to find a convenient visualization
for domain experts, to present this result in a more instinctive manner.
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Fig. 2. Snapshot of the interface LeaFF used to explore FDs and counterexamples

3.4 Explaining counterexamples

It then appeared necessary to dive into counterexamples. After a thorough dis-
cussion, it appeared that several factors could explain them, each having a dif-
ferent solution. Ultimately, these factors were divided into three main categories.

Dirty Data A considerable amount of time had been spent on preparing and
cleaning the dataset in order to use it for classification. However, when looking at
counterexamples, it appeared that some tuples contained data that appeared to
be incorrect. For counterexample 1 in table ??, it appeared that the vehicle with
a low ageing was actually a van instead of a truck. Similarly, for counterexample
2, the vehicle with a high ageing actually transported meat instead of vegetables.
Such counterexamples are easy to fix by correcting the wrong values, once they
have been detected using the FD-based approach. Alternatively, it is possible
to take into account additional attributes that are more precise than the dirty
ones: for example, the weight of the vehicle can better define the vehicle’s type
than the given label, so mistakes can be avoided if it is taken into account: with
the weight, vans and trucks could be more easily differentiated.

Missing information For other counterexamples, it appeared that the attributes
selected for classification were not enough to explain their existence. However,
other attributes, that had not been kept for classification, allowed to discriminate
between the two tuples involved in the counterexample. For instance, in table
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??, counterexample 3 can be removed if the number of food cases in the vehicle
is considered. For counterexample 4, a specific characteristic of the cooling unit
differed between the two tuples. As a result, taking those additional attributes,
that at first had not been considered relevant for the classification, allowed to
remove counterexamples, that will then improve the classifier’s performances.
This is a way to do feature engineering in collaboration with the domain experts.

Human Factor Finally, for a last group of counterexamples such as number 5
and number 6 from table ??, it appeared that the only explanation was a human
factor, such as how the driver operates the vehicle. Indeed, this is susceptible of
influencing the ageing of the vehicle, but it is hard to quantify, and may pose
ethical issues. As a result, this last class of counterexamples is very difficult to
fix, as data cannot be cleaned or completed. However, being aware that such
counterexamples exist helps the data expert in understanding the limitations
of the classification model. Finally, it also indicates other values that could be
interesting to record: in this case for example the average speed of the vehicle.
Similarly, during its life, the vehicle is subject to accidents of which nothing is
known. Information about the nature and severity of such accidents could be
useful for the study of ageing, and could also explain some counterexamples.

To assess the impact of these counterexamples on the predictive model, it was
decided to remove the tuples that are the most involved in counterexamples from
the dataset: each removed tuples was carefully checked with a thermic expert,
and each removal allowed to gain accuracy for the classifier. It is necessary to be
careful when removing such data to not create a biased model, but it can have
a positive impact on the classifier’s accuracy, directly linked to measure G3.

3.5 Take away lessons

Using functional dependencies to explore the classification dataset was an en-
riching experience, that created fruitful discussions and results. First, the coun-
terexamples allowed to identify limitations in the dataset, and to take concrete
actions to get higher quality data, and therefore improve the results for a future
new model. The counterexamples are a powerful notion to avoid the domain
expert from being overwhelmed by the data, as she then only have a small but
meaningful subset of tuples to study. The counterexamples are therefore a per-
fect starting point for a discussion between data scientists and domain experts:
while the first gain knowledge on data they are not expert on, the others can
point out important information more easily. The counterexamples are a way
for domain experts to read a concrete information that have an impact on their
day-to-day work. By helping to clean and improve the dataset, domain experts
stay in the loop, and better understand the data used in the learning process.
Last but not least, they gain some evidence regarding whether or not it makes
sense to infer a numerical model from their data. This study also shows that
in classification, it is not possible to ignore the field reality, and to only see the
problem as a matrix of data: the physical model is as important as the data
itself, and bridges have to be built between physical and numerical models.
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4 Conclusion

This paper presents the results obtained to better trust classification models in
the context of a study with CEMAFROID, a french company delivering confor-
mity attestations for refrigerated transport vehicles. To this end, a classification
dataset was built and a first classifier was elaborated using standard classifica-
tion methods. It showed very promising results, but also raised interrogations
from the thermal engineers, related to trust issues in machine learning. In order
to understand the dataset and to demystify the classifier, we proposed to see
the classification model from the features to the class to be predicted as a func-
tional dependency. The counterexamples to this FD then give direct limitations
of the classifier. The counterexamples were analyzed, and various causes for their
existence were discovered, as well as potential solutions to remove them. More
importantly, domain experts were able to better understand the pros and cons
of the numerical model, influencing their trust in the whole machine learning
process. This study was therefore really enriching, allowing to bridge a gap by
using FDs, a well-known notion in databases, into a machine learning process.
The methodology from this paper could be used in any classification problem,
to first study the existence of a model before trying to learn from data.
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