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Non-local patch based methods were until recently the state of the art for image denoising but are now outperformed by CNNs. In video denoising however, they are still competitive with CNNs, as they can effectively exploit the video temporal redundancy, which is a key factor to attain high denoising performance. The problem is that CNN architectures are not compatible with the search for self-similarities. In this work we propose a simple, yet efficient way to feed video self-similarities to a CNN. The non-locality is incorporated into the network via a first non-trainable layer which finds for each patch in the input image its most similar patches in a search region. The central values of these patches are then gathered in a feature vector which is assigned to each image pixel. This information is presented to a CNN which is trained to predict the clean image. We apply the proposed method to image and video denoising. In the case of video, the patches are searched for in a 3D spatio-temporal volume. The proposed method achieves state-of-the-art results.

Introduction

Advances in image sensor hardware have steadily improved the acquisition quality of image and video cameras. However, a low signal-to-noise ratio is unavoidable in low lighting conditions if the exposure time is limited (for example to avoid motion blur). This results in high levels of noise, which negatively affects the visual quality of the video and hinders its use for many applications. As a consequence, denoising is a crucial component of any camera pipeline. Furthermore, by interpreting denoising algorithms as proximal operators, several inverse problems in image processing can be solved by iteratively applying a denoising algorithm [START_REF] Romano | The little engine that could: Regularization by denoising (RED)[END_REF]. Hence the need for video denoising algorithms with a low running time.

Literature review on image denoising. Image denoising has a vast literature where a variety of methods have been applied: PDEs and variational methods (including MRF models) [START_REF] Caselles | An introduction to total variation for image analysis. Theoretical Foundations and Numerical Methods for Sparse Recovery[END_REF][START_REF] Roth | Fields of experts: a framework for learning image priors[END_REF][START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], transform domain methods [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], non-local (or patch-based) methods [START_REF] Buades | Denoising image sequences does not require motion estimation[END_REF][START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF], multiscale approaches [START_REF] Facciolo | Conservative scale recomposition for multiscale denoising (the devil is in the high frequency detail)[END_REF], etc. See [START_REF] Lebrun | Secrets of image denoising cuisine[END_REF] for a review. In the last two or three years, CNNs have taken over the state of the art. In addition to attaining better results, CNNs are amenable to efficient parallelization on GPUs potentially enabling real-time performance. We can distinguish two types of CNN approaches to image denoising: trainable inference networks and black box networks.

In the first type, the architecture mimics the operations performed by a few iterations of optimization algorithms used for MAP inference with MRFs prior models. Some approaches are based on the Fields-of-Experts model [START_REF] Roth | Fields of experts: a framework for learning image priors[END_REF], such as [START_REF] Barbu | Training an active random field for realtime image denoising[END_REF][START_REF] Chen | Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration[END_REF][START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF]. The architecture of [START_REF] Vemulapalli | Deep gaussian conditional random field network: A modelbased deep network for discriminative denoising[END_REF] is based on EPLL [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], which models the a priori distribution of image patches as a Gaussian mixture model. Trainable inference networks reflect the operations of an optimization algorithm, which leads in some cases to unusual architectures, and to some restrictions in the network design. For example, in the trainable nonlinear reaction diffusion network (TNRD) of [START_REF] Chen | Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration[END_REF] even layers must be an image (i.e. have only one feature). As pointed out in [START_REF] Kobler | Variational networks: Connecting variational methods and deep learning[END_REF] these architectures have strong similarities with the residual networks of [START_REF] He | Deep residual learning for image recognition[END_REF].

The black-box approaches treat denoising as a standard regression problem, not using much of the domain knowledge acquired during decades of research in denoising. The first denoising approaches using neural networks were proposed in the mid and late 2000s. Jain and Seung [START_REF] Jain | Natural image denoising with convolutional networks[END_REF] proposed a five layer CNN with 5 × 5 filters, with 24 features in the hidden layers and sigmoid activation functions. Burger et al. [START_REF] Burger | Image denoising: Can plain neural networks compete with BM3D?[END_REF] reported the first results competitive with patch-based methods using a multilayer perceptron trained to denoise 17 × 17 patches, but with a heavy architecture. More recently, DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] obtained impressive results with a far lighter 17 layer deep CNN with 3 × 3 convolutions, ReLU activations and batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. This work also proposes a blind denoising network that can denoise an image with an unknown noise level σ ∈ [0, 55], and a multi-noise network trained to denoise blindly three types of noise. A faster version of DnCNN, named FFDNet, was proposed in [START_REF] Zhang | FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising[END_REF], which also allows handling spatially varying noise by adding a noise map σ(x) as an additional input. The architectures of DnCNN and FFDNet keep the same image size throughout the network. Other architectures [START_REF] Chen | Learning to see in the dark[END_REF][START_REF] Mao | Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[END_REF][START_REF] Santhanam | Generalized deep image to image regression[END_REF] use pooling or strided convolutions to downscale the image, and then up-convolutional layers to upscale it back. Skip connections connect the layers before the pooling with the output of the up-convolution to avoid loss of spatial resolution. Skip connections are used extensively in [START_REF] Tai | Memnet: A persistent memory network for image restoration[END_REF].

Although these architectures produce very good results, for textures formed by repetitive patterns nonlocal patch-based methods still perform better [START_REF] Burger | Image denoising: Can plain neural networks compete with BM3D?[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF]. Some works have therefore attempted to incorporate the non-local patch similarity into a CNN framework. Qiao et al . [START_REF] Qiao | Learning non-local image diffusion for image denoising[END_REF] proposed inference networks derived from the non-local FoE MRF model [START_REF] Sun | Learning non-local range markov random field for image restoration[END_REF]. This can be seen as a non-local version of the TNRD network of [START_REF] Chen | Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration[END_REF]. A different non-local TNRD was introduced by [START_REF] Lefkimmiatis | Non-local color image denoising with convolutional neural networks[END_REF]. BM3D-net [START_REF] Yang | BM3D-Net: A convolutional neural network for transform-domain collaborative filtering[END_REF] pre-computes for each pixel a stack of similar patches and feeds them into a CNN that reproduces the operations done by (the first step of) the BM3D algorithm: a linear transformation of the group of patches, a non-linear shrinkage function and a second linear transform (the inverse of the first). The lin-ear transformations and the shrinkage function are the trainable parameters. In [START_REF] Cruz | Nonlocality-reinforced convolutional neural networks for image denoising[END_REF] the authors propose an iterative approach that can be used to reinforce nonlocality to any denoiser. Each iteration consists of the application of the denoiser followed by a non-local filtering step. An inconvenience is that the resulting algorithm requires to iterate the denoising network. Trainable non-local modules have been recently proposed by using differentiable relaxations of the nearest neighbor [START_REF] Liu | Non-local recurrent network for image restoration[END_REF] and k nearest neighbors [START_REF] Plötz | Neural nearest neighbors networks[END_REF] selection rules, or using Graph CNNs [START_REF] Valsesia | Image denoising with graph-convolutional neural networks[END_REF], where the graph edges encode the non-local connections between pixels with similar features. These approaches are very interesting as they allow the combination of local and non-local interactions in a trainable way.

Literature review on video denoising. CNNs have been successfully applied to several video processing tasks such as deblurring [START_REF] Su | Deep video deblurring for hand-held cameras[END_REF], video frame synthesis [START_REF] Liu | Video frame synthesis using deep voxel flow[END_REF] or super-resolution [START_REF] Huang | Bidirectional recurrent convolutional networks for multi-frame super-resolution[END_REF][START_REF] Sajjadi | Frame-recurrent video super-resolution[END_REF], but their application to video denoising has been limited so far. In [START_REF] Chen | Deep rnns for video denoising[END_REF] a recurrent architecture is proposed, but the results are below the state of the art. More recently, Tassano et al . [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF] proposed DVDnet, a convolutional architecture which processes five consecutive frames to predict the central frame. Each frame is first denoised spatially, and then warped to frame t via an optical flow. The aligned frames are stacked together with the central frame and processed by a "temporal denoising" network. The authors use a non-trainable optical flow, which prevents the network from being trained end-to-end. Two recent works proposed networks without explicit motion estimation: ViDeNN-G [START_REF] Claus | Videnn: Deep blind video denoising[END_REF] processes three consecutive frames, and applies first a spatial denoising followed by temporal denoising, similar to [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF], except that the frames are stacked without aligning them. A different architecture, named fastDVDnet, was proposed in [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]. Instead of first using a spatial denoising, three consecutive noisy frames are stacked together. The stack is processed by a U-net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] which predicts the central frame. To extend the temporal receptive field of the network, the authors cascade two levels of these networks. The overall network takes five frames as input. Recently [START_REF] Ehret | Joint demosaicing and denoising by overfitting of bursts of raw images[END_REF][START_REF] Godard | Deep burst denoising[END_REF][START_REF] Mildenhall | Burst denoising with kernel prediction networks[END_REF] focused on the related problem of image burst denoising reporting very good results. There is also recent work focusing on unknown noisemodel denoising for videos that use self-supervision for training [START_REF] Ehret | Joint demosaicing and denoising by overfitting of bursts of raw images[END_REF][START_REF] Ehret | Model-blind video denoising via frame-toframe training[END_REF].

Before the advent of CNNs, patch-based methods were the state of the art [START_REF] Arias | Video denoising via empirical bayesian estimation of space-time patches[END_REF][START_REF] Buades | Patchbased video denoising with optical flow estimation[END_REF][START_REF] Dabov | Video denoising by sparse 3d transform-domain collaborative filtering[END_REF][START_REF] Ehret | Global patch search boosts video denoising[END_REF][START_REF] Maggioni | Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms[END_REF][START_REF] Wen | Joint adaptive sparsity and low-rankness on the fly: an online tensor reconstruction scheme for video denoising[END_REF], and some continue to be competitive in terms of denoising performance [START_REF] Arias | Video denoising via empirical bayesian estimation of space-time patches[END_REF][START_REF] Ehret | Global patch search boosts video denoising[END_REF], albeit with a larger computational cost). They exploit extensively the self-similarity of natural images and videos, namely the fact that most patches have several similar patches around them (spatially and temporally). Each patch is denoised using these similar patches, which are searched for in a region around it. The search region generally is a space-time cube, but more sophisticated search strategies have also been used. Because of the use of such broad search neighborhoods these methods are called non-local. While these video denoising algorithms perform very well, they often are computationally costly.

Patch-based methods usually follow three steps that can be iterated: (1) search for similar patches, (2) denoise the group of similar patches, (3) aggregate the denoised patches to form the denoised frame. VBM3D [START_REF] Dabov | Video denoising by sparse 3d transform-domain collaborative filtering[END_REF] improves the image denoising algorithm BM3D [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF] by searching for similar patches in neighboring frames using a "predictive search" strategy which speeds up the search and gives some temporal consistency. VBM4D [START_REF] Maggioni | Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms[END_REF] generalizes this idea to 3D patches. In VNLB [START_REF] Arias | Towards a bayesian video denoising method[END_REF], video extension of [START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF], spatio-temporal patches that were not motion compensated are used to improve the temporal consistency. In [START_REF] Ehret | Global patch search boosts video denoising[END_REF] a generic search method extends every patch-based denoising algorithm into a global video denoising algorithm by extending the patch search to the entire video. SPTWO [START_REF] Buades | Patchbased video denoising with optical flow estimation[END_REF] and DDVD [START_REF] Buades | Dual domain video denoising with optical flow estimation[END_REF] use optical flow to warp the neighboring frames to each target frame. Each patch of the target frame is then denoised using the similar patches in this volume with a Bayesian strategy similar to [START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF]. Recently, [START_REF] Wen | Joint adaptive sparsity and low-rankness on the fly: an online tensor reconstruction scheme for video denoising[END_REF] proposed to learn an adaptive optimal transform using batches of frames.

Patch-based approaches have also been applied in frame-recursive denoising methods [START_REF] Arias | Kalman Filtering of Patches for Frame-Recursive Video Denoising[END_REF][START_REF] Ehret | Non-local Kalman: A recursive video denoising algorithm[END_REF], that denoise each frame using only the corresponding noisy frame and the previous denoised frame.

Contributions.

In this work we propose a strategy to exploit non-local information with a CNN in the context of image and video denoising. It works particularly well in the case of video denoising, where it achieves state-of-the-art results.

The method first computes for each image patch the n most similar neighbors in a rectangular spatiotemporal search window and gathers their central pixels forming a feature vector which is assigned to each image location. This results in an image with n channels, which is fed to a CNN trained to predict the clean image from this high dimensional vector. We trained our network for grayscale and color video denoising. Practically, training this architecture is made possible by a GPU implementation of the patch search that allows computing the nearest neighbors efficiently.

To train our network we created a dataset of 17k video segments. In the two testing datasets, our network obtains state-of-the-art results on both color and grayscale video denoising. The code to generate the datasets and reproduce our results is available online1 . A preliminary version of this work was presented in [START_REF] Davy | A non-local CNN for video denoising[END_REF]. The present version includes an extension to color videos, a detailed comparison with recent works, extended discussions comparing these methods, and new experiments.

Proposed method

Let u be a grayscale video and u(x, t) denote its value at pixel position x in frame t. We observe v, a noisy version of u contaminated by additive white Gaussian noise: v = u + r, where, r(x, t) ∼ N (0, σ 2 ).

(1)
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Fig. 2: Spatio-temporal video crop (top row) and the features extracted by the non-local search for the central frame (bottom row), applying the restriction of one neighbor per frame.

Our video denoising network processes the video frame by frame. Before it is fed to the network, each frame is pre-processed by a non-local patch search module which computes a non-local feature vector at each image position. A diagram of the proposed method is shown in Figure 1. We call our method VNLnet for Video Non-Local Network.

Non-local features

Each frame in the video is pre-processed by the nonlocal patch search module to produce a 3D tensor f nl of n channels. This is the input to the network. The parameter n is the number of nearest neighbor patches searched for each pixel by this pre-processing module.

Let P be a patch of size s × s centered at pixel x in frame t. The patches are arranged as vectors with s 2 components. The patch search module computes the L 2 distances between the patch P and the patches in a 3D rectangular search region of size w s × w s × w t centered at (x, t). The positions of the n most similar patches are (x i , t i ), ordered either by increasing distance or by increasing frame index t i .

The pixel values at those positions are gathered to produce the n-dimensional non-local feature vector associated to pixel (x, t):

f nl (x, t) = [v(x 1 , t 1 ), ..., v(x n , t n )].
(

) 2 
The non-local features correspond to n images which resemble the frame v(•, t) (see Figure 2). One of them is v(•, t) itself, as the reference patch P is always among the n nearest neighbors. The remaining n-1 images are built from the central pixels of the most similar patches to each patch in v(•, t).

One neighbor per frame. We will also consider a restricted version of the patch search, not allowing more than one match per-frame. In this variant, we set the number of matches n to be equal to the number of frames in the search region, resulting in a match for each frame. The neighbors are sorted by frame index instead of the patch distance. With this configuration, the ith non-local feature map corresponds to a warped version of the ith neighboring frame, aligned to the reference frame t. An example is shown in Figure 2, for n = 15. This can be related to [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF][START_REF] Xue | Video enhancement with task-oriented flow[END_REF], which align the input frames using an optical flow. Indeed patch matching can be seen as a rough optical flow with integer displacements.

Other alternatives. The proposed non-local features are inspired by classical patch-based methods such as [START_REF] Buades | A non-local algorithm for image denoising[END_REF].

Selecting similar patches with the L 2 distance and extracting their central pixel is possibly the simplest way of providing the network with a non-local context. The L 2 distance is widely used, and was shown to be optimal for additive white Gaussian noise (AWGN) [START_REF] Deledalle | How to compare noisy patches? Patch similarity beyond Gaussian noise[END_REF]. The same work also shows that other patch distances should be used for other noise distributions. We considered some alternatives to feeding only the central pixels to the network: such as providing as well the patch similarities (which could be used by the network to ignore bad matches), or extracting a small patch (3 × 3 or 5 × 5) around the center of every matching patch, instead of the central pixel. However, we did not observe a significant improvement to justify the increase in complexity: the differences in the validation PSNR for these variants were within a 0.1dB range. The reason for this is probably that the added pixels in the patch around the central pixel are redundant with the central pixels of the similar patches for neighboring pixels.

In a previous version of our work [START_REF] Davy | A non-local CNN for video denoising[END_REF] we also included four 1 × 1 convolutional layers as a trainable transformation of the non-local features. We removed them in this work as we found that the same performance can be achieved with a simpler design.

Network architecture

For processing the non-local features, we considered standard architectures used in image restoration modifying their input layer to the n channel input tensor. We have tested three such architectures.

DnCNN. The DnCNN architecture was proposed in [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] for still image denoising. It consists of a feed-forward network with 17 layers with 64 3×3 convolution kernels, each one followed by batch normalization and ReLU activations. The output layer is a 3 × 3 convolution. The network outputs a residual image, which has to be subtracted to the noisy image to get the denoised one.

U-Net. U-Nets (also called hourglass networks) have been introduced in [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] for image segmentation. This architecture consists of an encoder-decoder convolutional network. The encoder part downscales the input by a series of pooling layers or strided convolutions, whereas the decoder upscales the coarse features to the desired output resolution. The differentiating aspect of U-Nets from previous encoder-decoder networks are skip connections that bypass each coarser scale. These networks have been applied to many tasks, among them denoising of both single images [START_REF] Chen | Learning to see in the dark[END_REF][START_REF] Santhanam | Generalized deep image to image regression[END_REF] and videos [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF]. In our experiments, we use the U-Nets blocks of [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], except that the first two layers, which feature group convolutions and a number of kernels computed from the number of input frames, are replaced by two standard convolution layers of 32 kernels. EDSR. EDSR [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] is a residual CNN architecture tuned for super-resolution. The main architectural differences with DnCNN are the introduction of skip connections every two convolution layers, and the removal of the batchnorm layers. Thus in our experiments we took our DnCNN networks and applied these two changes (the number of convolutional layers and their parameters are kept).

Datasets and training

We denote by F the application of the network. The input to F at time t is f nl t = f nl (•, t), the n-channel image with non-local features gathered from a window of frames around t. The training loss is the mean square error (MSE) between the reconstructed frame and the ground truth clean frame:

l(F(f nl t ), u t ) = ||F(f nl t ) -u t || 2 2 . (3) 
We use residual training, as in [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF]. This means that the network actually predicts the noise, and therefore the denoised image is obtained by subtracting the predicted noise from the noisy input.

For RGB videos, we compute the patch search on grayscale frame resulting from averaging the color channels. To form the non-local features we take the RGB components of the central pixels of the matching patches, resulting in a input tensor with 3n channels. For RGB videos we only trained a DnCNN network, with 25 layers and 96 channels (i.e. about three times the number of parameters used for grayscale video).

Datasets

For the training and validation sets we used a database of short segments of 16 frames extracted from YouTube videos. Only HD videos with Creative Commons license were used. From each video we extracted several segments, separated by at least 10s. In total the database consists of 16950 segments extracted from 1068 videos, organized in 64 categories (such as antelope, cars, factory, etc.). As the original videos might contain compression artifacts, noise, etc, we downscaled the video to a height of 540 pixels. This removes the minor artifacts of the videos and better represents clean targets. In addition, we randomized the anti-aliasing filter width (Gaussian blur) of the downscaling. This results in a variety of sharpness/blur in the training dataset, and thus helps reducing dataset bias. We separated 6% of the videos of the database for the validation (one video for each category). For grayscale networks, grayscale data is obtained by converting the previous color datasets.

For training we ignored the first and last frames of each segment for which the 3D patch search window did not fit in the video. During validation we only considered the central frame of each sequence. The resulting validation score is thus computed on 503 sequences (1 frame each).

For testing, we used two distinct datasets. The first one is the dataset of [START_REF] Arias | A comparison of patch-based models in video denoising[END_REF], which was extracted from the Derf's Test Media collection. 2 It is composed of seven sequences of 100 frames of size 960×540. In this dataset, the camera is either still or has a smooth motion. The second one is the test-dev split of the DAVIS video segmentation challenge [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF]. It consists of 30 videos having between 25 and 90 frames. In this dataset, the motion is more challenging. In order to remove compression artifacts and noise present in the original images, both datasets were obtained with a similar downscaling as for the training set (the original images ranged between HD and 4K). Each dataset was processed using a different anti-aliasing filter width.

Training details

At each training epoch, first a subset of the videos of the dataset is selected and noise is added to generate noisy samples. Second the non-local patch search module is run on every video selected. This results in videos of non-local features where each frame has n channels containing the output of the patch search module. Third the network is trained on mini-batches built from small crops extracted at random positions on the videos of non-local features.

During training, we ignore spatio-temporal border effects by excluding the first and last w t /2 frames and ignoring crops at borders. At testing time, we simply extended the video by mirroring it at the start and the end of the sequence and adding black borders for the patch-search module.

The training epochs comprise 17000 mini-batches of size 64 square crops of 44 pixels width. We trained for 30 epochs using a combination of recent new optimization techniques which give small performance improvements on various machine learning tasks: Lookahead [START_REF] Zhang | Lookahead optimizer: k steps forward, 1 step back[END_REF], RAdam [START_REF] Liu | On the variance of the adaptive learning rate and beyond[END_REF] and Gradient Centralization [START_REF] Yong | Gradient centralization: A new optimization technique for deep neural networks[END_REF]. 3In addition, we reduced the learning rate at epochs 15 and 27 (from 1e -3 to 1e -4 and 1e -6 respectively). Training a network takes about 14 hours on a NVIDIA TITAN V for grayscale videos, and 24 hours for color videos.

Experiments and parameter tuning

In this section we evaluate the effect of the non-local features first in still image denoising, and then, after studying the impact of the parameters, in video denoising. Unless otherwise stated, the results reported were obtained using a DnCNN architecture for the fusion network. The network is trained from scratch for each different parameter setting. The figure also shows the result of an oracular method: the nearest neighbor search is performed on the noisefree image, though the pixel values are taken from the noisy image. The method obtains an average PSNR of 31.85dB, 0.6dB over the baseline. The oracular results show that non-locality has a great potential to improve the results of CNNs. However, this improvement is hindered by the difficulty of finding accurate matches in the presence of noise. A way to reduce the matching errors is to use larger patches. But on images, larger patches have fewer matches. In contrast, as we will see below, the temporal redundancy of videos allows using very large patches.

Parameter tuning for video denoising

The non-local search has three main parameters: The patch size, the number of retained matches and the size of in the search region (both spatially and in number of frames). We expect the best matches to be past or future versions of the current patch, so we set the number of matches as the number of frames on which we search. In the following we study the impact of the different parameters. Note that for each different parameter, we retrain the fusion network to make sure that it is the optimal one for the chosen parameters. In all cases, we consider denoising of grayscale videos with σ = 20.

Patch size. In Table 1a, we explore the impact of the patch size used for the matching. For each patch size we show results with the unconstrained patch search and with the restriction of one neighbor per frame (ONPF).

In both cases, the results improve with the patch size, even for patches much larger than the ones typically used in patch-based methods. The ONPF restriction produces a slight improvement in performance, particularly for larger patches. Figure 4 shows visual results obtained with the ONPF restriction. As the patch size grows, there is a noticeable increase in the amount of details recovered from the background.

Number of frames in the search region. In Table 1b and Figure 5, we see the impact of the number of frames used in the search window (and thus the number of nearest neighbors). One can see that the more frames, the better. Increasing the number of frames beyond 15 (7 past, current, and 7 future) does not justify the small increase of performance. Foreground moving objects are unlikely to get good neighbors for the selected patch size, unlike background objects, thus it comes to no surprise that the visual quality of the background improves with the number of patches, while foreground moving objects (for example the legs in Figure 5) do not improve much.

Spatial size of the search region. Results varying the size of the search region are shown in Table 1c. The results improve for larger search regions, although with diminishing returns. From 41 × 41 to 51 × 51 there is no significant improvement. Our search region is not compensated by motion, thus having a large search region is necessary to find matching patches on distant frames for moving objects.

Choice of the fusion network. We have evaluated the performance obtained with the two other architectures for the fusion network described in Section 2. The results obtained are shown in Table 2. The three networks were trained with the same training set and the same procedure. All networks achieve a very similar PSNR, within a 0.13dB range. This shows that the fusion architecture is not critical.

Throughout the rest of the paper, we shall use 41 × 41 patches and a search volume of 41 × 41 pixels and 15 frames as the parameters for the patch search. For the fusion network we will use the DnCNN architecture.

Discussion

Surprisingly large patches

An immediate question is why do such big patches achieve such a good performance. On one hand, increasing the patch size has the effect of reducing the variance of the noise in the patch distance, resulting in matches that are less affected by it. This explains the details recovered in the background in Figures 4 and5. The large size allow to reliably match the background patches even if the texture seems to be completely obfuscated by noise. On the other hand, a large patch size becomes a disadvantage for objects with a non-translational motion. In these cases, finding similar matches in the neighboring frames becomes less likely for larger patches. This can be seen in Figure 2. The person in the foreground is rotating as she performs a backflip jump. Patches in the foreground object have similar matches only for the closest neighboring frames (e.g. the face cannot be reconstructed for t ± 4), whereas patches in the background can be matched throughout all the temporal extend of the search region. As a consequence, different pixels will have a different number of relevant non-local features. The fusion network learns during training to be robust to these bad matches. It seems to be able to identify when the patch search fails, relying only on the non-local features that are correlated with the target pixel, and adapting accordingly the amounts of spatial denoising and non-local denoising. This phenomenon can be observed in Figure 6, where we compare the results of the proposed VNLnet against the single frame DnCNN from [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] and a Non-Local Pixel Mean (NLPM), which simply averages the values of the non-local features given by the patch-matching (please ignore for the moment the column labeled video-DnCNN ). On the first two rows, the motion is consistent on the whole crop, and thus the output of NLPM is sharp, indicating good matches. As a result, VNLnet's output shows more details than the single frame DnCNN. However the Non-Local Pixel Mean output is blurry for the person in the third row and the background of the fourth row. For these regions, VNLnet and DnCNN both have similar quality. Meanwhile, for the regions of these two crops with good matches (the background of the third row, and the person of the fourth row), the quality is improved. Using bigger patches will increase the number of patches covering regions of conflicting motion. As a result, we see that the performance gain from 31 × 31 to 41 × 41 is rather small.

A note on motion handling

To evaluate the effectiveness of the non-local features we also train a network with the same architecture, but instead of feeding it with the n non-local features we feed it with the stack of the n neighboring frames. We call this network video-DnCNN. We do this for different values of n, and show the results obtained on Table 3.

The performance of the video-DnCNN network increases with the number of frames, although less than the proposed VNLnet (see Table 1b). In particular, for video-DnCNN the average PSNR on the validation set stagnates at 11 frames. The reason for this is that while the denoising performance increases on sequences with majority of small and smooth motions, it drops significantly when there are many large or irregular motions.

Without the non-local patch-search module, the network has to learn to handle motion implicitly, which makes the task significantly harder. As the number of input frames increases, so does the complexity of the internal motion compensation the network has to learn to denoise accurately. The video-DnCNN network then overfits to the most frequent motion patterns in the training set, and fails when it encounters a different motion. By factoring out the motion, the non-local patch search module removes the need for the network to learn to adapt to various types of motion, enabling a better generalization on various moving scenes.

This can be seen in Figure 6, by comparing the results of video-DnCNN and VNLnet, for objects with fast/irregular motion patterns. VNLnet is able to recover much more details, thanks to the patch search.

Figure 7 shows the PSNR gain of VNLnet over video-DnCNN for each sequence on the grayscale DAVIS test set. The gain given by the non-local patch-search module is significant, except only for two sequences. These feature fixed cameras and static backgrounds covering most of the frame. The sequences with larger gains have complex motion.

Texture is also an important aspect, as patches with a distinct and highly contrasted texture can be matched more reliably. In Figure 8 we plot the per patch PSNR gain of VNLnet against the video-DnCNN method and a single frame DnCNN, in terms of a measure of patch "texturedness". We measure patch texturedness as the sum of the squared gradient magnitudes in a patch:

T (x, t) = h ∇u(x + h, t) 2 (4) 
where h varies in a patch centered at x, ∇u is spatial gradient of u(•, t) and • is the Euclidean norm.

The texturedness is computed on the clean video. We denoised the grayscale DAVIS test set with σ = 20, and for each 41 × 41 patch, we compute its texturedness T (x, t) and the PSNR gain, which we denote by G(x, t). We bin these quantities in a 2D histogram with 400 × 400 bins which is illustrated by the grayscale image in Figure 8 (darker pixels correspond to bins with higher frequency). The figure also shows in red the mean PSNR gain for each level of texturedness, and in blue the same mean, but multiplied by the relative frequency of each texturedness level in the dataset. The figures confirm that the PSNR gain with respect to both video-DnCNN and single image DnCNN increases with patch texturedness. As expected, the gain is larger with respect to the single frame DnCNN. For patches with very low texturedness the video-DnCNN performs better than the VNLnet. This makes sense, as for those patches the matching will be influenced by the noise. A similar behaviour has been observed for patch-based methods in global video denoising [START_REF] Ehret | Global patch search boosts video denoising[END_REF] and external denoising [START_REF] Mosseri | Combining the power of internal and external denoising[END_REF]. Such patches are relatively rare in the test set, which explains the overall positive gains in Figure 7.

A related question is whether better results could be obtained replacing the patch search by a frame matching using a standard optical flow. The results of Table 1a highlight the importance of very reliable matches, and thus the optical flow would have to be chosen with care. In [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], the authors of DVDnet [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF] difficulty of finding a fast and reliable optical flow, and moved away from it for FastDVDnet [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]. In [START_REF] Xue | Video enhancement with task-oriented flow[END_REF], the optical flow is computed with a reduced version of SpyNet [START_REF] Ranjan | Optical flow estimation using a spatial pyramid network[END_REF], which is trained together with the rest of the network. In our case, the patch search module is not trainable, and the network is trained to process its output.

Comparison with other methods

In this section, we compare the proposed method VNLnet to VBM3D [START_REF] Dabov | Video denoising by sparse 3d transform-domain collaborative filtering[END_REF], VNLB [START_REF] Arias | Towards a bayesian video denoising method[END_REF], and DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] for grayscale videos, and VBM3D [START_REF] Dabov | Video denoising by sparse 3d transform-domain collaborative filtering[END_REF], VNLB [START_REF] Arias | Towards a bayesian video denoising method[END_REF], DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF], ViDeNN-G [START_REF] Claus | Videnn: Deep blind video denoising[END_REF], DVDnet [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF], and FastDVDnet [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF] for color videos. DnCNN was applied frame-byframe.

We trained grayscale and color networks for AWGN of standard deviation 10, 20 and 40. To highlight the fact that a CNN method can be easily re-targeted to different noise distributions, we also trained a grayscale network for Gaussian noise correlated by a 3 × 3 box kernel such that the final standard deviation is σ = 20, and 25% uniform Salt and Pepper noise (removed pixels are replaced by random uniform noise).

Table 4 shows the denoising results obtained on the two compared datasets. For grayscale videos, we also include results for SPTWO [START_REF] Buades | Patchbased video denoising with optical flow estimation[END_REF] and VBM4D [START_REF] Maggioni | Video Denoising Using Separable 4D Nonlocal Spatiotemporal Transforms[END_REF], computed in [START_REF] Arias | A comparison of patch-based models in video denoising[END_REF] for the DERF dataset. Figures 9 and10 show results for the most relevant RGB methods. VNLB (Video Non-Local Bayes) outperformed on average all other methods on the DERF dataset. Meanwhile on the DAVIS dataset, our method performed the best both in grayscale and color, for all the three tested noise levels. VNLB ranked second, except in color for high noise levels, where it was surpassed by DVDnet and FastD-VDnet.

A comparison of the results for grayscale and color in Table 4 reveals that CNN-based methods exploit better the correlations between color channels: while for grayscale, VBM3D significantly outperforms DnCNN in PSNR on the DAVIS dataset, the reverse occurs for color. Moreover, VNLnet performed proportionally better in color than in grayscale. This should not come as a surprise, since the way in which VBM3D and VNLB treat color is rather heuristic: an orthogonal color transform is applied to the video which is supposed to decorrelate color information. Then the processing of each color channel of a group of patches is done independently.

In order to better compare qualitative aspects of the results we show some details in Figures 9 and10. For some scenes, VNLnet recovers significantly more details in the background, as shown in Figure 9. In general, we observe that VNLnet, and the other video CNN methods (ViDeNN-G, DVDnet, and FastDVDnet) have better background reconstruction than VNLB. This can be seen in Figure 9 and Figure 10. Some details however are better recovered by VNLB and VNLnet. For example in Figure 10 both methods recover the red lights in the top left corner of the image in the first column, while for the three other methods the lights do not appear. In the second column, VNLB does not reconstruct the trees as well as the CNN-based methods, but manages to recover the color of the clothes of the person in the bottom left. VNLnet not only recovers better the tree structure, but also recovers the clothes correctly. None of the methods restore satisfyingly the grass texture in the third column of Figure 10 for the tested noise level. This highlights that there is room for improvement. All five methods achieve reasonable temporal consistency, which is an important quality requirement for video denoising.

One of the benefits of CNNs over traditional modelbased approaches is that they can be easily targeted to handle other noise distributions by simply re-training them. We demonstrate this by reporting the results of our method on salt-and-pepper noise and correlated noise in Table 4. We include the result of VNLB as a reference.

In summary, the proposed approach for video denoising obtains state-of-the-art results on both test sets. In particular, it outperforms previous CNN approaches. In light of this, we can conclude that effectively exploiting a large number of surrounding frames is key. Indeed, the proposed VNLnet uses 15 frames, in comparison to the 3 frames used by ViDeNN-G and 5 frames of DVDnet and FastDVDnet. Most of these methods avoid relying on an explicit optical flow computation, which can be unreliable given that the input frames are noisy. FastDVDnet and ViDeNN-G do so by performing an early fusion of triplets of consecutive frames without alignment. The non-local features computed via patch correspondences result in an effective way to present the information of large frame neighborhoods to a network that merges them. Training the fusion network is then straightforward.

Running times and number of parameters

In Tables 5 and6, we compare the running time in grayscale and color of several methods when denoising a video frame. As before, we consider DnCNN as the fusion network. In Table 5, the compared methods are run on a single CPU core, while in Table 6, a system with an Intel Xeon W-2145 and a NVIDIA TITAN V is used. For both tables, the loading and writing time of the videos were subtracted. Since we do not have a CPU implementation of the patch search layer, we cannot measure a CPU time for VNLnet. On the GPU, for grayscale videos of 960 × 540 the non-local search takes 822ms, where as the DnCNN fusion network takes 95ms. Extrapolating this, we could expect a CPU time 8 to 9 times slower than DnCNN.

Most of the running time of our method is spent in the patch search. Our GPU implementation of patch search is similar to the convolution-based patch search described in [START_REF] Davy | GPU acceleration of NLmeans, BM3D and VBM3D[END_REF]. With the default parameters, the nonlocal search is costly because matches are searched in 15 frames for patches centered at every pixel of our image. These parameters can be modified, trading off speed by denoising quality. In the Tables 7 we show how the time spent in the patch search as a function of the patch size, spatial search region size and number of frames. These behave as expected: the time grows linearly with the number of frames, and quadratically with respect to the patch and search sizes. For example, with a search region of 21 × 21, the per frame patch search time is reduced by more than three times, while the drop in PSNR is only 0.16dB (see Table 1c). The table also shows the patch search time normalized by the number of frames that need to be aligned in the search region.

The implementation could be further accelerated by reducing the size of the 3D window using tricks explored in other papers. VBM3D for example centers the search on each frame on small windows around the best matches found in the previous frame. A related acceleration is to use a search strategy based on Patch-Match [START_REF] Barnes | Patchmatch: A randomized correspondence algorithm for structural image editing[END_REF].

One of the benefits of the proposed approach is that the fusion network can be simple, resulting in an easier training and a smaller memory footprint of the network weights. The three tested architectures were designed for single image denoising. This reduces the number of trainable parameters, in comparison with other video processing networks. The DnCNN and EDSR networks have both around 0.56M parameters, while the U-Net has 1M. For RGB videos, our DnCNN with 25 layers and 96 channels has 1.9M parameters, roughly the same as, FastDVDnet [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], which requires 2M parameters as it uses two U-Nets.

Other works such as [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF][START_REF] Xue | Video enhancement with task-oriented flow[END_REF] use an optical flow subnetwork for aligning the frames. This has the advantage that the alignment can be trained together with the fusion network [START_REF] Xue | Video enhancement with task-oriented flow[END_REF]. However, the smallest current optical flow networks have between 1M and 5M parameters [START_REF] Teed | RAFT: Recurrent all-pairs field transforms for optical flow[END_REF], and take around 50ms to 100ms (depending on the desired quality) to estimate the optical flow between a pair of frames.

Conclusions

We described an effective way of incorporating temporal non-local information into a CNN for video de- Table 7: Time spent in the patch search, for different values of the parameters. We report both the average total time spent in the search (considering all frames in the search region) and the time normalized by the depth of the search region (minus the central frame for which there is no search).

noising. The proposed method computes for each image patch the n most similar neighbors on a spatiotemporal window and gathers their central pixels to form a non-local feature vector which is given to a CNN. Our method yields a significant gain compared to other CNN approaches. It has similar performance to the best non-CNN method evaluated, VNLB, outperforming it on the largest of our test datasets. In addition, we noted that CNN approaches tend to better reconstruct backgrounds than VNLB, which are perceptually relevant areas. To prevent dataset bias we also proposed a public training set comprising 17k videos from 64 different categories and a simulation strategy that emulates different levels of sharpness.

We have seen the importance of reliable matches: On the validation set, the best performing method used patches of size 41 × 41 for the patch search. We have also noticed that on regions with non-reliable matches (complex motion), the network seems to revert to a result similar to single image denoising. Thus we believe future works should focus on improving this area.

Fig. 1 :

 1 Fig. 1: Illustration of the proposed Video Non-Local Network (VNLnet). The first module performs a patch-wise nearest neighbor search across neighboring frames. Then, the current frame, and the feature vectors f nl of each pixel (the center pixels of the nearest neighbors) are fed into the network.

Fig. 3 :

 3 Fig. 3: Results on still image denoising (AWGN with σ = 25). Original clean image, noisy image, result obtained with the baseline CNN, result of incorporating the non-local features by finding the nearest neighbors on the noisy image or the oracle noise-less image. Contrast has been linearly scaled for better visualization.

41 Fig. 4 :Fig. 5 :

 4145 Fig. 4: Example of denoised results with our method when changing the patch size, respectively no patch search, 9 × 9, 15 × 15, 21 × 21, 31 × 31 and 41 × 41 patches. The 3D search window has 15 frames for these experiments.

Fig. 6 :

 6 Fig. 6: Example of denoised result for Non-Local Pixel Mean, DnCNN, video-DnCNN (see Section 4.3.2) and VNLnet, for AWGN with σ = 20. The four crops highlight the results on frames feature various kinds of motion. The videos are part of the DAVIS dataset. Non-Local Pixel Mean corresponds to the average of the output of the non-local patch search.

Fig. 7 :

 7 Fig. 7: PSNR gain of VNLnet versus the network without patch search of Table 3 (15 input frames) on grayscale DAVIS (σ = 20) (35.48db versus 34.59db).

  given patch texturedness same, but weighted by the frequency of the texturedness patch gradient magnitude (dB) PSNR gain (dB) gain given patch texturedness same, but weighted by the frequency of the texturedness

Fig. 8 :

 8 Fig. 8: Patch PSNR gain between VNLnet versus video-DnCNN (top) and DnCNN (bottom) on grayscale DAVIS with σ = 20, as a function of a measure of the patch texturedness (defined here by the patch ent magnitude). The grayscale image depicts the 2D histogram of PSNR gains and patch texturedness computed from all 41 × 41 patches in the test set. The red curve shows the average PSNR gain for each texturedness level, and the blue curve shows the same average PSNR gain, but weighted by the frequency of each texturedness level.

  Average patch search time per frame (in ms) for different numbers of frames in the search region on a 960 × 540 video (patch size is 41 × 41, search region spatial size is 41 × 41), and the averaged time normalized by the depth of the search region (minus the central frame). 5 × 5 11 × 11 21 × 21 41 × 41 51 × Average patch search time per frame (in ms) for different search region spatial sizes on a 960 × 540 video (patch size is 41 × 41, with 15 frames), and the averaged time normalized by the depth of the search region (minus the central frame).

Table 1 :

 1 Effect of patch size, search region size and number of frames (the number of neighbors is kept equal to the number of frames). All values correspond to the PSNR computed on the validation set for noise with σ = 20. In 1a we compare the performance with the one-neighbor-per-frame restriction (ONPF) and without it (free).

	Patch	no patch 9×9 15×15 21×21 31×31 41×41
	size					
	ONPF	33.88	35.70 36.62 37.07 37.39 37.51
	free	33.88	35.68 36.55 36.95 37.20 37.32
	(a) Impact of the patch size (with 15 frames)
	# search frames	no patch	3	7	11	15
	ONPF		33.88	35.85 36.93 37.27 37.51
	(b) Impact of number of frames (patch size is 41 × 41)
	search size		5 × 5 11 × 11 21 × 21 41 × 41 51 × 51
	ONPF		36.84 37.13	37.35	37.51	37.53
	(c) Impact of search region size (patch size is 41 × 41, with
	15 frames, ONPF)				
	# fusion net DnCNN U-Net EDSR	
	PSNR	37.51	37.42 37.55	

Table 2 :

 2 Impact of the architecture of the CNN used for fusing the features.

	# stacked frames	1	3	7	11	15
	PSNR	33.88 35.56 36.22 36.42 36.57

Table 3 :

 3 Impact

of the number of frames considered for the video-DnCNN network (the network input is a 3D crop rather than the result of the non-local search). PSNR on the validation set AWGN with σ = 20.

Table 4 :

 4 Quantitative comparison (PSNR and SSIM) of other methods versus the proposed VNLnet on two test sets, both in grayscale and in color. We highlighted the best performance in bold and the second best in bold italics.

Table 5 :

 5 Running time per frame on a grayscale 960 × 540 video for VBM3D, DnCNN, VBM4D, VNLB and SPTWO on a single CPU core.

	VNLB ViDeNN-G DVDnet FastDVDnet VNLnet
	26.94s	0.186s	2.67s	0.074s	1.16s

Table 6 :

 6 Running time per frame on a color 960 × 540 video for VNLB, ViDeNN, DVDnet, FastDVDnet, VNLnet on a system with a 16-cores CPU (Intel Xeon W-2145) and a NVIDIA TITAN V. Average patch search time per frame (in ms) for different patch sizes on a 960 × 540 video (with a 41 × 41 × 15 search region), and the averaged time normalized by the depth of the search region (minus the central frame).

		9×9 15×15 21×21 31×31 41×41
	Per frame	126	201	327	545	822
	Normalized 9	14	23	39	59
	(a)					

The code to reproduce our results, the training and testing datasets can be found at https://github.com/axeldavy/ vnlnet.

https://media.xiph.org/video/derf

We used the implementation of https://github.com/ lessw2020/Ranger-Deep-Learning-Optimizer
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Noisy DVDnet ViDeNN-G VNLB VNLnet (Ours) FastDVDnet Fig. 9: Example of denoised result for several algorithms (AWGN with σ = 20) on a sequence of the color DAVIS dataset [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF]. The crops highlight the results on non-moving and moving parts of the video.