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Abstract Non-local patch based methods were until

recently the state of the art for image denoising but

are now outperformed by CNNs. In video denoising

however, they are still competitive with CNNs, as they

can effectively exploit the video temporal redundancy,

which is a key factor to attain high denoising perfor-

mance. The problem is that CNN architectures are not

compatible with the search for self-similarities. In this

work we propose a simple, yet efficient way to feed video

self-similarities to a CNN. The non-locality is incorpo-

rated into the network via a first non-trainable layer

which finds for each patch in the input image its most

similar patches in a search region. The central values

of these patches are then gathered in a feature vector

which is assigned to each image pixel. This information

is presented to a CNN which is trained to predict the
clean image. We apply the proposed method to image

and video denoising. In the case of video, the patches

are searched for in a 3D spatio-temporal volume. The

proposed method achieves state-of-the-art results.
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1 Introduction

Advances in image sensor hardware have steadily im-

proved the acquisition quality of image and video cam-

eras. However, a low signal-to-noise ratio is unavoidable

in low lighting conditions if the exposure time is lim-

ited (for example to avoid motion blur). This results in

high levels of noise, which negatively affects the visual

quality of the video and hinders its use for many appli-

cations. As a consequence, denoising is a crucial compo-

nent of any camera pipeline. Furthermore, by interpret-

ing denoising algorithms as proximal operators, several

inverse problems in image processing can be solved by

iteratively applying a denoising algorithm [52]. Hence

the need for video denoising algorithms with a low run-

ning time.

Literature review on image denoising. Image denoising

has a vast literature where a variety of methods have

been applied: PDEs and variational methods (includ-

ing MRF models) [12, 54, 55], transform domain meth-

ods [23], non-local (or patch-based) methods [7, 19],

multiscale approaches [28], etc. See [36] for a review.

In the last two or three years, CNNs have taken over

the state of the art. In addition to attaining better re-

sults, CNNs are amenable to efficient parallelization on

GPUs potentially enabling real-time performance. We

can distinguish two types of CNN approaches to image

denoising: trainable inference networks and black box

networks.

In the first type, the architecture mimics the op-

erations performed by a few iterations of optimization

algorithms used for MAP inference with MRFs prior

models. Some approaches are based on the Fields-of-

Experts model [54], such as [5, 15, 58]. The architec-

ture of [66] is based on EPLL [74], which models the
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a priori distribution of image patches as a Gaussian

mixture model. Trainable inference networks reflect the

operations of an optimization algorithm, which leads in

some cases to unusual architectures, and to some re-

strictions in the network design. For example, in the

trainable nonlinear reaction diffusion network (TNRD)

of [15] even layers must be an image (i.e. have only one

feature). As pointed out in [34] these architectures have

strong similarities with the residual networks of [30].

The black-box approaches treat denoising as a stan-

dard regression problem, not using much of the domain

knowledge acquired during decades of research in de-

noising. The first denoising approaches using neural

networks were proposed in the mid and late 2000s. Jain

and Seung [33] proposed a five layer CNN with 5 × 5

filters, with 24 features in the hidden layers and sig-

moid activation functions. Burger et al. [11] reported

the first results competitive with patch-based meth-

ods using a multilayer perceptron trained to denoise

17 × 17 patches, but with a heavy architecture. More

recently, DnCNN [71] obtained impressive results with

a far lighter 17 layer deep CNN with 3 × 3 convolu-

tions, ReLU activations and batch normalization [32].

This work also proposes a blind denoising network that

can denoise an image with an unknown noise level σ ∈
[0, 55], and a multi-noise network trained to denoise

blindly three types of noise. A faster version of DnCNN,

named FFDNet, was proposed in [72], which also al-

lows handling spatially varying noise by adding a noise

map σ(x) as an additional input. The architectures of

DnCNN and FFDNet keep the same image size through-

out the network. Other architectures [13, 44, 57] use

pooling or strided convolutions to downscale the im-

age, and then up-convolutional layers to upscale it back.

Skip connections connect the layers before the pooling

with the output of the up-convolution to avoid loss of

spatial resolution. Skip connections are used extensively

in [61].

Although these architectures produce very good re-

sults, for textures formed by repetitive patterns non-

local patch-based methods still perform better [11, 71].

Some works have therefore attempted to incorporate

the non-local patch similarity into a CNN framework.

Qiao et al . [50] proposed inference networks derived

from the non-local FoE MRF model [60]. This can be

seen as a non-local version of the TNRD network of

[15]. A different non-local TNRD was introduced by

[37]. BM3D-net [69] pre-computes for each pixel a stack

of similar patches and feeds them into a CNN that re-

produces the operations done by (the first step of) the

BM3D algorithm: a linear transformation of the group

of patches, a non-linear shrinkage function and a sec-

ond linear transform (the inverse of the first). The lin-

ear transformations and the shrinkage function are the

trainable parameters. In [17] the authors propose an

iterative approach that can be used to reinforce non-

locality to any denoiser. Each iteration consists of the

application of the denoiser followed by a non-local fil-

tering step. An inconvenience is that the resulting algo-

rithm requires to iterate the denoising network. Train-

able non-local modules have been recently proposed by

using differentiable relaxations of the nearest neighbor

[39] and k nearest neighbors [48] selection rules, or us-

ing Graph CNNs [65], where the graph edges encode

the non-local connections between pixels with similar

features. These approaches are very interesting as they

allow the combination of local and non-local interac-

tions in a trainable way.

Literature review on video denoising. CNNs have been

successfully applied to several video processing tasks

such as deblurring [59], video frame synthesis [41] or

super-resolution [31, 56], but their application to video

denoising has been limited so far. In [14] a recurrent

architecture is proposed, but the results are below the

state of the art. More recently, Tassano et al . [62] pro-

posed DVDnet, a convolutional architecture which pro-

cesses five consecutive frames to predict the central

frame. Each frame is first denoised spatially, and then

warped to frame t via an optical flow. The aligned

frames are stacked together with the central frame and

processed by a “temporal denoising” network. The au-

thors use a non-trainable optical flow, which prevents

the network from being trained end-to-end. Two recent

works proposed networks without explicit motion es-

timation: ViDeNN-G [16] processes three consecutive

frames, and applies first a spatial denoising followed

by temporal denoising, similar to [62], except that the

frames are stacked without aligning them. A different

architecture, named fastDVDnet, was proposed in [63].

Instead of first using a spatial denoising, three consec-

utive noisy frames are stacked together. The stack is

processed by a U-net [53] which predicts the central

frame. To extend the temporal receptive field of the

network, the authors cascade two levels of these net-

works. The overall network takes five frames as input.

Recently [25, 29, 46] focused on the related problem

of image burst denoising reporting very good results.

There is also recent work focusing on unknown noise-

model denoising for videos that use self-supervision for

training [25, 26].

Before the advent of CNNs, patch-based methods

were the state of the art [3, 10, 18, 24, 43, 67], and some

continue to be competitive in terms of denoising perfor-

mance [3, 24], albeit with a larger computational cost).

They exploit extensively the self-similarity of natural
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Fig. 1: Illustration of the proposed Video Non-Local Network (VNLnet). The first module performs a patch-wise

nearest neighbor search across neighboring frames. Then, the current frame, and the feature vectors fnl of each

pixel (the center pixels of the nearest neighbors) are fed into the network.

images and videos, namely the fact that most patches

have several similar patches around them (spatially and

temporally). Each patch is denoised using these simi-

lar patches, which are searched for in a region around

it. The search region generally is a space-time cube,

but more sophisticated search strategies have also been

used. Because of the use of such broad search neighbor-

hoods these methods are called non-local. While these

video denoising algorithms perform very well, they of-

ten are computationally costly.

Patch-based methods usually follow three steps that

can be iterated: (1) search for similar patches, (2) de-

noise the group of similar patches, (3) aggregate the de-

noised patches to form the denoised frame. VBM3D [18]

improves the image denoising algorithm BM3D [19] by

searching for similar patches in neighboring frames us-

ing a “predictive search” strategy which speeds up the

search and gives some temporal consistency. VBM4D

[43] generalizes this idea to 3D patches. In VNLB [2],

video extension of [35], spatio-temporal patches that

were not motion compensated are used to improve the

temporal consistency. In [24] a generic search method

extends every patch-based denoising algorithm into a

global video denoising algorithm by extending the patch

search to the entire video. SPTWO [10] and DDVD [9]

use optical flow to warp the neighboring frames to each

target frame. Each patch of the target frame is then

denoised using the similar patches in this volume with

a Bayesian strategy similar to [35]. Recently, [67] pro-

posed to learn an adaptive optimal transform using

batches of frames.

Patch-based approaches have also been applied in

frame-recursive denoising methods [4, 27], that denoise

each frame using only the corresponding noisy frame

and the previous denoised frame.

Contributions. In this work we propose a strategy to

exploit non-local information with a CNN in the con-

text of image and video denoising. It works particularly

well in the case of video denoising, where it achieves

state-of-the-art results.

The method first computes for each image patch

the n most similar neighbors in a rectangular spatio-

temporal search window and gathers their central pixels

forming a feature vector which is assigned to each im-

age location. This results in an image with n channels,

which is fed to a CNN trained to predict the clean im-

age from this high dimensional vector. We trained our

network for grayscale and color video denoising. Prac-

tically, training this architecture is made possible by a

GPU implementation of the patch search that allows

computing the nearest neighbors efficiently.

To train our network we created a dataset of 17k

video segments. In the two testing datasets, our net-

work obtains state-of-the-art results on both color and

grayscale video denoising. The code to generate the

datasets and reproduce our results is available online1.

A preliminary version of this work was presented in [21].

The present version includes an extension to color videos,

a detailed comparison with recent works, extended dis-

cussions comparing these methods, and new experiments.

2 Proposed method

Let u be a grayscale video and u(x, t) denote its value

at pixel position x in frame t. We observe v, a noisy

version of u contaminated by additive white Gaussian

noise:

v = u+ r, where, r(x, t) ∼ N (0, σ2). (1)

1 The code to reproduce our results, the training and test-
ing datasets can be found at https://github.com/axeldavy/
vnlnet.
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Fig. 2: Spatio-temporal video crop (top row) and the features extracted by the non-local search for the central

frame (bottom row), applying the restriction of one neighbor per frame.

Our video denoising network processes the video

frame by frame. Before it is fed to the network, each

frame is pre-processed by a non-local patch search mod-

ule which computes a non-local feature vector at each

image position. A diagram of the proposed method is

shown in Figure 1. We call our method VNLnet for

Video Non-Local Network.

2.1 Non-local features

Each frame in the video is pre-processed by the non-

local patch search module to produce a 3D tensor fnl

of n channels. This is the input to the network. The

parameter n is the number of nearest neighbor patches

searched for each pixel by this pre-processing module.

Let P be a patch of size s × s centered at pixel x

in frame t. The patches are arranged as vectors with s2

components. The patch search module computes the L2

distances between the patch P and the patches in a 3D

rectangular search region of size ws ×ws ×wt centered

at (x, t). The positions of the n most similar patches

are (xi, ti), ordered either by increasing distance or by

increasing frame index ti.

The pixel values at those positions are gathered to

produce the n-dimensional non-local feature vector as-

sociated to pixel (x, t):

fnl(x, t) = [v(x1, t1), ..., v(xn, tn)]. (2)

The non-local features correspond to n images which

resemble the frame v(·, t) (see Figure 2). One of them

is v(·, t) itself, as the reference patch P is always among

the n nearest neighbors. The remaining n−1 images are

built from the central pixels of the most similar patches

to each patch in v(·, t).

One neighbor per frame. We will also consider a re-

stricted version of the patch search, not allowing more

than one match per-frame. In this variant, we set the

number of matches n to be equal to the number of

frames in the search region, resulting in a match for

each frame. The neighbors are sorted by frame index

instead of the patch distance. With this configuration,

the ith non-local feature map corresponds to a warped

version of the ith neighboring frame, aligned to the ref-

erence frame t. An example is shown in Figure 2, for

n = 15. This can be related to [62, 68], which align

the input frames using an optical flow. Indeed patch

matching can be seen as a rough optical flow with in-

teger displacements.

Other alternatives. The proposed non-local features are

inspired by classical patch-based methods such as [8].

Selecting similar patches with the L2 distance and ex-

tracting their central pixel is possibly the simplest way

of providing the network with a non-local context. The

L2 distance is widely used, and was shown to be op-

timal for additive white Gaussian noise (AWGN) [22].

The same work also shows that other patch distances

should be used for other noise distributions.

We considered some alternatives to feeding only the

central pixels to the network: such as providing as well

the patch similarities (which could be used by the net-

work to ignore bad matches), or extracting a small

patch (3×3 or 5×5) around the center of every match-

ing patch, instead of the central pixel. However, we did

not observe a significant improvement to justify the in-

crease in complexity: the differences in the validation

PSNR for these variants were within a 0.1dB range.

The reason for this is probably that the added pixels in

the patch around the central pixel are redundant with

the central pixels of the similar patches for neighboring

pixels.

In a previous version of our work [21] we also in-

cluded four 1 × 1 convolutional layers as a trainable

transformation of the non-local features. We removed
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them in this work as we found that the same perfor-

mance can be achieved with a simpler design.

2.2 Network architecture

For processing the non-local features, we considered

standard architectures used in image restoration mod-

ifying their input layer to the n channel input tensor.

We have tested three such architectures.

DnCNN. The DnCNN architecture was proposed in [71]

for still image denoising. It consists of a feed-forward

network with 17 layers with 64 3×3 convolution kernels,

each one followed by batch normalization and ReLU ac-

tivations. The output layer is a 3× 3 convolution. The

network outputs a residual image, which has to be sub-

tracted to the noisy image to get the denoised one.

U-Net. U-Nets (also called hourglass networks) have

been introduced in [53] for image segmentation. This ar-

chitecture consists of an encoder-decoder convolutional

network. The encoder part downscales the input by a

series of pooling layers or strided convolutions, whereas

the decoder upscales the coarse features to the desired

output resolution. The differentiating aspect of U-Nets

from previous encoder-decoder networks are skip con-

nections that bypass each coarser scale. These networks

have been applied to many tasks, among them denois-

ing of both single images [13, 57] and videos [62]. In

our experiments, we use the U-Nets blocks of [63], ex-

cept that the first two layers, which feature group con-

volutions and a number of kernels computed from the
number of input frames, are replaced by two standard

convolution layers of 32 kernels.

EDSR. EDSR [38] is a residual CNN architecture tuned

for super-resolution. The main architectural differences

with DnCNN are the introduction of skip connections

every two convolution layers, and the removal of the

batchnorm layers. Thus in our experiments we took our

DnCNN networks and applied these two changes (the

number of convolutional layers and their parameters are

kept).

3 Datasets and training

We denote by F the application of the network. The

input to F at time t is fnlt = fnl(·, t), the n-channel

image with non-local features gathered from a window

of frames around t. The training loss is the mean square

error (MSE) between the reconstructed frame and the

ground truth clean frame:

l(F(fnlt ), ut) = ||F(fnlt )− ut||22. (3)

We use residual training, as in [71]. This means that the

network actually predicts the noise, and therefore the

denoised image is obtained by subtracting the predicted

noise from the noisy input.

For RGB videos, we compute the patch search on

grayscale frame resulting from averaging the color chan-

nels. To form the non-local features we take the RGB

components of the central pixels of the matching patches,

resulting in a input tensor with 3n channels. For RGB

videos we only trained a DnCNN network, with 25 lay-

ers and 96 channels (i.e. about three times the number

of parameters used for grayscale video).

3.1 Datasets

For the training and validation sets we used a database

of short segments of 16 frames extracted from YouTube

videos. Only HD videos with Creative Commons license

were used. From each video we extracted several seg-

ments, separated by at least 10s. In total the database

consists of 16950 segments extracted from 1068 videos,

organized in 64 categories (such as antelope, cars, fac-

tory, etc.). As the original videos might contain com-

pression artifacts, noise, etc, we downscaled the video

to a height of 540 pixels. This removes the minor arti-

facts of the videos and better represents clean targets.

In addition, we randomized the anti-aliasing filter width

(Gaussian blur) of the downscaling. This results in a va-

riety of sharpness/blur in the training dataset, and thus

helps reducing dataset bias. We separated 6% of the

videos of the database for the validation (one video for

each category). For grayscale networks, grayscale data

is obtained by converting the previous color datasets.

For training we ignored the first and last frames of

each segment for which the 3D patch search window did

not fit in the video. During validation we only consid-

ered the central frame of each sequence. The resulting

validation score is thus computed on 503 sequences (1

frame each).

For testing, we used two distinct datasets. The first

one is the dataset of [1], which was extracted from the

Derf’s Test Media collection.2 It is composed of seven

sequences of 100 frames of size 960×540. In this dataset,

the camera is either still or has a smooth motion. The

second one is the test-dev split of the DAVIS video

2 https://media.xiph.org/video/derf
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segmentation challenge [49]. It consists of 30 videos hav-

ing between 25 and 90 frames. In this dataset, the mo-

tion is more challenging. In order to remove compres-

sion artifacts and noise present in the original images,

both datasets were obtained with a similar downscaling

as for the training set (the original images ranged be-

tween HD and 4K). Each dataset was processed using

a different anti-aliasing filter width.

3.2 Training details

At each training epoch, first a subset of the videos of the

dataset is selected and noise is added to generate noisy

samples. Second the non-local patch search module is

run on every video selected. This results in videos of

non-local features where each frame has n channels con-

taining the output of the patch search module. Third

the network is trained on mini-batches built from small

crops extracted at random positions on the videos of

non-local features.

During training, we ignore spatio-temporal border

effects by excluding the first and last wt/2 frames and

ignoring crops at borders. At testing time, we simply

extended the video by mirroring it at the start and the

end of the sequence and adding black borders for the

patch-search module.

The training epochs comprise 17000 mini-batches

of size 64 square crops of 44 pixels width. We trained

for 30 epochs using a combination of recent new opti-

mization techniques which give small performance im-

provements on various machine learning tasks: Looka-

head [73], RAdam [40] and Gradient Centralization [70].3

In addition, we reduced the learning rate at epochs

15 and 27 (from 1e−3 to 1e−4 and 1e−6 respectively).

Training a network takes about 14 hours on a NVIDIA

TITAN V for grayscale videos, and 24 hours for color

videos.

4 Experiments and parameter tuning

In this section we evaluate the effect of the non-local

features first in still image denoising, and then, after

studying the impact of the parameters, in video denois-

ing. Unless otherwise stated, the results reported were

obtained using a DnCNN architecture for the fusion

network. The network is trained from scratch for each

different parameter setting.

3 We used the implementation of https://github.com/

lessw2020/Ranger-Deep-Learning-Optimizer

original noisy CNN CNN+NLF

CNN+NLF

(oracle)

Fig. 3: Results on still image denoising (AWGN with

σ = 25). Original clean image, noisy image, result ob-

tained with the baseline CNN, result of incorporating

the non-local features by finding the nearest neighbors

on the noisy image or the oracle noise-less image. Con-

trast has been linearly scaled for better visualization.

4.1 The potential of non-locality

Although the focus of this work is in video denoising, it

is still interesting to study the performance of the pro-

posed non-local CNN on images. Figure 3 shows a com-

parison between a baseline CNN (a 15 layer DnCNN [71])

and a version of our method trained for still image

denoising (it collects 9 neighbors by comparing 9 × 9

patches and uses a 15 layer DnCNN architecture. The

non-local features are sorted by patch distance. The re-

sults with and without non-local information are very

similar. The only differences are visible on very self-

similar parts like the shutters in Figure 3. This is con-

firmed by quantitative results. The average PSNR on

the CBSD68 dataset [45, 71] (noise with σ = 25) ob-

tained for the baseline CNN is of 31.24dB. The non-

local CNN only leads to a 0.04dB improvement (31.28dB).

The figure also shows the result of an oracular method:

the nearest neighbor search is performed on the noise-

free image, though the pixel values are taken from the

noisy image. The method obtains an average PSNR of

31.85dB, 0.6dB over the baseline. The oracular results

show that non-locality has a great potential to improve

the results of CNNs. However, this improvement is hin-

dered by the difficulty of finding accurate matches in

the presence of noise. A way to reduce the matching

errors is to use larger patches. But on images, larger

patches have fewer matches. In contrast, as we will see

below, the temporal redundancy of videos allows using

very large patches.

4.2 Parameter tuning for video denoising

The non-local search has three main parameters: The

patch size, the number of retained matches and the size

of in the search region (both spatially and in number of

frames). We expect the best matches to be past or fu-

ture versions of the current patch, so we set the number

of matches as the number of frames on which we search.
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Patch
size

no patch 9×9 15×15 21×21 31×31 41×41

ONPF 33.88 35.70 36.62 37.07 37.39 37.51

free 33.88 35.68 36.55 36.95 37.20 37.32

(a) Impact of the patch size (with 15 frames)

# search frames no patch 3 7 11 15

ONPF 33.88 35.85 36.93 37.27 37.51

(b) Impact of number of frames (patch size is 41 × 41)

search size 5 × 5 11 × 11 21 × 21 41 × 41 51 × 51

ONPF 36.84 37.13 37.35 37.51 37.53

(c) Impact of search region size (patch size is 41 × 41, with
15 frames, ONPF)

Table 1: Effect of patch size, search region size and num-

ber of frames (the number of neighbors is kept equal to

the number of frames). All values correspond to the

PSNR computed on the validation set for noise with

σ = 20. In 1a we compare the performance with the

one-neighbor-per-frame restriction (ONPF) and with-

out it (free).

# fusion net DnCNN U-Net EDSR
PSNR 37.51 37.42 37.55

Table 2: Impact of the architecture of the CNN used

for fusing the features.

# stacked frames 1 3 7 11 15
PSNR 33.88 35.56 36.22 36.42 36.57

Table 3: Impact of the number of frames considered

for the video-DnCNN network (the network input is a

3D crop rather than the result of the non-local search).

PSNR on the validation set AWGN with σ = 20.

In the following we study the impact of the different

parameters. Note that for each different parameter, we

retrain the fusion network to make sure that it is the

optimal one for the chosen parameters. In all cases, we

consider denoising of grayscale videos with σ = 20.

Patch size. In Table 1a, we explore the impact of the

patch size used for the matching. For each patch size we

show results with the unconstrained patch search and

with the restriction of one neighbor per frame (ONPF).

In both cases, the results improve with the patch size,

even for patches much larger than the ones typically

used in patch-based methods. The ONPF restriction

produces a slight improvement in performance, partic-

ularly for larger patches. Figure 4 shows visual results

obtained with the ONPF restriction. As the patch size

grows, there is a noticeable increase in the amount of

details recovered from the background.

Number of frames in the search region. In Table 1b and

Figure 5, we see the impact of the number of frames

used in the search window (and thus the number of

nearest neighbors). One can see that the more frames,

the better. Increasing the number of frames beyond 15

(7 past, current, and 7 future) does not justify the small

increase of performance. Foreground moving objects are

unlikely to get good neighbors for the selected patch

size, unlike background objects, thus it comes to no

surprise that the visual quality of the background im-

proves with the number of patches, while foreground

moving objects (for example the legs in Figure 5) do

not improve much.

Spatial size of the search region. Results varying the

size of the search region are shown in Table 1c. The

results improve for larger search regions, although with

diminishing returns. From 41×41 to 51×51 there is no

significant improvement. Our search region is not com-

pensated by motion, thus having a large search region

is necessary to find matching patches on distant frames

for moving objects.

Choice of the fusion network. We have evaluated the

performance obtained with the two other architectures

for the fusion network described in Section 2. The re-

sults obtained are shown in Table 2. The three networks

were trained with the same training set and the same

procedure. All networks achieve a very similar PSNR,

within a 0.13dB range. This shows that the fusion ar-

chitecture is not critical.

Throughout the rest of the paper, we shall use 41×
41 patches and a search volume of 41×41 pixels and 15

frames as the parameters for the patch search. For the

fusion network we will use the DnCNN architecture.

4.3 Discussion

4.3.1 Surprisingly large patches

An immediate question is why do such big patches achieve

such a good performance. On one hand, increasing the

patch size has the effect of reducing the variance of the

noise in the patch distance, resulting in matches that

are less affected by it. This explains the details recov-

ered in the background in Figures 4 and 5. The large

size allow to reliably match the background patches

even if the texture seems to be completely obfuscated

by noise.
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Input Noisy No patch Patch width 9 Patch width 15 Patch width 21 Patch width 31 Patch width 41

Fig. 4: Example of denoised results with our method when changing the patch size, respectively no patch search,

9× 9, 15× 15, 21× 21, 31× 31 and 41× 41 patches. The 3D search window has 15 frames for these experiments.

Input Noisy No Patch 3 Neighbors 7 Neighbors 11 Neighbors 15 Neighbors

Fig. 5: Example of denoised results with our method when changing the number of frames considered in the 3D

search window (respectively no patch search, 3, 7, 11 and 15). 41× 41 patches were used for these experiments.

On the other hand, a large patch size becomes a dis-

advantage for objects with a non-translational motion.

In these cases, finding similar matches in the neighbor-

ing frames becomes less likely for larger patches. This

can be seen in Figure 2. The person in the foreground

is rotating as she performs a backflip jump. Patches

in the foreground object have similar matches only for

the closest neighboring frames (e.g. the face cannot be

reconstructed for t ± 4), whereas patches in the back-

ground can be matched throughout all the temporal

extend of the search region. As a consequence, different

pixels will have a different number of relevant non-local

features. The fusion network learns during training to

be robust to these bad matches. It seems to be able to

identify when the patch search fails, relying only on the

non-local features that are correlated with the target

pixel, and adapting accordingly the amounts of spatial

denoising and non-local denoising.

This phenomenon can be observed in Figure 6, where

we compare the results of the proposed VNLnet against

the single frame DnCNN from [71] and a Non-Local

Pixel Mean (NLPM), which simply averages the values

of the non-local features given by the patch-matching

(please ignore for the moment the column labeled video-

DnCNN ). On the first two rows, the motion is consis-

tent on the whole crop, and thus the output of NLPM

is sharp, indicating good matches. As a result, VNL-

net’s output shows more details than the single frame

DnCNN. However the Non-Local Pixel Mean output is

blurry for the person in the third row and the back-

ground of the fourth row. For these regions, VNLnet

and DnCNN both have similar quality. Meanwhile, for

the regions of these two crops with good matches (the

background of the third row, and the person of the

fourth row), the quality is improved. Using bigger patches

will increase the number of patches covering regions of

conflicting motion. As a result, we see that the perfor-

mance gain from 31× 31 to 41× 41 is rather small.

4.3.2 A note on motion handling

To evaluate the effectiveness of the non-local features

we also train a network with the same architecture, but
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Input Noisy Non-Local Pixel Mean DnCNN video-DnCNN VNLnet (Ours)

Fig. 6: Example of denoised result for Non-Local Pixel Mean, DnCNN, video-DnCNN (see Section 4.3.2) and

VNLnet, for AWGN with σ = 20. The four crops highlight the results on frames feature various kinds of motion.

The videos are part of the DAVIS dataset. Non-Local Pixel Mean corresponds to the average of the output of the

non-local patch search.

instead of feeding it with the n non-local features we

feed it with the stack of the n neighboring frames. We

call this network video-DnCNN. We do this for different

values of n, and show the results obtained on Table 3.

The performance of the video-DnCNN network in-

creases with the number of frames, although less than

the proposed VNLnet (see Table 1b). In particular, for

video-DnCNN the average PSNR on the validation set

stagnates at 11 frames. The reason for this is that while

the denoising performance increases on sequences with

majority of small and smooth motions, it drops signifi-

cantly when there are many large or irregular motions.

Without the non-local patch-search module, the net-

work has to learn to handle motion implicitly, which

makes the task significantly harder. As the number of

input frames increases, so does the complexity of the

internal motion compensation the network has to learn

to denoise accurately. The video-DnCNN network then

overfits to the most frequent motion patterns in the

training set, and fails when it encounters a different mo-

tion. By factoring out the motion, the non-local patch

search module removes the need for the network to learn

to adapt to various types of motion, enabling a better

generalization on various moving scenes.

This can be seen in Figure 6, by comparing the re-

sults of video-DnCNN and VNLnet, for objects with

fast/irregular motion patterns. VNLnet is able to re-

cover much more details, thanks to the patch search.

Figure 7 shows the PSNR gain of VNLnet over video-

DnCNN for each sequence on the grayscale DAVIS test

set. The gain given by the non-local patch-search mod-

ule is significant, except only for two sequences. These

feature fixed cameras and static backgrounds covering

most of the frame. The sequences with larger gains have

complex motion.

Texture is also an important aspect, as patches with

a distinct and highly contrasted texture can be matched

more reliably. In Figure 8 we plot the per patch PSNR
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Fig. 7: PSNR gain of VNLnet versus the network with-

out patch search of Table 3 (15 input frames) on

grayscale DAVIS (σ = 20) (35.48db versus 34.59db).

gain of VNLnet against the video-DnCNN method and

a single frame DnCNN, in terms of a measure of patch

”texturedness”. We measure patch texturedness as the

sum of the squared gradient magnitudes in a patch:

T (x, t) =
∑
h

‖∇u(x+ h, t)‖2 (4)

where h varies in a patch centered at x, ∇u is spa-

tial gradient of u(·, t) and ‖ · ‖ is the Euclidean norm.

The texturedness is computed on the clean video. We

denoised the grayscale DAVIS test set with σ = 20,

and for each 41 × 41 patch, we compute its textured-

ness T (x, t) and the PSNR gain, which we denote by

G(x, t). We bin these quantities in a 2D histogram with

400× 400 bins which is illustrated by the grayscale im-

age in Figure 8 (darker pixels correspond to bins with

higher frequency). The figure also shows in red the

mean PSNR gain for each level of texturedness, and

in blue the same mean, but multiplied by the relative

frequency of each texturedness level in the dataset.

The figures confirm that the PSNR gain with re-

spect to both video-DnCNN and single image DnCNN

increases with patch texturedness. As expected, the gain

is larger with respect to the single frame DnCNN. For

patches with very low texturedness the video-DnCNN

performs better than the VNLnet. This makes sense,

as for those patches the matching will be influenced by

the noise. A similar behaviour has been observed for

patch-based methods in global video denoising [24] and

external denoising [47]. Such patches are relatively rare

in the test set, which explains the overall positive gains

in Figure 7.

A related question is whether better results could be

obtained replacing the patch search by a frame match-

ing using a standard optical flow. The results of Ta-

ble 1a highlight the importance of very reliable matches,

and thus the optical flow would have to be chosen with

care. In [63], the authors of DVDnet [62] stressed the
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Fig. 8: Patch PSNR gain between VNLnet versus

video-DnCNN (top) and DnCNN (bottom) on grayscale

DAVIS with σ = 20, as a function of a measure of the

patch texturedness (defined here by the patch gradi-

ent magnitude). The grayscale image depicts the 2D

histogram of PSNR gains and patch texturedness com-

puted from all 41× 41 patches in the test set. The red

curve shows the average PSNR gain for each textured-

ness level, and the blue curve shows the same average

PSNR gain, but weighted by the frequency of each tex-

turedness level.

difficulty of finding a fast and reliable optical flow, and

moved away from it for FastDVDnet [63]. In [68], the

optical flow is computed with a reduced version of SpyNet [51],

which is trained together with the rest of the network.

In our case, the patch search module is not trainable,

and the network is trained to process its output.

5 Comparison with other methods

In this section, we compare the proposed method VNL-

net to VBM3D [18], VNLB [2], and DnCNN [71] for

grayscale videos, and VBM3D [18], VNLB [2], DnCNN

[71], ViDeNN-G [16], DVDnet [62], and FastDVDnet

[63] for color videos. DnCNN was applied frame-by-

frame.

We trained grayscale and color networks for AWGN

of standard deviation 10, 20 and 40. To highlight the

fact that a CNN method can be easily re-targeted to
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Input Noisy DVDnetViDeNN-G VNLB VNLnet (Ours)FastDVDnet

Fig. 9: Example of denoised result for several algorithms (AWGN with σ = 20) on a sequence of the color DAVIS

dataset [49]. The crops highlight the results on non-moving and moving parts of the video.

G
R

A
Y

S
C

A
L

E

Method σ = 10 σ = 20 σ = 40

D
E

R
F

SPTWO 39.56 / .9675 35.99 / .9368 30.93 / .7901

VBM3D 38.24 / .9599 34.68 / .9100 31.11 / .8360

VBM4D 38.88 / .9534 35.10 / .9169 31.40 / .8432

VNLB 40.57 / .9731 36.81 / .9428 32.95 / .8856

DnCNN 37.28 / .9482 33.60 / .8973 30.09 / .8156

VNLnet 40.22 / .9730 36.51 / .9415 32.60 / .8772

Corr. Gaussian noise Uniform S&P 25%

VNLB 25.39 / .5922 23.49 / .7264

VNLnet 32.92 / .8899 48.05 / .9952

σ = 10 σ = 20 σ = 40

D
A

V
IS VBM3D 37.43 / .9425 33.75 / .8870 30.12 / .8068

VNLB 38.84 / .9634 35.26 / .9240 31.88 / .8622

DnCNN 36.80 / .9451 32.94 / .8878 28.69 / .7940

VNLnet 39.10 / .9661 35.53 / .9305 32.03 / .8692

C
O

L
O

R

D
E

R
F

VBM3D 38.19 / .9560 34.80 / .9165 31.65 / .8568

VNLB 40.93 / .9760 37.62 / .9528 33.97 / .9042

DnCNN 38.00 / .9588 34.44 / .9171 31.14 / .8520

ViDeNN-G 38.16 / .9588 35.34 / .9291 32.25 / .8757

DVDnet 39.08 / .9689 36.48 / .9474 33.43 / .9051

FastDVDnet 39.01 / .9669 36.16 / .9427 33.21 / .9010

VNLnet 40.46 / .9748 37.36 / .9542 33.79 / .9079

D
A

V
IS

VBM3D 38.43 / .9591 34.74 / .9157 31.38 / .8473

VNLB 40.31 / .9725 36.79 / .9420 33.34 / .8896

DnCNN 38.91 / .9655 35.24 / .9278 31.81 / .8637

ViDeNN-G 38.46 / .9619 35.47 / .9314 32.32 / .8756

DVDnet 39.31 / .9702 36.66 / .9488 33.61 / .9059

FastDVDnet 39.74 / .9714 36.50 / .9457 33.35 / .9013

VNLnet 40.70 / .9760 37.32 / .9528 33.72 / .9054

Table 4: Quantitative comparison (PSNR and SSIM) of

other methods versus the proposed VNLnet on two test

sets, both in grayscale and in color. We highlighted the

best performance in bold and the second best in bold

italics.

different noise distributions, we also trained a grayscale

network for Gaussian noise correlated by a 3 × 3 box

kernel such that the final standard deviation is σ = 20,

and 25% uniform Salt and Pepper noise (removed pixels

are replaced by random uniform noise).

Table 4 shows the denoising results obtained on the

two compared datasets. For grayscale videos, we also

include results for SPTWO [10] and VBM4D [42], com-

puted in [1] for the DERF dataset. Figures 9 and 10

show results for the most relevant RGB methods. VNLB

(Video Non-Local Bayes) outperformed on average all

other methods on the DERF dataset. Meanwhile on the

DAVIS dataset, our method performed the best both in

grayscale and color, for all the three tested noise lev-

els. VNLB ranked second, except in color for high noise

levels, where it was surpassed by DVDnet and FastD-

VDnet.

A comparison of the results for grayscale and color

in Table 4 reveals that CNN-based methods exploit bet-

ter the correlations between color channels: while for

grayscale, VBM3D significantly outperforms DnCNN

in PSNR on the DAVIS dataset, the reverse occurs for

color. Moreover, VNLnet performed proportionally bet-

ter in color than in grayscale. This should not come as

a surprise, since the way in which VBM3D and VNLB

treat color is rather heuristic: an orthogonal color trans-

form is applied to the video which is supposed to decor-

relate color information. Then the processing of each

color channel of a group of patches is done indepen-

dently.

In order to better compare qualitative aspects of the

results we show some details in Figures 9 and 10. For

some scenes, VNLnet recovers significantly more details

in the background, as shown in Figure 9. In general, we

observe that VNLnet, and the other video CNN meth-

ods (ViDeNN-G, DVDnet, and FastDVDnet) have bet-

ter background reconstruction than VNLB. This can be

seen in Figure 9 and Figure 10. Some details however
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Fig. 10: Examples of areas where the level of restored detail of the methods differs significantly (AWGN with

σ = 40) in videos of DERF.
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are better recovered by VNLB and VNLnet. For exam-

ple in Figure 10 both methods recover the red lights in

the top left corner of the image in the first column, while

for the three other methods the lights do not appear.

In the second column, VNLB does not reconstruct the

trees as well as the CNN-based methods, but manages

to recover the color of the clothes of the person in the

bottom left. VNLnet not only recovers better the tree

structure, but also recovers the clothes correctly. None

of the methods restore satisfyingly the grass texture in

the third column of Figure 10 for the tested noise level.

This highlights that there is room for improvement. All

five methods achieve reasonable temporal consistency,

which is an important quality requirement for video de-

noising.

One of the benefits of CNNs over traditional model-

based approaches is that they can be easily targeted to

handle other noise distributions by simply re-training

them. We demonstrate this by reporting the results

of our method on salt-and-pepper noise and correlated

noise in Table 4. We include the result of VNLB as a

reference.

In summary, the proposed approach for video de-

noising obtains state-of-the-art results on both test sets.

In particular, it outperforms previous CNN approaches.

In light of this, we can conclude that effectively exploit-

ing a large number of surrounding frames is key. Indeed,

the proposed VNLnet uses 15 frames, in comparison to

the 3 frames used by ViDeNN-G and 5 frames of DVD-

net and FastDVDnet. Most of these methods avoid re-

lying on an explicit optical flow computation, which

can be unreliable given that the input frames are noisy.

FastDVDnet and ViDeNN-G do so by performing an

early fusion of triplets of consecutive frames without

alignment. The non-local features computed via patch

correspondences result in an effective way to present

the information of large frame neighborhoods to a net-

work that merges them. Training the fusion network is

then straightforward.

5.1 Running times and number of parameters

In Tables 5 and 6, we compare the running time in

grayscale and color of several methods when denoising

a video frame. As before, we consider DnCNN as the

fusion network. In Table 5, the compared methods are

run on a single CPU core, while in Table 6, a system

with an Intel Xeon W-2145 and a NVIDIA TITAN V

is used. For both tables, the loading and writing time

of the videos were subtracted. Since we do not have

a CPU implementation of the patch search layer, we

cannot measure a CPU time for VNLnet. On the GPU,

for grayscale videos of 960 × 540 the non-local search

takes 822ms, where as the DnCNN fusion network takes

95ms. Extrapolating this, we could expect a CPU time

8 to 9 times slower than DnCNN.

Most of the running time of our method is spent in

the patch search. Our GPU implementation of patch

search is similar to the convolution-based patch search

described in [20]. With the default parameters, the non-

local search is costly because matches are searched in 15

frames for patches centered at every pixel of our image.

These parameters can be modified, trading off speed by

denoising quality. In the Tables 7 we show how the time

spent in the patch search as a function of the patch size,

spatial search region size and number of frames. These

behave as expected: the time grows linearly with the

number of frames, and quadratically with respect to

the patch and search sizes. For example, with a search

region of 21 × 21, the per frame patch search time is

reduced by more than three times, while the drop in

PSNR is only 0.16dB (see Table 1c). The table also

shows the patch search time normalized by the number

of frames that need to be aligned in the search region.

The implementation could be further accelerated by

reducing the size of the 3D window using tricks ex-

plored in other papers. VBM3D for example centers

the search on each frame on small windows around the

best matches found in the previous frame. A related

acceleration is to use a search strategy based on Patch-

Match [6].

One of the benefits of the proposed approach is that

the fusion network can be simple, resulting in an easier

training and a smaller memory footprint of the network

weights. The three tested architectures were designed

for single image denoising. This reduces the number of

trainable parameters, in comparison with other video

processing networks. The DnCNN and EDSR networks

have both around 0.56M parameters, while the U-Net

has 1M. For RGB videos, our DnCNN with 25 layers

and 96 channels has 1.9M parameters, roughly the same

as, FastDVDnet [63], which requires 2M parameters as

it uses two U-Nets.

Other works such as [62, 68] use an optical flow sub-

network for aligning the frames. This has the advan-

tage that the alignment can be trained together with

the fusion network [68]. However, the smallest current

optical flow networks have between 1M and 5M param-

eters [64], and take around 50ms to 100ms (depending

on the desired quality) to estimate the optical flow be-

tween a pair of frames.

6 Conclusions

We described an effective way of incorporating tem-

poral non-local information into a CNN for video de-
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VBM3D DnCNN VBM4D VNLB SPTWO
1.3s 13s 52s 140s 210s

Table 5: Running time per frame on a grayscale 960×
540 video for VBM3D, DnCNN, VBM4D, VNLB and

SPTWO on a single CPU core.

VNLB ViDeNN-G DVDnet FastDVDnet VNLnet
26.94s 0.186s 2.67s 0.074s 1.16s

Table 6: Running time per frame on a color 960 ×
540 video for VNLB, ViDeNN, DVDnet, FastDVDnet,

VNLnet on a system with a 16-cores CPU (Intel Xeon

W-2145) and a NVIDIA TITAN V.

9×9 15×15 21×21 31×31 41×41

Per frame 126 201 327 545 822

Normalized 9 14 23 39 59

(a) Average patch search time per frame (in ms) for different
patch sizes on a 960 × 540 video (with a 41 × 41 × 15 search
region), and the averaged time normalized by the depth of
the search region (minus the central frame).

3 7 11 15

Per frame 118 346 585 822

Normalized 59 58 59 59

(b) Average patch search time per frame (in ms) for different
numbers of frames in the search region on a 960 × 540 video
(patch size is 41 × 41, search region spatial size is 41 × 41),
and the averaged time normalized by the depth of the search
region (minus the central frame).

5 × 5 11 × 11 21 × 21 41 × 41 51 × 51

Per frame 54 100 253 822 1269

Normalized 4 7 18 59 91

(c) Average patch search time per frame (in ms) for different
search region spatial sizes on a 960 × 540 video (patch size is
41 × 41, with 15 frames), and the averaged time normalized
by the depth of the search region (minus the central frame).

Table 7: Time spent in the patch search, for different

values of the parameters. We report both the average

total time spent in the search (considering all frames

in the search region) and the time normalized by the

depth of the search region (minus the central frame for

which there is no search).

noising. The proposed method computes for each im-

age patch the n most similar neighbors on a spatio-

temporal window and gathers their central pixels to

form a non-local feature vector which is given to a CNN.

Our method yields a significant gain compared to other

CNN approaches. It has similar performance to the best

non-CNN method evaluated, VNLB, outperforming it

on the largest of our test datasets. In addition, we noted

that CNN approaches tend to better reconstruct back-

grounds than VNLB, which are perceptually relevant

areas. To prevent dataset bias we also proposed a pub-

lic training set comprising 17k videos from 64 different

categories and a simulation strategy that emulates dif-

ferent levels of sharpness.

We have seen the importance of reliable matches:

On the validation set, the best performing method used

patches of size 41 × 41 for the patch search. We have

also noticed that on regions with non-reliable matches

(complex motion), the network seems to revert to a

result similar to single image denoising. Thus we believe

future works should focus on improving this area.
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