Yu Guo

Qiyu Jin

Jean-Michel Morel
email: morel@ens-paris-saclay.fr

Tieyong Zeng
email: zeng@math.cuhk.edu.hk

Gabriele Facciolo
email: gabriele.facciolo@ens-paris-saclay.fr

Joint Demosaicking and Denoising Benefits from a Two-stage Training Strategy

Keywords: Demosaicking, denoising, pipeline, convolutional neural networks, residual

Image demosaicking and denoising are the first two key steps of the color image production pipeline. The classical processing sequence has for a long time consisted of applying denoising first, and then demosaicking. Applying the operations in this order leads to oversmoothing and checkerboard effects. Yet, it was difficult to change this order, because once the image is demosaicked, the statistical properties of the noise are dramatically changed and hard to handle by traditional denoising models. In this paper, we address this problem by a hybrid machine learning method. We invert the traditional color filter array (CFA) processing pipeline by first demosaicking and then denoising. Our demosaicking algorithm, trained on noiseless images, combines a traditional method and a residual convolutional neural network (CNN). This first stage retains all known information, which is the key point to obtain faithful final results. The noisy demosaicked image is then passed through a second CNN restoring a noiseless full-color image. This pipeline order completely avoids checkerboard effects and restores fine image detail. Although CNNs can be trained to solve jointly demosaicking-denoising end-to-end, we find that this two-stage training performs better and is less prone to failure. It is shown experimentally to improve on the state of the art, both quantitatively and in terms of visual quality.

Introduction

The objective of demosaicking is to build a full-color image from four spatially undersampled color channels. Indeed, digital cameras can only capture one color information on each pixel through a single monochrome sensor, and most of them use color filter arrays (CFA) such as the Bayer pattern [START_REF] Bayer | Color imaging array[END_REF] (shown in Figure 1) to obtain images. The raw data collected in this way is missing two-thirds of pixels and is contaminated by noise. Hence, image demosaicking, i.e. the task of reconstructing a full-color image from the incomplete raw data is a typical ill-posed problem.

The conventional method for processing noisy raw sensor data has been to perform denoising and demosaicking as two independent steps. Since demosaicking is a complex interpolation process, the raw noise becomes correlated and anisotropic after demosaicking (see [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] for a detailed discussion), thus losing its independent Poisson noise structure. This means that most classic denoising algorithms are not directly applicable. Indeed, most algorithms rely on the AGWN (additive Gaussian white noise) assumption, which is approximately valid after a simple Anscombe transform has been applied to the raw data. Moreover, most standard demosaicking algorithms with good performance are designed based on the critical noise-free condition. This takes for granted the assumption that the image processing pipeline starts with denoising [START_REF] Kalevo | Noise reduction techniques for bayer-matrix images[END_REF][START_REF] Park | A case for denoising before demosaicking color filter array data[END_REF][START_REF] Lee | Denoising algorithm for cfa image sensors considering inter-channel correlation[END_REF].

However, some researchers have observed that demosaicking first and then denoising yields a better visual quality. Condat [START_REF] Condat | A simple, fast and efficient approach to denoisaicking: Joint demosaicking and denoising[END_REF] proposed to demosaick first and then project the noise into the luminance channel of the reconstructed image before denoising according to the grayscale image. This idea was later refined in [START_REF] Condat | Joint demosaicking and denoising by total variation minimization[END_REF][START_REF] Condat | A generic proximal algorithm for convex optimization-application to total variation minimization[END_REF]. Recently Jin et al. [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] improved the "demosaicking first" pipeline via a simple modification of the traditional color denoiser, and gave the corresponding theoretical explanation.

Both pipelines have significant shortcomings. A "denoising first" pipeline removes noise directly on the CFA image. Yet, CFA image denoising differs from the usual grayscale or full-color image denoising. Indeed, CFA image denoising implies subsampling the CFA image into a half-size four-channel RGGB image, which is then denoised. This leads not only to a poor preservation of image details due to the reduced resolution, but also to a loss of the correlation between the red (R), green (G) and blue (B) channels. As a result, the restored image is oversmoothed and checkerboard effects [START_REF] Danielyan | Cross-color bm3d filtering of noisy raw data[END_REF] are introduced. On the other hand, the "demosaicking first" pipeline also introduces a thorny issue: It requires denoising a demosaicked residual noise whose statistical properties have been changed by a complex interpolation, which are hard to model accurately. This was almost impossible for traditional denoising algorithms, but current datadriven deep learning based methods offer new paths to solve this problem. In recent years, deep convolutional neural networks have achieved great success in computer vision and image processing. In image classification and recognition [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Szegedy | Inception-v4, inceptionresnet and the impact of residual connections on learning[END_REF], denoising [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF][START_REF] Zhang | Ffdnet: Toward a fast and flexible solution for cnn-based image denoising[END_REF][START_REF] Guo | Fast, nonlocal and neural: A lightweight high quality solution to image denoising[END_REF][START_REF] Fang | Multilevel edge features guided network for image denoising[END_REF][START_REF] Hou | Idpcnn: Iterative denoising and projecting cnn for mri reconstruction[END_REF], demosaicking [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF][START_REF] Tan | Color image demosaicking via deep residual learning[END_REF][START_REF] Tan | Deepdemosaicking: Adaptive image demosaicking via multiple deep fully convolutional networks[END_REF][START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF][START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF], superresolution [START_REF] Fang | Soft-edge assisted network for single image superresolution[END_REF][START_REF] Wen | Residual network with detail perception loss for single image super-resolution[END_REF] and other high-level and low-level visual tasks, deep learning methods surpass traditional methods. Since deep learning is data driven, it can find the hidden rules from the data without relying on hand-made filters and a priori knowledge. In this paper, we take advantage of this new flexibility to handle a noise with complex statistical properties, like the one introduced by a "demosaicking first" pipeline.

We therefore implement a "demosaicking first and then denoising" approach by a network with a two-stage training strategy. Convolutional neural networks (CNNs) are first combined with traditional algorithms to obtain an effective demosaicking algorithm. Using this demosaicking as a base, we use another CNN to remove the demosaicked residual noise, whose statistical properties have been changed. Our main contributions are:

• A CNN architecture implementing the "demosaick first and then denoise" pipeline, which effectively restores full-color images from noisy CFA images while preserving more detail and avoiding oversmoothing and checkerboard artifacts.

• Ablation studies show that this architecture and the proposed two-stage training strategy perform better than usual end-to-end approaches, enable a more stable training, and yield state-of-the-art results.

• A modified Inception architecture to implement the two stages of our network. This choice fosters cross-channel information fusion for producing a more accurate estimate of the original image and improves the receptive field to reduce artifacts. In that way, we obtain a lighter network than current state-of-the-art approaches [START_REF] Kokkinos | Deep image demosaicking using a cascade of convolutional residual denoising networks[END_REF][START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] without compromising performance.

The rest of the paper is organized as follows. Section 2 presents related work on demosaicking and denoising. The demosaicking and denoising model is introduced in Section 3. Section 4 provides quantitative and qualitative comparisons with state-of-the-art methods. The concluding remarks are given in Section 5.

Related Work

Demosaicking

Demosaicking is a classic problem with a vast literature. All authors agree that the key to attaining a good demosaicking is to restore the image regions with high-frequency content. Smooth regions are instead easy to interpolate from the available samples. The earliest demosaicking algorithms used methods such as spline interpolation and bilinear interpolation to process each channel. These methods introduce serious zipper effects. In order to eliminate the artifacts at the image edges, Laroche and Prescott [START_REF] Laroche | Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients[END_REF] introduced a direction adaptive filter by selecting a preferred direction to interpolate the additional color values according to gradient values. Inspired by this idea, Adams and Hamilton proposed a direction adaptive inter-channel correlation filter [START_REF] Hamilton | Adaptive color plan interpolation in single sensor color electronic camera[END_REF][START_REF] Adams | Design of practical color filter array interpolation algorithms for digital cameras[END_REF] under the assumption that derivatives of R, G and B are nearly equal. The G channel interpolation is obtained by a discrete directional Taylor formula involving the second order derivative of either the R or the B channel (see [START_REF] Jin | A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms[END_REF]). Once the G channel interpolation was complete, the G channel was taken as a guide image to help the R and B channel interpolation. Many advanced algorithms have still extended the idea of a combination of direction adaptive and inter-channel correlation. In order to make better use of the correlation between channels, Zhang and Wu [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF] developed an adaptive filtering method using directional linear minimum mean square error estimation (DLMMSE). Both horizontal and vertical direction interpolations fail to restore the color value when the pixels are located near some edge or in textured regions resulting in zipper artifacts at those areas. In order to solve this issue, Pekkucuksen and Altunbasak [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF] decomposed the horizontal and vertical directions into four directions of east, west, south, and north on the basis of [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF], and then used the color differences in the four directions to estimate the missing G value. Similarly to [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF], Kiku et al. [START_REF] Kiku | Residual interpolation for color image demosaicking[END_REF] proposed RI which calculates four directions' interpolations of R, G and B channels via a Guided Filter [START_REF] He | Guided image filtering[END_REF], and improves the tentative estimates by substituting a residual technique for the HA interpolation [START_REF] Hamilton | Adaptive color plan interpolation in single sensor color electronic camera[END_REF][START_REF] Adams | Design of practical color filter array interpolation algorithms for digital cameras[END_REF]. The MLRI [START_REF] Kiku | Minimized-laplacian residual interpolation for color image demosaicking[END_REF] and MLRI+wei [START_REF] Kiku | Beyond color difference: Residual interpolation for color image demosaicking[END_REF] were the improved versions of RI by minimizing the Laplacian energy of the guided filter. Moreover, ARI [START_REF] Monno | Adaptive residual interpolation for color and multispectral image demosaicking[END_REF] united the advantages of RI and MLRI by combining both methods in an iterative process with the most appropriate number of iteration steps at each pixel. These last interpolation algorithms have received a detailed mathematical analysis in [START_REF] Jin | A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms[END_REF].

In addition to the above local interpolation algorithms, other classic image processing techniques have been attempted to tackle the problem: algorithms based on non-local similarity [START_REF] Buades | Self-similarity driven color demosaicking[END_REF][START_REF] Duran | Self-similarity and spectral correlation adaptive algorithm for color demosaicking[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF], wavelet-based algorithms [START_REF] Lu | Demosaicking by alternating projections: Theory and fast one-step implementation[END_REF][START_REF] Zhang | A wavelet-gsm approach to demosaicking[END_REF], frequency domain based algorithm [START_REF] Dubois | Frequency-domain methods for demosaicking of bayer-sampled color images[END_REF][START_REF] Dubois | Filter design for adaptive frequency-domain bayer demosaicking[END_REF], and dictionary learning based algorithms [START_REF] Hua | Contextaware joint dictionary learning for color image demosaicking[END_REF][START_REF] Bai | Demosaicking based on channel-correlation adaptive dictionary learning[END_REF].

Accompanying the wide application of deep learning in the field of image processing, demosaicking algorithms based on deep learning achieved great success and redefined the state-of-the-art. Tan et al. [START_REF] Tan | Color image demosaicking via deep residual learning[END_REF] addressed the demosaicking problem by learning a deep residual CNN. A two-phase network architecture was designed to reconstruct the G channel first and then estimate the R and B channel using the reconstructed G channel as guide. After calculating the interchannel correlation coefficients, Cui et al. [START_REF] Cui | Color image demosaicking using a 3-stage convolutional neural network structure[END_REF] found that R/G and G/B were more relevant than R/B and established a 3-stage CNN structure for demosaicking according to this observation. Instead of using two-phase or three-phase network architecture, Tan et al. [START_REF] Tan | Deepdemosaicking: Adaptive image demosaicking via multiple deep fully convolutional networks[END_REF] learned directly the residual between ground truth image and an initial full color image obtained by a fast demosaicking method [START_REF] Malvar | High-quality linear interpolation for demosaicing of bayer-patterned color images[END_REF]. This idea combined the traditional method and CNNs to simplify the network structure for the demosaicking problem. Syu et al. [START_REF] Syu | Learning deep convolutional networks for demosaicing[END_REF] used a convolutional neural network to design a demosaicking algorithm, and compared the effects of convolution kernels of different sizes on the reconstruction. At the same time they also designed a new CFA pattern using a data-driven approach. Different from conventional demosaicking CNN methods, Yamaguchi and Ikehara [START_REF] Yamaguchi | Image demosaicking via chrominance images with parallel convolutional neural networks[END_REF] took chrominance images as the output of CNN to improve the result. Higher-Resolution Network (HERN) was proposed by Mei et al. [START_REF] Mei | Higher-resolution network for image demosaicing and enhancing[END_REF] to solve the demosaicking problem by learning global information from high resolution data with a feasible GPU memory usage.

Joint demosaicking and denoising

Since the raw CFA data is altered by noise while most demosaicking algorithms assume a noise-free image, the image processing pipeline often requires a denoising step. Denoising and demosaicking are both ill-posed problems in the pipeline of reconstruction of full color images. In order to reduce artifacts caused by error accumulation, some works have proposed to jointly perform demosaicking and denoising. Condat and Mosaddegh [START_REF] Condat | Joint demosaicking and denoising by total variation minimization[END_REF] proposed an algorithm based on total variation minimization. Klatzer et al. [START_REF] Klatzer | Learning joint demosaicing and denoising based on sequential energy minimization[END_REF] formulated joint demosaicking and denoising problem as an energy minimization problem. Khashabi et al. [START_REF] Khashabi | Joint demosaicing and denoising via learned nonparametric random fields[END_REF] introduced a machine learning method by learning a statistical model from natural images to avoid artifacts. Menon and Calvagno [START_REF] Menon | Joint demosaicking and denoisingwith spacevarying filters[END_REF] evaluated the noise properties after the space-varying demosaicking method [START_REF] Menon | Regularization approaches to demosaicking[END_REF] and then proposed a joint demosaicking and denoising one. Tan et al. [START_REF] Tan | Joint demosaicing and denoising of noisy bayer images with admm[END_REF] addressed the joint demosaicking and denoising problem as a TV regularization model with multiple effective priors and solved by the alternating direction method of multipliers (ADMM).

The advent of deep learning techniques and the increasing availability of large training data sets, have led to a new generation of state-of-the-art algorithms that are able to reconstruct the full color images from noisy CFA images. Gharbi et al. [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF] built a huge image database where images were mined from the web and trained a network on it for avoiding zippering or moiré artifacts. Inspired by image regularization methods [START_REF] Lefkimmiatis | Universal denoising networks : A novel cnn architecture for image denoising[END_REF], Kokkinos et al. [START_REF] Kokkinos | Deep image demosaicking using a cascade of convolutional residual denoising networks[END_REF][START_REF] Kokkinos | Iterative joint image demosaicking and denoising using a residual denoising network[END_REF] established a novel deep learning architecture that combines a majorizationminimization algorithm with residual denoising networks. Huang et al. [START_REF] Huang | Lightweight deep residue learning for joint color image demosaicking and denoising[END_REF] proposed a lightweight end-to-end network using deep residual learning and aggregated residual transformations. In order to use real data directly, Ehret et al. [START_REF] Ehret | Joint demosaicking and denoising by fine-tuning of bursts of raw images[END_REF] introduced a mosaic-to-mosaic training strategy which doesn't require ground truth RGB data. The proposed framework can be used to fine-tune a pretrained network to a RAW burst. The self-guidance network (SGNet) [START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF] was proposed according to the fact that the G channel of CFA image contains more information. The G channel is recovered first and works as a guide image to interpolate the R and B channels. In [START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF], G channel prior features are utilized as guidance to extract and upsample the features of the whole image. Xing and Egiazarian [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] proposed an end-to-end solution for the joint demosaicking, denoising and super-resolution. They showed that merely training the network with mean absolute error loss function yielded superior results.

Satisfactory results have been obtained for joint demosaicking and denoising based on deep learning, but these algorithms all rely on the fitting power of CNNs to solve multiple tasks simultaneously end-to-end. Undoubtedly, this ignores the inter-task correlation, especially the long debated issue of demosaicking and denoising pipeline order.

Residual learning for demosaicking and denoising

The biggest obstacle to applying a demosaicking first and then denoising pipeline is the correlated noise resulting from the demosaicking. This is very difficult for model-based denoisers. Using CNNs can attain satisfactory end-to-end results, however these methods neglect the dependency between the demosaicking and denoising tasks. Inspired by [START_REF] Condat | A simple, fast and efficient approach to denoisaicking: Joint demosaicking and denoising[END_REF][START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF], we propose a two-stages CNN for reconstructing full-color images from noisy CFA images. In the first stage, we design a demosaicking algorithm that combines traditional methods and deep learning by ignoring the noise. All known information is retained in this stage, which is key to obtain good final results. After the first stage, a noisy full-color image is obtained whose noise statistical properties have been changed by the demosaicking. The second CNN is used to learn to remove the demosaicked residual noise and to effectively recover the underlying textures.

The noisy CFA model is written as

Y = M. * (X + ε), (1)
where X is an original full-color image, Y is the noisy CFA (or mosaicked) image, ε is Gaussian noise with zero mean and standard deviation σ, the operator . * denotes the array element-wise multiplication and M denotes the CFA mask.

The CFA mask M and its inverse mask are defined as

M =   M R M G M B   and IM =   1 -M R 1 -M G 1 -M B   , (2)
M R (i, j) = 0, if (i, j) / ∈ Ω R ; 1, if (i, j) ∈ Ω R , M G (i, j) = 0, if (i, j) / ∈ Ω G ; 1, if (i, j) ∈ Ω G , M B (i, j) = 0, if (i, j) / ∈ Ω B ; 1, if (i, j) ∈ Ω B ,
where 1(i, j) = 1, Ω denotes the set of CFA image pixels, Ω R , Ω G , Ω B ⊆ Ω are disjoint sets of pixels, which respectively record R, G and B values in the CFA image, and satisfy

Ω R ∪ Ω G ∪ Ω B = Ω.
The first stage considers only the noise-free CFA model where X is a full-color image, Y is the noise-free CFA (or mosaicked) image. We first use the GBTF algorithm [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF] to obtain a raw demosaicked image X GBT F = GBTF(Y) and a residual R GBT F = X -X GBT F . The residual is then corrected with a CNN. For that we use a modified Inception architecture in order to achieve better performance in learning the residual and get an estimator R GBT F (see Figure 2). The final full-color image is obtained as

Y = M. * X, (3)
X DM = IM. * (X GBT F + R GBT F) + M. * X. (4)
The first term in the above equation is the demosaicked image estimated by the CNN and evaluated on the inverse CFA mask IM , while the second term is unaltered input CFA samples on the mask M . The resulting CNN is adapted to demosaick noise-free images. So, applying it to a noisy CFA image, produces a noisy demosaicked image.

To handle noisy CFA images, another stage is needed to remove the noise. Given the trained demosaicking as a basic component, we apply it to model [START_REF] Bayer | Color imaging array[END_REF] and obtain a noisy full-color image X DM which can be decomposed as

X DM = X + ε DM . (5)
Here, ε DM is the residual noise (including artifacts) of the demosaicked image, which is no longer independent identically distributed (I.I.D.), and has complex unknown statistical properties. This would be extremely challenging for traditional denoising models that strongly rely on statistical assumptions, therefore we use another CNN to learn to extract the residual noise ε DM and obtain the estimator ε DM (see Figure 2). The final full-color image is reconstructed as

X DM DN = X DM -ε DM . (6)
There are several advantages in training separate demosaicking and denoising networks:

• First, the noise-free demosaicking focuses on reconstructing the structure and details in the image without concessions. In addition, the demosaicking network needs not be adapted to each noise level, and all known information is preserved.

• Second, the demosaicked result facilitates the task of the denoiser which has to adapt only to the noise and demosaicking artifacts. As we will see later, training a joint denoising and demosaicking network with equivalent capacity as the demosaicking and denoising networks indeed yields lower quality results.

• Third, the proposed two stage architecture and trainig strategy is more stable at training time than an end-to-end network with equal capacity.

Demosaicking in a noise-free setting

The CFA images are different from ordinary images as the values of adjacent pixels represent the intensity of different colors. Many of the existing deep learning algorithms subsample the CFA images to four-channel RGGB images and send them to the network. However, this operation reduces the image resolution. Therefore, the network needs to perform functions similar to super-resolution, and cannot only focus on image demosaicking. Some algorithms use bilinear interpolation as preprocessing in order to preserve the spatial arrangement of the samples. However, the bilinear interpolation results are suboptimal and this affects the performance of the convolutional network. In this work, we use the gradient based threshold free (GBTF) method [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF], which has superior performance compared to the bilinear interpolation. Improving the network input also alleviates the task for the network. In subsequent ablation experiments, GBTF is shown to better preserve image textures.

After the CFA image is preprocessed, we use a convolutional neural network for residual learning. The network architecture is shown in Figure 2. Syu et al. pointed out in their work [START_REF] Syu | Learning deep convolutional networks for demosaicing[END_REF] that convolution kernels of different sizes will affect the reconstruction accuracy. The larger the size of the convolution kernel, the higher the reconstruction accuracy. However, the number of parameters using a 5×5 convolution kernel is 2.7 times that of using a 3×3 convolution kernel. We want to increase the receptive field, but without giving up the lightweight 3 × 3 convolution kernels. In the image demosaicking task, due to the lack of color information, the full-color image reconstruction must make full use of the correlation of the three RGB channels. Therefore, the degree of cross-channel information fusion determines the performance of the demosaicking algorithm. In 1.

Denoising after demosaicking

Since the demosaicking stage is trained in a noise-free setting, when a noisy input is demosaicked its output will contain a correlated residual noise. Removing this noise also requires learning. We therefore propose to use a denoising network to remove the structured noise resulting from demosaicking a noisy CFA image. We first learn a network for each noise level, but in the experiment sections we will also consider a noise level flexible network trained on a range of noise levels (with σ ∈ [0, 20] as in [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF]). In the noise level flexible network, the noise map shown in Figure 2 is introduced, which consists of the standard deviation σ of Gaussian noise added to the CFA image. For the denoising network, we also use the same Inception block architecture as the demosaicking network. As shown in Figure 2, the demosaicked image is used as input to the denoising stage. In addition, the features computed at the last layer of the demosaicking stage are reused by introducing them into the denoising stage by a skip connection.

Training procedure

The two stages of our method are trained independently, each with its own loss, which are both based on the classical mean square error (MSE) loss. In the first stage, the network is trained on a noise-free dataset. The loss for the noise-free demosaicking stage is

L DM (Θ DM) = 1 2N N i=1 X i DM -X i 2 , (7)
X i DM = IM. * X i GBT F + F (X i GBT F ; Θ DM) + M. * X i , (8)
where F (X i GBT F ; Θ DM) is the output of the demosaicking network to estimate the residual R GBT F (see (4)).

After the demosaicking network is trained, we apply it to noisy CFA images (see model (1)) to produce noisy full-color images (see model [START_REF] Lee | Denoising algorithm for cfa image sensors considering inter-channel correlation[END_REF]). The goal of the second stage is then to remove residual demosaicked noise ε DM . Therefore the loss for this stage is

L DN (Θ DN) = 1 2N N i=1 X i DM DN -X i X i DM DN = X i DM -G(X i DM ; Θ DN), (10)
where G(X i DM ; Θ DN) is the output of the denoising network, which works as an estimator of ε DM .

For training the joint demosaicking and denoising, Gharbi et al. provided a dataset of two million 128 × 128 images (MIT Dataset) [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF]. Ma et al. established the Waterloo Exploration Database (WED) with 4,744 high-quality natural images [START_REF] Ma | Waterloo exploration database: New challenges for image quality assessment models[END_REF] and Syu et al. provided the Flickr500 with 500 high-quality images [START_REF] Syu | Learning deep convolutional networks for demosaicing[END_REF]. We use these datasets to build our training and test sets. Indeed, 100,000 images were randomly selected from the MIT dataset. And 4653 images in WED and 491 images in Flickr500 were randomly cropped into 100,000 images (128 × 128). These 200,000 patches (128 × 128) constitute our training set. Furthermore, 91 images in WED and 9 images in Flickr500 composed our test set. During the training time, the patch was flipped and rotated 180 • with a 50% probability for data augmentation.

For training the denoising model we started by adding Gaussian white noise to the CFA images sampled from the training set (see Table 3 for the standard deviation σ of the noise) and applied the demosaicking network to the noisy CFA images. The color residual noise images, which were obtained by feeding the noisy CFA images into the demosaicing network, were utilized for training the denoising model.

The network architecture was implemented in Pytorch. The network weights were initialized using [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] and the biases were first set to 0. The optimization was performed by the ADAM optimizer [START_REF] Kingma | A method for stochastic optimization[END_REF] using the default parameters. The batch size was set to 64, and the initial learning rate to 10 -2 . The learning rate decay strategy was the exponential decay method, and the learning rate decayed by 0.9 every 3000 iterations. Our model was trained on a NVIDIA Tesla V100 and required 50 epochs for each training iteration. The non-lightweight demosaicing and denoising algorithms at each level typically took approximately 3 days to train, while the lightweight algorithms could be trained within a day.

EXPERIMENTS

Datasets

We chose the classic Kodak [START_REF] Zhang | Color demosaicking by local directional interpolation and nonlocal adaptive thresholding[END_REF] and McMaster [START_REF] Dubois | Frequency-domain methods for demosaicking of bayer-sampled color images[END_REF] datasets for evaluating our algorithm on the demosaicking and denoising task. The Kodak dataset consists of 24 images (768 × 512). The McMaster dataset consists of 18 images (500 × 500), which were cropped from the 2310 × 1814 high-resolution images. At the same time, we conducted experiments on our test set, Urban100 dataset [START_REF] Huang | Single image super-resolution from transformed self-exemplars[END_REF] and MIT moiré [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF] to verify the reliability of our proposed algorithm. The Urban100 dataset is often used in super-resolution tasks and contains 100 highresolution images. MIT moiré is the test set used by the JCNN algorithm [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF], which contains 1000 images of 128 × 128 resolution that are prone to generate moiré.

Quantitative and qualitative comparisons

Peak signal-to-noise ratio (PSNR) [START_REF] Alleysson | Linear demosaicing inspired by the human visual system[END_REF] and structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] were used to evaluate the performance of the algorithms.

Noise-free demosaicking. In the noise-free CFA image demosaicking task, we compared three traditional algorithms (GBTF [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF], MLRI+wei [START_REF] Kiku | Beyond color difference: Residual interpolation for color image demosaicking[END_REF], ARI [START_REF] Monno | Adaptive residual interpolation for color and multispectral image demosaicking[END_REF]) and six deep learning algorithms (C-RCNN [START_REF] Kokkinos | Deep image demosaicking using a cascade of convolutional residual denoising networks[END_REF], JCNN [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF], CDM-CNN [START_REF] Tan | Color image demosaicking via deep residual learning[END_REF], CDM-3-Stage [START_REF] Cui | Color image demosaicking using a 3-stage convolutional neural network structure[END_REF], LCNN-DD [START_REF] Huang | Lightweight deep residue learning for joint color image demosaicking and denoising[END_REF], JDNDMSR [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF]). Table 2 summarizes the performance of all algorithms on the dataset. We can see that our proposed algorithm outperforms the other algorithms in the noise-free demosaicking. On the Kodak dataset, our proposed method surpasses the state-of-the-art by 0.34 dB in the average PSNR value. This gain is 0.27 dB on the McMaster dataset and 0.92 dB on Urban100. At the same time, our proposed lightweight method also achieved good performance. It ranks second on the Kodak and Urban100 dataset and third on the McMaster dataset. On the MIT moiré, the average PSNR value of our proposed algorithm is 0.12 dB lower than that of JCNN [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF], but we only used 5% of the training data they provided.

Figure 4 illustrates a challenging case in which existing algorithms always produce color distortions (in the necklace part), while the proposed algorithm presents no distortion. In order to better observe the reconstruction effect of the algorithm, we show the residual image between the reconstructed image generated by all the algorithms and the ground truth. It can be seen that the visual effect is consistent with the numerical evaluation. 3: Comparison of the results (PSNR/SSIM) between different denoising and demosaicking methods for five image sets. The best value is marked in bold, the second is marked in red, and the third is marked in blue. The noise levels for which an algorithm doesn't work is indicated by "-" in the table. The algorithm noted by "*" which we don't obtain the source code, then the results (PSNR/SSIM) are taken from the article directly (the notation "x" in the table represents the unknown).

JCNN [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF] C-RCNN [START_REF] Kokkinos | Deep image demosaicking using a cascade of convolutional residual denoising networks[END_REF] LCNN-DD [START_REF] Huang | Lightweight deep residue learning for joint color image demosaicking and denoising[END_REF] ADMM [START_REF] Tan | Joint demosaicing and denoising of noisy bayer images with admm[END_REF] SGNet* [START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF] JDNDMSR [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] 1.5CBM3D [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] Ours(-) Joint demosaicking and denoising. For the task of demosaicking and denoising of noisy CFA images, we compared with the joint demosaicking and denoising algorithm using ADMM by [START_REF] Tan | Joint demosaicing and denoising of noisy bayer images with admm[END_REF]. The joint demosaicking and denoising algorithms based on deep learning proposed in [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF] (JCNN), in [START_REF] Kokkinos | Deep image demosaicking using a cascade of convolutional residual denoising networks[END_REF] (C-RCNN), in [START_REF] Huang | Lightweight deep residue learning for joint color image demosaicking and denoising[END_REF] (LCNN-DD), in [START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF] (SGNet1) and in [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] (JDNDMSR). We also considered our proposed demosaicking network combined with CBM3D for denoising [START_REF] Dabov | Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminancechrominance space[END_REF], and following the suggestion of Jin et al. [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF], the CBM3D denoising parameter was set to 1.5 times the original σ value (denoted 1.5CBM3D). Table 3 summarizes the performance comparison of all algorithms. It can be seen that our algorithm performs better than other state-of-the-art algorithms.

Figure 5-8 show the comparison of visual effects and image quality between the state-of-the-art and our proposed method. As can be seen in Figure 5 and 8, our restored images show a more distinct image texture and fine detail. Figure 6 illustrates that on the fence: our restored image is more pleasant and has fewer color distortions and checkerboard artifacts. We also note that CBM3D + our proposed demosaicking also outperforms the state-of-the-art for both quantitative and visual quality. Noise level flexible joint demosaicking and denoising. Referring to [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF][START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF][START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF], the noise level map was introduced in the denoising stage to flexibly handle the noise of a certain range of noise levels (σ ∈ (0, 20]). The corresponding PSNR and SSIM values are shown in Table 4. One can observe that the proposed method is superior to JCNN [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF] and JDNDMSR [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] for all five image databases. Our lightweight method is very competitive with JDNDMSR [START_REF] Xing | End-to-end learning for joint image demosaicing, denoising and super-resolution[END_REF] and outperforms JCNN [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF].

Results on real image datasets

Since the raw data is represented in the linear RGB color space (ie, without gamma transformation), inspired by [START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF][START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], we used the unprocessing algorithm [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF] to convert the training data to linear RGB data and fine-tune the proposed algorithm. We evaluated the proposed algorithm on real images from the Darmstadt Noise Dataset (DND) [START_REF] Plötz | Benchmarking denoising algorithms with real photographs[END_REF]. Since there is no ground truth for these real world images, we decided to use the qualitative natural image quality evaluator (NIQE) [START_REF] Mittal | Making a "completely blind" image quality analyzer[END_REF] to evaluate the perceptual quality of the reconstructed images. The only input of NIQE is the restored image. Lower NIQE scores mean higher image quality. The NIQE scores of the restored results for real images were compared in linear RGB and sRGB color spaces for the various algorithms and are shown in Table 5. The NIQE scores of our method and of its lightweight version are much lower than that of JCNN. Figure 9 shows the restored images of the various algorithms in the sRGB space providing a visual quality confirmation of these measurements. A key part of each image in a red box is zoomed in and placed on the right side to make comparison easier. One can see that our proposed method restores better the textures and suppresses more noise than JCNN. Taking the first column of Figure 9 for example, the restored image of JCNN can't recover the top left curve, which is broken in the middle.

Ablation study and running time

Architecture choices, ablation study. Our ablation experiments trained and compared the following models:

• (a) Using GBTF [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF] for preprocessing, while the demosaicking network is built using 16 classic Conv-BN-ReLU blocks (consistent with our network parameters).

• (b) Using GBTF [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF] for preprocessing, while the demosaicking network is built using 8 Resblocks (consistent with our network parameters).

• (c) Using HA [START_REF] Hamilton | Adaptive color plan interpolation in single sensor color electronic camera[END_REF] for preprocessing, while the network uses our proposed Inception block. The performance of the above four cases on the five datasets is shown in Table 6 (A). As can be seen from the table, good results can also be obtained using bilinear interpolation, but GBTF is a better choice when working with textured images. The table also shows that GBTF for preprocessing and using Inception blocks are more effective for image demosaicking.

Two-stage vs. end-to-end training. To verify the importance of the two-stage training we compared it with a joint demosaicking and denoising network trained end-to-end. For this experiment we set the noise level to σ = 20. Table 6 (B) shows the difference between both strategies. We can see that the end-to-end training of the networks (with equivalent capacity) is not as effective as the twostage training. This highlights the importance of training first the demosaicking network on noise-free data. The network parameters from the two-stage training can actually be further refined with an end-to-end fine-tuning, which results in a slight boost. As can be seen from the training process in Figure 10, the two-stages training followed by fine-tuning allows for more stable training with better results. In our experiments, we also found that the two-stages training is more robust and more independent from initialization. On the contrary, end-to-end training is more sensitive to initial values and is prone to training failure. In Figure 10 One can see that the end-to-end network is not stable. Its final results are not the highest value seen during the training process. There is only a 20% success rate, while the two-stage method is very stable and the final result always reaches the highest value of each training. This shows that, although CNNs have a powerful fitting capability that enables addressing multiple tasks in an end-to-end fashion, it is still important to consider the order of the tasks to design a reasonable pipeline.

Dependency on the training dataset. In order to better compare the advantages of the network architecture regardless of the influence of training data and training strategies, we retrained JCNN, using the same training data and training strategy as for our algorithm. Table 7 shows the PSNR and SSIM of noise-free demosaicking and joint demosaicking and denoising with noise level σ = 20. Among them, JCNN-O represents the original parameters of JCNN and JCNN-R stands for the retrained version of JCNN. From Table 7, one can see that both our proposed method and its lightweight version outperform JCNN by a images and in demosaicking and denoising CFA images with noise level of σ = 10 is shown in Table 8. Since our network is composed of independent demosaicking and denoising stages, the time consumed can be calculated separately. In Table 8, DM denotes the demosaicking stage of our algorithm and JDD denotes joint demosaicking and denoising. It can be seen that the processing time of our algorithm is comparable to the other deep learning algorithms. It is also faster than some traditional iterative algorithms, such as ARI [START_REF] Monno | Adaptive residual interpolation for color and multispectral image demosaicking[END_REF] and ADMM [START_REF] Tan | Joint demosaicing and denoising of noisy bayer images with admm[END_REF].

Conclusion

In this paper, we proposed a CNN for joint demosaicking and denoising. The proposed method relies on a demosaicking first then denoising approach, which is realized by applying sequentially two CNNs. In the first stage, the GBTF algorithm is combined with a CNN to reconstruct a full-color image from noisy CFA image but ignoring the image noise. In the second stage, we use another CNN to learn to remove the noise whose statistical properties were changed by the demosaicking stage. This allows to remove demosaicing noise that would otherwise be virtually impossible to remove using model-based methods.

More importantly, we show that even when dealing with CNNs with powerful fitting capabilities a reasonable pipeline and its training (such as the proposed two-stage training) can lead to significant performance gains with respect to more mainstream approaches based on end-to-end training. In addition, in order to improve the performance of the proposed method, we proposed an architecture based on Inception blocks as well as a lightweight version with a good speed-performance trade-off. Experiments conducted on multiple datasets confirmed that our algorithm favourably compares to the state-of-the-art demosaicking algorithms and joint demosaicking and denoising algorithms.

Figure 1 :

 1 Figure 1: The image shows the raw data collected by the sensor and the color filter arrays of the Bayer pattern.

Figure 2 :

 2 Figure 2: Our two stages CNN architecture for demosaicking-denoising. The first stage takes GBTF to preprocess the CFA image and uses a CNN to learn residuals improving the demosaicking performance of GBTF. In the second stage, when the noisy CFA image is demosaicked, another CNN is used to learn the residual noise in order to reconstruct the finally full-color image. The term "replace" corresponds to Eq. (4).

Figure 3 :

 3 Figure3: Architecture of the Inception block. In order to get a better cross-channel fusion and a larger receptive field, we use 1 × 1 convolution kernels and three-way branches to reduce the parameters while strengthening the fusion of cross-channel information. This is extremely important for demosaicking.

Figure 4 :

 4 Figure 4: Results of the various comparisons between state-of-the-art and our method for noise-free demosaicking on image 18 of Kodak.

Figure 6 :

 6 Figure 6: Comparison between state-of-the-art algorithms and our method for demosaicking and denoising in image 1 of the Kodak dataset with noise σ = 15.

Figure 8 :

 8 Figure 8: Comparison between state-of-the-art algorithms and our method for demosaicking and denoising in image 585 of the MIT moiré with noise σ = 20.

Figure 9 :

 9 Figure 9: Comparison of JCNN with our method for demosaicking and denoising in real images of DND. Each group of images consists of the whole image and a part of the image. The image on the left is the whole image, and the image on the right is the zoomed in image of the part in the red box on the left.

 (a) and (b), we list the training records of an end-to-end model that failed to train once. As shown in Figure 10 (a) and (b), the endto-end training is prone to failure due to training fluctuations, while two-stage training results in a smooth progression. To compare the training robustness of the different schemes, we trained the lightweight end-to-end network and the two-stage network 10 times respectively. The training results are shown in Figure 10 (c).

Figure 10 :

 10 Figure 10: Plots (a) and (b) compare the performance of different training strategies along the training iterations. We compare the end-to-end training, the two-stage training and finetuning after the two-stage training. We also report the evolution of a failed end-to-end training (purple curve), which were obtained with the same parameters as the blue curve. In (c), the end-to-end network and the two-stage network were each trained 10 times (for this experiment we used only the lightweight architecture). The unstable behavior (as in the purple curve) was observed in eight out of ten end-to-end trainings, while the the two stage training never exhibited such behavior. The red curve marks the PSNR reached at the end of each training.

Table 1 :

 1 Inception architecture and number of parameters. The depth of Conv-BN-ReLU is 1, the receptive field is 3, but the depth of the Inception is 3, and receptive field is 5. And Inception(-) has the same properties and the number of parameters is only 52.8% of Conv-BN-ReLU.

		Inception	Inception(-)	Conv.
	Input the			
	number of	64	64	64
	feature layers			
	First branch	32(1 × 1) 16(1 × 1)	16(1 × 1)	
	Second branch	32(1 × 1) 32(3 × 3) 16(3 × 3)	16(1 × 1) 16(3 × 3)	3 × 3
		32(1 × 1)	16(1 × 1)	
	Third branch	32(3 × 3)	32(3 × 3)	
		32(3 × 3)	32(3 × 3)	
	Output the			
	number of	64	64	64
	feature layers			
	Number of parameters	39360	19456	36992
	GFLOPs (128 × 128)	0.649	0.321	0.607

Table 2 :

 2 Comparison with state-of-the-art algorithms in noise-free demosaicking. The best value is marked in bold, the second is marked in red, and the third is marked in blue. In the table, (-) indicates a lightweight version.

	Average	PSNR/SSIM	35.67/0.9533	36.20/0.9606	36.58/0.9625	36.87/0.9604	39.01/0.9763	38.56/0.9707	39.03/0.9722	38.88/0.9717	38.86/0.9712	39.29/0.9756	39.73/0.9769
	MIT moiré	PSNR/SSIM	32.18/0.9120	32.17/0.9119	32.60/0.9162	32.99/0.9148	36.65/0.9588	34.28/0.9311	34.78/0.9334	34.78/0.9338	35.36/0.9338	35.97/0.9516	36.53/0.9533
	Urban100	PSNR/SSIM	34.82/0.9701	34.90/0.9732	35.35/0.9751	37.16/0.9797	38.12/0.9842	38.09/0.9836	38.60/0.9849	38.37/0.9841	38.33/0.9839	38.88/0.9852	39.52/0.9864
	WED+Flickr	PSNR/SSIM	36.35/0.9664	36.76/0.9707	37.46/0.9745	37.57/0.9725	39.24/0.9807	39.52/0.9812	40.12/0.9827	39.75/0.9817	39.44/0.9810	39.84/0.9820	40.22/0.9831
	McMaster	PSNR/SSIM	34.38/0.9322	36.89/0.9620	37.57/0.9654	36.68/0.9509	38.95/0.9695	38.94/0.9696	39.34/0.9716	39.07/0.9701	38.83/0.9680	39.25/0.9702	39.61/0.9725
	Kodak	PSNR/SSIM	40.62/0.9859	40.26/0.9850	39.91/0.9815	39.93/0.9843	42.09/0.9881	41.98/0.9879	42.31/0.9885	42.42/0.9886	42.35/0.9891	42.49/0.9888	42.76/0.9893
	Algorithm	GBTF [31]	MLRI+wei [35]	ARI [36]	C-RCNN [24]	JCNN [17]	CDM-CNN [18]	CDM-3-Stage [46]	LCNN-DD [59]	JDNDMSR [25]	Ours(-)	Ours

 Figure 5: Comparison between state-of-the-art algorithms and our method for demosaicking and denoising in image 6 of the Urban dataset with noise σ = 10.

	Ours Ground truth PSNR/SSIM PSNR/SSIM PSNR/SSIM	38.73/0.9663 38.97/0.9677 39.15/0.9685	36.57/0.9482 37.01/0.9511 37.12/0.9519 30.40/0.9149 31.44/0.8679 30.13/0.8343 26.88/0.7242 24.80/0.6533 33.34/0.9058 33.97//0.9124 34.08/0.9143 32.12/0.8780 32.24/0.8807 30.89/0.8487 31.01/0.8518 28.00/0.7621 28.13/0.7663 26.46/0.7074 26.58/0.7112 JCNN	37.15/0.9509 37.65/0.9554 37.82/0.9567 ADMM 35.54/0.9347 32.84/0.8954 31.03/0.8561 36.29/0.9423 36.41/0.9433 33.91/0.9132 34.03/0.9152 32.25/0.8867 32.40/0.8902 26.70/0.8391 29.66/0.8186 31.06/0.8635 31.21/0.8670	25.90/0.6971 28.04/0.7902 28.21/0.7962 31.48/0.9240 23.33/0.6155 37.38/0.9646 35.69/0.9485 32.85/0.9108 26.28/0.7369 26.45/0.7422 37.72/0.9676 37.92/0.9685 36.27/0.9554 36.40/0.9563 33.76/0.9276 33.88/0.9294 JDNDMSR	31.00/0.8778 32.07/0.9022 32.20/0.9048 30.95/0.9317 29.63/0.8484 25.93/0.7523 23.40/0.6832 36.70/0.9741 30.86/0.8800 31.00/0.8832 27.84/0.8083 27.98/0.8127 26.10/0.7565 26.23/0.7613 37.07/0.9768 37.40/0.9779 1.5CBM3D	34.89/0.9621 35.52/0.9683 35.77/0.9694 31.88/0.9345 31.86/0.9307 29.96/0.9018 28.58/0.8744 24.99/0.7726 22.56/0.6833 32.81/0.9459 33.04/0.9482 30.96/0.9233 31.21/0.9268 29.59/0.9012 29.86/0.9060 26.17/0.8182 26.47/0.8277 24.19/0.7476 24.45/0.7582 Ours(-)	34.69/0.9360 34.84/0.9404 35.28/0.9427 32.12/0.9386 33.21/0.9145 30.71/0.8701 29.12/0.8344 27.95/0.8019 33.52/0.9266 33.81/0.9289 31.19/0.8902 31.40/0.8939 29.60/0.8544 29.83/0.8597 28.47/0.8213 28.71/0.8288 Ours	24.96/0.6882 25.77/0.7176 26.01/0.7279	22.93/0.5946 24.25/0.6421 24.46/0.6535
	PSNR/SSIM PSNR/SSIM PSNR/SSIM Ground truth Kodak	31.85/0.8813 x 38.93/0.9678	31.81/0.8765 x 36.99/0.9510 29.14/0.8510 31.22/0.8576 x 33.94/0.9115 30.30/0.8350 x 32.08/0.8752 29.37/0.8115 -30.79/0.8430 25.72/0.6797 --24.22/0.6256 --JCNN	McMaster 27.98/0.7951 32.51/0.9048 x 37.38/0.9546 32.46/0.8985 x 36.14/0.9421 31.64/0.8724 x 33.80/0.9126 30.46/0.8399 x 32.17/0.8858 29.29/0.8068 -30.93/0.8608 ADMM	25.12/0.6650 --29.58/0.8626 22.92/0.5957 --31.35/0.9060 x 37.32/0.9663 31.32/0.9003 x 35.98/0.9542 30.72/0.8808 x 33.56/0.9258 JDNDMSR WED + Flickr	29.78/0.8580 x 31.93/0.8998 29.15/0.8564 28.78/0.8341 -30.71/0.8762 24.94/0.7167 --22.84/0.6625 --Urban 100 28.53/0.9010 x 36.47/0.9749 1.5CBM3D	28.71/0.8987 34.54/0.9533 35.11/0.9665 29.55/0.8635 28.67/0.8864 32.14/0.9229 32.57/0.9438 28.08/0.8681 30.37/0.8923 30.79/0.9206 27.26/0.8463 -29.44/0.8972 23.60/0.7209 --22.05/0.6628 --Ours(-)	MIT moiré 29.63/0.8660 28.44/0.8296 x 33.97/0.9216 28.48/0.8237 32.15/0.9043 32.84/0.9094 28.19/0.8031 30.09/0.8619 30.73/0.8759 26.82/0.7564 27.55/0.7801 28.60/0.8188 29.28/0.8427 -28.21/0.8107 Ours	23.76/0.6387 --	22.43/0.5806 --
	PSNR/SSIM	37.36/0.9428	33.91/0.8704	28.36/0.6710	24.97/0.5201	-	-	-	35.98/0.9254	33.29/0.8584	28.44/0.6740	25.29/0.5309	-	-	-	35.92/0.9372	33.09/0.8660	28.15/0.6758	24.98/0.5363	-	-	-	35.25/0.9560	32.72/0.9101	27.97/0.7776	24.82/0.6692	-	-	-	33.08/0.9094	31.27/0.8699	27.33/0.7465	24.46/0.6347	-	-	-
	PSNR/SSIM PSNR/SSIM	37.95/0.9626 37.25/0.9587	36.18/0.9446 35.28/0.9327	33.21/0.9007 30.94/0.8279	31.32/0.8586 -	29.91/0.8168 -	--	--	36.44/0.9470 34.36/0.9222	35.31/0.9338 33.18/0.8985	33.02/0.8972 29.66/0.7885	31.25/0.8564 -	29.79/0.8139 -	--	--	36.28/0.9592 35.19/0.9486	35.07/0.9448 33.77/0.9241	32.70/0.9081 30.38/0.8393	30.96/0.8719 -	29.53/0.8354 -	--	--	34.87/0.9680 34.98/0.9680	33.69/0.9569 33.47/0.9526	31.26/0.9248 29.90/0.8895	29.45/0.8912 -	28.00/0.8552 -	--	--	33.66/0.9331 31.69/0.8853	32.57/0.9172 30.68/0.8686	30.39/0.8724 28.08/0.8008	28.81/0.8283 -	27.57/0.7842 -	--	--
	Algorithm	3	5	10	σ 15 20	40	60	3	5	10	σ 15 20	40	60	3	5	10	σ 15 20	40	60	3	5	10	σ 15 20	40	60	3	5	10	σ 15 20	40	60

 Figure 7: Comparison between state-of-the-art algorithms and our method for demosaicking and denoising in image 1 of the Kodak dataset with noise σ = 20.

		JCNN	ADMM	JDNDMSR	1.5CBM3D	Ours(-)	Ours
	Ground truth	30.07/0.8092	29.07/0.7994	30.78/0.8318	30.48/0.8299	30.91/0.8419	31.03/0.8442
	Ground truth	JCNN	ADMM	JDNDMSR	1.5CBM3D	Ours(-)	Ours
		28.81/0.7077	28.90/0.7221	29.79/0.7796	29.48/0.7714	29.75/0.7740	30.35/0.8086

Table 4 :

 4 Comparison of the results (PSNR/SSIM) between different flexible joint demosaicking and denoising methods in the interval of the noise level σ ∈ (0, 20] for five image sets. The best value is marked in bold, the second is marked in red.

	σ Dataset	JCNN	JDNDMSR	Ours(-)-F	Ours-F
		Kodak	33.21/0.9007 33.94/0.9115 33.92/0.9116 34.03/0.9129
		McMaster	33.02/0.8972 33.80/0.9126 33.85/0.9121 33.97/0.9142
	10	WED + Flickr 32.70/0.9081 33.56/0.9258 33.70/0.9269 33.83/0.9284
		Urban 100	31.26/0.9248 32.57/0.9438 32.75/0.9454 32.95/0.9471
		MIT moiré	30.39/0.8724 30.73/0.8759 31.09/0.8884 31.31/0.8919
		Kodak	29.91/0.8168 30.79/0.8430 30.75/0.8441 30.86/0.8465
		McMaster	29.79/0.8139 30.93/0.8608 30.88/0.8571 31.02/0.8609
	20	WED + Flickr 29.53/0.8354 30.71/0.8762 30.71/0.8750 30.84/0.8780
		Urban 100	28.00/0.8552 29.44/0.8972 29.39/0.8963 29.61/0.9002
		MIT moiré	27.57/0.7842 28.21/0.8107 28.28/0.8141 28.49/0.8207

Table 5 :

 5 NIQE comparison between our proposed method and JCNN in DND dataset.

		JCNN	Ours(-)	Ours
	linRGB	13.2701	8.8395	4.3157
	sRGB	12.2354	7.8584	3.8507

Table 6 :

 6 Ablation study. Sub-table A is the choice of network structure. Sub-table B shows the comparison of two-stage training with end-to-end training.

	Average	PSNR/SSIM	
	MIT moiré	PSNR/SSIM	
	Urban100	PSNR/SSIM	
	McMaster WED+Flickr	PSNR/SSIM PSNR/SSIM	A. Demosaic
	Kodak	PSNR/SSIM	
	Method	

,(9)

Since we didn't obtain the source code of the algorithm SGNet[START_REF] Liu | Joint demosaicing and denoising with self guidance[END_REF], the PSNR and SSIM values of the algorithm were taken from the article directly.

Acknowledgment This work was supported by National Natural Science Foundation of China (No. 12061052), Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT22090), Natural Science Fund of Inner Mongolia Autonomous Region (No. 2020MS01002), Innovative Research Team in Universities of Inner Mongolia Autonomous Region (No. NM-GIRT2207), Special Funds for Graduate Innovation and Entrepreneurship of Inner Mongolia University (No. 11200-121024), Prof. Guoqing Chen's "111 project" of higher education talent training in Inner Mongolia Autonomous Region and the network information center of Inner Mongolia University. Work partly financed by Office of Naval research grants N00014-17-1-2552 and N00014-20-S-B001, DGA Defals challenge n • ANR-16-DEFA-0004-01, MENRT and Fondation Mathématique Jacques Hadamard. Y. Guo and Q. Jin are very grateful to Professor Guoqing Chen for helpful comments and suggestions. The authors are also grateful to the reviewers for their valuable comments and remarks.

Computational complexity. In order to estimate the computational complexity of these algorithms, we tested the average time consumed by all algorithms to process 500 images (512×512) on a PC with Intel Core i7-9750H 2.60GHz, 16GB memory, and Nvidia GTX-1650 GPU. For the deep learning algorithms, only the actual network processing time was calculated, not including the network loading time. The time consumed by the algorithm in demosaicking noise-free