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Abstract – This article presents a method for identifying the parameters of a simplified 2 degree of freedom
model representative of a linear primary system coupled to a non-linear absorber in a forced harmonic regime
over a wide range of amplitudes and forcing frequencies covering different dynamical regimes. This is a priori a
difficult operation because it is necessary to combine two apparently contradictory steps. The first step consists
in establishing models representing the physics of the system which are analytically soluble, which imposes sev-
ere approximations. The second step consists in adjusting the parameters of the models to experimental data,
which reveal some phenomena ignored by the models. To do so, two approximate analytic methods, Harmonic
Balance and Complexification Averaging under 1:1 resonance, are used to describe the dynamics of the nonlin-
ear system for its different operating regimes: linear behavior, nonlinear behavior without energy pumping, en-
ergy pumping, and saturation regime. Then, using a non-linear regression, the parameters of the simplified
model are identified from experiments. The values obtained correspond to the expected physical quantities.

Keywords: Noise reduction, Energy pumping, Nonlinear vibroacoustic absorber, Nonlinear identification

1 Introduction

Vibroacoustic Nonlinear Energy Sinks (NES) are
mechanical absorbers that are used for passive noise and
vibration control in the low frequency range. Under certain
conditions (related to the initial conditions and the excita-
tion level), these absorbers lead to the phenomenon of
energy pumping. This phenomenon can be defined as the
unidirectional and irreversible transfer of vibrational energy
from the primary system to be controlled to the auxiliary
non-linear oscillator. This phenomenon is also called
Targeted Energy Transfer and was originally introduced
by O. Gendelman and A. Vakakis [1, 2] in the field of
mechanical vibrations.

In the acoustic field the first work that experimentally
showed the presence of the energy pumping phenomenon
was proposed by Cochelin et al. [3]. In this paper a non-
linear passive vibroacoustic absorber which was constituted
by a thin circular viscoelastic membrane was developed.
This viscoelastic membrane, when vibrating under very high
amplitude, showed a strongly non-linear behavior, which
could be described as a non-linear mass/stiffness/nonlinear
damping dynamic system. The proposed experimental setup

allowed to control an acoustic field in the vicinity of the
first acoustic mode of a tube open at both ends. This tube
was coupled to the NES through a coupling box and was
excited by a loudspeaker. This experimental set-up was
improved by Bellet et al. [4]. In this paper different experi-
mental results were presented: behavior under harmonic
excitation, free oscillations and frequency responses. For
different excitation amplitudes, several types of frequency
response have been observed (linear behavior, non-linear
behavior without energy pumping, energy pumping and
saturation regime). A simplified 2 degrees of freedom
(DOF) model was developed and validated by a comparison
between numerical calculation and experimental results. It
was shown that the use of different membranes mounted
in parallel on the coupling box extended the efficiency range
of the energy pumping phenomenon. A second experimen-
tal acoustic energy pumping device was developed by
Mariani et al. [5]. This device consisted of a diaphragm of
a loudspeaker whose mass could be precisely adjusted and
coupled with the primary acoustic medium to be controlled
(again the first acoustic mode of an open-ended tube)
through a coupling box. In these papers [3–6], the NES
was linked to the primary system by a linear stiffener whose
stiffness could be adjusted by controlling the volume of the
coupling box.*Corresponding author: mattei@lma.cnrs-mrs.fr
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Shao et al. [7] analyzed the energy pumping for another
configuration where a vibroacoustic NES is directly linked
to the primary system. In this configuration, the primary
system was a parallelepipedic acoustic cavity excited in
one of its modes and the NES was always a membrane
mounted on one of the surfaces of this cavity. To generalize
the results found in [7], J. Shao studied this system where
several acoustic modes of the parallelepipedic cavity are
taken into account [8]. The experimental set-up described
in [9] allowed to present the energy pumping between this
cavity and the membrane.

Recently, a purely acoustic non-linear absorber has been
developed based on a Helmholtz resonator. It has been
shown experimentally that under certain conditions this
device can exhibit a non-linear behavior [10, 11]. The
non-linear behavior of this absorber has been studied
analyticly, numerically and experimentally [12]. Energy
pumping between an acoustic medium and the Helmholtz
nonlinear resonator has been studied by Gourdon et al. [13].

For the modeling of these systems, the authors have
imposed simplifications. In [4], to obtain the equations
governing the coupled tube-membrane system, R. Bellet
assumed that the spatial dependence of the acoustic pres-
sure inside the tube was described by the first eigenmode
of a tube open at both ends and that the displacement
imposed on the membrane had a parabolic shape.

For a wide range of amplitudes and frequencies, this
simplification is crude. In any case, the pressure model is
only valid in the immediate frequency vicinity of the corre-
sponding mode; similarly, the parabolic shape imposed on
the membrane displacement is only valid when the mem-
brane vibrates with a very low amplitude. These approxi-
mations are made at the expense of the accuracy of the
model. As pointed out by Bellet et al. [4], the agreement
between the simplified model and the experiments could
not be obtained over the whole range of amplitudes and fre-
quencies with a single set of parameters. In fact, raises ques-
tions on the model about its domain of validity and the
identification of its parameters.

In this paper we have sought to correct the inherent
inaccuracy of the model by allowing the parameters of the
system to vary with the excitation amplitude. In a way, this
is equivalent to allowing additional degrees of freedom that
can vary with the excitation amplitude. These parameters
are: force, pulsation and linear stiffness of the tube, linear
and non-linear stiffness and dissipation of the diaphragm,
coupling term and the mass term. The interest of this
approach, apart from the fact that it allows the continued
use of a simplified model that allows relatively simple ana-
lytic developments, also lies in a better understanding of the
physics underlying the phenomena. The observed variations
of the identified parameters will make it possible to identify
the points to be refined in the modeling or estimate a range
of validity of constant parameters.

The identification of the parameters of a nonlinear
model has been practiced for long with many different
approaches. To cite only a few, there is the application of
Nayfeh’s multiple time-scale approach [14], the classical
use of a minimization algorithm on a simple model [15] or

on a black-box system representation [16]. Neural networks
are also used [17], and systems can be represented with
Kalman filters [18]. In all these previous works the authors
identify the parameters of models of nonlinear dynamical
systems, but to the best of our knowledge the method we
present here has not yet been used. These parameters are
the minimum set of independent parameters that was found
necessary to describe the complex dynamics of the system
under study [4]. In order to be able to identify the parame-
ters of this 2 DOF model over a wide range of forcing ampli-
tudes, we tested two different ways to obtain simple
analytic expressions to describe the nonlinear dynamics of
the system: Harmonic Balance Method [19–21] denoted in
the following HBM and Manevitch Complexification
Averaging method [22] denoted in the following CX-A
method. Using a non-linear regression, the parameters of
the simplified model were identified from experiments. It
should be noted that the principles of this identification
method can be applied to any non-linear differential system
with a low number of degrees of freedom that describes the
coupling between a primary system and a NES.

This article is organised as follows. In the second part,
an experimental description of the fixture is presented.
The simplified adimensional model of R. Bellet is presented
and the model adapted to our problem is deduced. In the
third part, the identification method is described: we
describe in detail the experimental tests carried out and
then we establish the two expressions of the identification
functions which describe the dynamics of the nonlinear
system resulting from the HBM and CX-A and we describe
the nonlinear regression that is used. In the fourth part, the
result of the identification is presented. We compare the
experimentally determined frequency responses with those
given from the identification using the HBM and CX-A.
The ridge curves from the identified parameters and by
using the experimentally determined parameters at low
excitation amplitude are compared with the ridge curve
given from the sound pressure measurement in the tube.
The time responses of the system calculated numerically
from the parameters identified by using the HBM and
CX-A are compared with the experimental data. The esti-
mated variation of the parameters of our system as a func-
tion of the excitation amplitude in the two domains (linear
and non-linear) is presented. This method is applied to
other experimental configurations 1. Finally, the last part
concludes this paper.

2 Description of the system under study
2.1 Description of the experimental set-up

The device is inspired by the work of Cochelin et al. [3]
and Bellet et al. [4]. The non-linear vibroacoustic absorber
(NES) is always constituted by a thin circular viscoelastic
membrane which is subjected to an axisymmetric trans-
verse displacement which is the source of the non-linearity.
This absorber is coupled to the first resonance mode of
an open tube through a coupling box. The primary tube
system is excited by an acoustic field provided by a
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loudspeaker (see Fig. 1). In this work, the dimensions of the
tube and the coupling box are fixed. The radius of the tube
is Rt = 0.045 m, its length is Lt = 2.2 m, its first resonant
frequency is ft = 79 Hz. The volume of the coupling box
is Vc = 29.3l. The membrane of variable thickness hm and
variable radius Rm is fixed to the coupling box by means
of a holder which allows the change of the diameter and
the tension exerted on the membrane. In the range of
frequencies and levels we have worked, the z shape of the
tube has no meaningful effect on the acoustic phenomena.
For the three series of experimental tests carried out, the
same tube was kept and the membrane was changed each
time. The three configurations are:

Configuration 1: hm1 = 0.23 mm, Rm1=5 cm,
fm1 = 45 Hz.

Configuration 2: hm2 = 0.24 mm, Rm2=4 cm,
fm2 = 44 Hz.

Configuration 3: hm3 = 0.62 mm, Rm3=5 cm,
fm3 = 45 Hz.

The voltage sent to the amplifier must not exceed
1.75 V in order to avoid to damage the loudspeaker. For
the first and second experiments, the maximum voltage
sent to the amplifier is equal to 1.75 V and 0.75 V. These
levels of excitation are higher than those of energy pump-
ing, and we observed the saturation of the membrane. In
the third experiment we reached the maximum voltage that
we can apply (1.75 V), without seeing the end of the energy
pumping and the saturation of the membrane.

2.2 Experimental tests

First, a series of experimental tests were carried out on
the experimental fixture presented in the Figure 1. This
series of experimental tests is automated through a program
written on Matlab that allows the acquisition system
(NetdB) to be driven directly through the TCP/IP

communication mode. This acquisition system has twelve
synchronous acquisition channels and two signal generation
channels with a sampling frequency fixed for all experi-
ments at 12.8 kHz. The setup allows the tube to be excited
by a harmonic acoustic field through a loudspeaker. The
loudspeaker is fed through a TIRA 120BBA amplifier
whose input signal is provided by the NetdB acquisition
system. A low-pass filter with a bandwidth of [0,1000] Hz
filters the output signal of NetdB in order to avoid polluting
the excitation signals with noise. An amplitude-frequency
excitation range has been defined for each type of arrange-
ment. The frequency steps of 0.4 Hz and voltage steps of
0.01 V are a compromise between the fineness of analysis
sufficient to describe the whole response range of the system
and the measurement time; it was chosen not to have a
total acquisition time greater than 3 days to ensure relative
stability of the experimental conditions.

A Keyence LK-G152 laser displacement sensor, con-
nected to a Keyence LK-G3001 controller, measures the dis-
placement of the centre of the membrane. The
measurement range of this displacement sensor is
±40 mm. The sensitivity setting for this sensor is set to
102 v/m.

A GRAS 46BF microphone with a sensitivity of
3.6 mv/Pa measures the acoustic pressure in the middle
of the tube; from this pressure measurement, the value of
the displacement at each point of the acoustic medium
can be deduced by the conservation equations. A GRAS
46DP type microphone with a sensitivity of 0.9 mv/Pa
measures the acoustic pressure in the coupling box on the
loudspeaker side; from this measurement we can estimate
the forcing term F corresponding to each excitation voltage
sent to the loudspeaker terminal. The location of the micro-
phones and the displacement sensor are shown in Figure 1.

Three NetdB input channels are used to monitor the
voltage sent by the NetdB signal generator to the TIRA

Figure 1. Experimental fixture.
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amplifier, the voltage and the current output of the TIRA
amplifier. These three measurements are a means of moni-
toring and verifying that our series of experimental tests
is running smoothly. The procedure is to start recording
at t0 = 0 s. At t1 = 1.25 s the signal is sent to the speaker
for 10 s. The system rests for 1 s and then the recording
stops. A further two seconds of waiting is added, in order
to allow the data to be transferred from the data acquisition
chain to the PC controlling the measurement. The Root
Mean Square (RMS) of the last three seconds of the signal
(before the source is switched off) is calculated so as to
estimate the steady state value. This allows the RMS
amplitude frequency responses of the air in the tube and
the membrane to be determined. An example of the
amplitude–frequency response surface of the tube displace-
ment UExp and the membrane displacement QExp are
shown in Figure 3. These results correspond to the first
membrane configuration: hm = 0.23 mm, Rm = 5 cm,
fm = 45 Hz.

3 Identification method
3.1 Simplified system model

The model of this coupled tube-membrane system used
here was established by Bellet et al. [4]. We present here
only the final model because the full derivation would
distract the reader from the main point. A representation
of the system is seen in Figure 2. It consists of a double
Rayleigh-Ritz reduction of the conservation equations of
the coupled tube/membrane system: the acoustic field is
assumed to be described by the first acoustic mode of the
tube and the deformation of the membrane is approximated
by an axisymmetric parabolic deformation.

In order to find the model used in this work and repre-
sented in the figure, we start from the adimensionalized
dynamical model [4]

u00 þ uþ ku
0 þ bðu� qÞ ¼ F cos

sX
xt

� �

cq00 þ c1 gxtq0 þ qð1� vÞð Þ þ c3 q3 þ 2gq2xtq0
� �þ bðq� uÞ ¼ 0;

ð1Þ
where u and q are the normalised displacements of the air
at the end of the tube and at the centre of the membrane,
k and c1gxt the linear damping coefficients, 2c2gxt the
non-linear damping coefficient, xt the tube resonance
pulsation, F the forcing amplitude, X the excitation pulsa-
tion, b the coupling term, c the dynamic mass, c1 (1 � v)
and c3 the linear and cubic stiffnesses of the membrane,
v the coefficient of pre-stress of the membrane, and g is
a parameter that characterizes the membrane damping.

We propose to simplify this model in order to remove
the linear dependencies between the initial parameters,
and be able to fit meaningful parameters only. In previous
works the two coefficients c1 and c3 were used [4] but we
show here as a side result that the use of only one of those

is enough. c1 and c3 are c1 ¼ 2�1:0154p
9 1�m2mð Þ

Emh3mLtSt
c20qaR

6
m

and c3 ¼
64

3p3 1�m2mð Þ
Emh3mLtSt
c20qaR

6
m

[4]. It is worth noting that 2�1:0154p
9 ’ 64

3p3

then c1’ c3. We can therefore rewrite the system in the

following form

u00 þ uþ ku0 þ bðu� qÞ ¼ F cos
sX
xt

� �

cq00 þ klqþ knlq3 þ cgxt 2q2 þ 1
� �

q0 þ bðq� uÞ ¼ 0 ð2Þ

where kl = c1(1 � v) and knl = c1 are the linear and non-
linear stiffnesses of the membrane, xtcg is the damping
coefficient of the membrane where cg = c1g. Note that
here the same coefficient is used to describe both the linear
damping xtcg and the non-linear damping 2xtcg.

Figure 2. schematic diagram of the experimental set-up and equivelent mechanical representation.
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In this model is related to the simplified representation
in Figure 2 by the following equations: K ¼ kl þ knlq2;
C ¼ cgxt 2q2 þ 1ð Þ.

The relationship between the normalized displacements
(u, q) and the physical ones (up, qp) are

u ¼ 2
hm

Rt

Rm

� �2

up;

q ¼ 1
hm

qp: ð3Þ

For the configuration 1 we get u = 7360up and q = 4550qp.

3.2 Determination of the system parameters in linear
regime

The dimensions of the tube, the membrane and the
coupling box were determined by static measurements.
These measurements were used to calculate the stiffness
and mass terms. A dynamic measurement with a generator
and an oscilloscope was made in order to determine the fre-
quencies at the maximum amplitude of the tube and the
membrane, and the frequency bands at �3 dB of the max-
imum amplitude. Through this dynamic measurement,
where the behavior of the system is purely linear, the dissi-
pation terms of the tube and membrane were determined.
The values of these parameters are used later in the inver-
sion procedure and as a verification tool at low excitation
amplitude. We obtained the following values for F = 0.3:
k = 0.0461 s, b = 0.0874, c = 0.170 s�2, kl = 0.0558,
cg = 40 � 10�9,xt = 496 rad/s). This process gives an esti-
mation of all the linear parameters. Among the model
parameters in equation (2), it only misses the nonlinear
stiffness of the membrane. This identification method was
shown to give inaccurate results at high amplitudes [4]
where the nonlinear terms become meaningful.

3.3 The identification functions describing the
movement of the membrane and the air
at the end of the tube

In order to find analytic expressions describing the
coordinates of the system, we need to solve our system of

nonlinear differential equations equation (1), which is
impossible in general without approximations. We will
apply two analytic methods widely used for the study of
non-linear dynamic systems, the HBM and the Manevitch
CX-A method under 1:1 resonance. These analytic methods
make it possible to highlight the influence of the various
parameters of the system. The hypotheses and the full
description of these methods are out of the scope of this
paper. One only needs to know that in this study, HBM
gives a harmonic approximate solution, and CX-A a peri-
odic one but not necessarily harmonic. The CX-A method
is more complex but it is able to describe the strongly
modulated responses seen in Figure 11, which HBM cannot
do, thus it is interesting to compare results obtained by
these two methods.

3.3.1 Identification function obtained by the harmonic
balance method

Harmonic balancing is a frequency method which con-
sists in writing the coordinates of our system in a Fourier
series. In our case we will limit ourselves to the first
harmonic where the coordinates of the problem are
expressed in the form u(s) = UHB cos(xs � /t) and
q(s) = QHB cos(xs � /m). By replacing these expressions
in the systyem equation (2) and X

xt
by x and neglecting

the higher order harmonics, we obtain the system of alge-
braic equations

b� x2 þ 1
� �

UHB cosðxs� /tÞ � kxHBU sinðxs� /tÞ
�bQHB cosðxs� /mÞ ¼ F cosðxsÞ;

QHB b� cx2 þ kl
� �þ 3knlQ3

HB

4

� �
cos xs� /mð Þ

�cgxtxQHB
Q2

HB

2
þ 1

� �
sin xs� /mð Þ

¼ bUHB cosðxs� /tÞ: ð4Þ
The application of the harmonic balance on the system of
equations (4) leads to the system of equations

Figure 3. Experimentally determined amplitude-frequency response surfaces of the tube (a) and membrane (b) for configuration 1:
hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz.
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cHBUHB cosð/tÞ � dHBUHB sinð/tÞ � bQHB cosð/mÞ ¼ F

cHBUHB sinð/tÞ þ dHBUHB cosð/tÞ � bQHB sinð/mÞ ¼ 0

aHB cosð/mÞ þ bHB sinð/mÞ ¼ bUHB cosð/tÞ
aHB sinð/mÞ � bHB cosð/mÞ ¼ bUHB sinð/tÞ; ð5Þ

where aHB ¼ QHB b� cx2 þ klð Þ þ 3knlQHB3
4 ,

bHB ¼ cgxtxQHB
Q2

HB
2 þ 1

� �
, cHB = b � x2 + 1 and d = kx.

By multiplying the first two equations of the system
equation (5) by b and substitutingbUcos(/t) and bUsin
(/t) by their expressions given by the last two equations
we obtain the system of equations equation (6)

aHBcHB � bHBdHB � b2QHB

� �
cosð/mÞ

�ðaHBdHB þ bHBcHBÞ sinð/mÞ ¼ bF

aHBcHB � bHBdHB � b2QHB

� �
sinð/mÞ

þðaHBdHB þ bHBcHBÞ cosð/mÞ ¼ 0

aHB cosð/mÞ þ bHB sinð/mÞ ¼ bUHB cosð/tÞ

aHB sin /mð Þ � bHB cos /mð Þ ¼ bUHB sin /tð Þ: ð6Þ
By simple calculation and by replacing aHB, bHB, cHB and
dHB by their expressions we obtain the two equations
which relate the amplitudes of oscillation of the displace-
ments to the parameters of the model

Q6
HBaHB3 þ Q4

HBaHB2 þ Q2
HBaHB1 ¼ b2F 2

Q6
HBbHB3 þ Q4

HBbHB2 þ Q2
HBbHB1 ¼ b2U 2

HB; ð7Þ
where aHBi and bHBi with i = 1, 2, 3 are defined as:

aHB3 ¼ 1
4
c2gk

2x4x2
t þ

9
16

k2k2nlx
2 þ b� x2 þ 1

� �2 1
4
c2gx

2x2
t þ

9k2nl
16

� �

aHB2 ¼ c2gk
2x4x2

t þ b� x2 þ 1
� �2

c2gx
2x2

t þ
3
2
knl b� cx2 þ kl

� �� �

þ b2cgkx2xt þ 3
2
k2knlx2 b� cx2 þ kl

� �� 3
2
b2knl b� x2 þ 1

� �

aHB1 ¼ b4 þ c2gk
2x4x2

t þ b� x2 þ 1
� �2

c2gx
2x2

t þ b� cx2 þ kl
� �2� �

þ 2b2cgkx2xt � 2b2 b� x2 þ 1
� �

b� cx2 þ kl
� �

þ k2x2 b� cx2 þ kl
� �2

bHB3 ¼
1
4
c2gx

2x2
t þ

9k2nl
16

bHB2 ¼ c2gx
2x2

t þ
3
2
knl b� cx2 þ kl

� �

bHB1 ¼ c2gx
2x2

t þ b� cx2 þ kl
� �2

: ð8Þ

The system of equation (7) is composed by two third
degree polynomials of Q2

HB. The coefficients of the first
equation depend only on the parameters of the system
and the forcing. The second equation calculates the dis-
placement of the air in the tube UHB as a function of
the displacement of the membrane QHB. The first equa-
tion is therefore solved first and then the solution of the
second equation is determined.

The first third degree polynomial of Q2
HB has three solu-

tions. The type of these roots depends on the sign of the dis-
criminant of the polynomial D. Recall that the discriminant
of a third degree polynomial P(x) = ax3 + bx2 + cx+d is
given by DP = b2c2 + 18abcd � 27a2d2 � 4ac3 � 4b3d. If
D > 0 we have three distinct real roots. If D < 0 we have
one real root and two non-real conjugate complex roots. If
D = 0 we have a double or triple root. In this case one seeks
from these three roots Q1, Q2 and Q3 a function which
describes the displacement of the membrane according to
the parameters of the system where one will sort out for
each combination of the parameters the root which
describes the stable behavior of the membrane.

Firstly, we construct a function called Sig which allows
us to distinguish between real and complex roots. It is
defined by

Sig: QHB ? Sig(QHB)
QHB ? 1 if QHB is purely real

� 1 if QHB is complex.
In the case where the three roots are real, i.e. {Sig(Q1),

Sig(Q2), Sig(Q3)} = {1, 1, 1}, the solution describing the
displacement of the membrane corresponds to the minimal
solution QHB = min{Q1, Q2, Q3}. This choice is adopted in
order to present a peak of the curve that corresponds better
to the experimental data. All the experiments started with
null initial conditions, so the system reached only the lowest
stable response after the transients. Figure 4 shows the
frequency responses of the membrane determined analyticly
(in red) and experimentally (in blue). Here we used the
nominal values of the parameters (k = 0.0461 s,
b = 0.0874, F = 0.3, c = 0.170 s�2, kl = 0.0558, knl =
75.2 � 10�6, cg = 40 � 10�9, xt = 496 rad/s). The red curve
on the left corresponds to the maximum solution, the one
on the right to the minimum solution. While similar, the
results differ by the shape of the top of the curve presented
for the choice of the maximum solution that is not observed
experimentally, which confirms our choice. In the case
where we have a real root and two non-real conjugated
complex roots, we choose the real solution thus
QHB = max{Sig(Q1)|Q1|, Sig(Q2)|Q2|, Sig(Q3)|Q3|}. The
analytic expressions of Q1, Q2 and Q3 are determined by
the solve command of mathematica.

Once the function QHB is determined, the function UHB
is simply deduced by using the second equation of the
system equation (7).

3.3.2 Identification function obtained by the CX-A
method

This method consists in introducing the Manevitch
complex variables which allows to separate the fast
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oscillations of the system at the pulsation x and the slow
modulations

/1 sð Þeisx ¼ u0 sð Þ þ iu sð Þx

/2 sð Þeisx ¼ q0 sð Þ þ iq sð Þx; ð9Þ
where u0(s) and q0(s) are the derivatives of u and q with
respect to the time variable s. The Manevitch variables
given by equation (9) are introduced into the system of
equations (2). By averaging these equations over the pul-
sation x, we obtain the system of equations that governs
the slow modulations of the complex amplitudes /1(s)
and /2(s):

� ib/1

2x
þ ib/2

2x
þ k/1

2
þ /0

1 þ
ix/1

2
� i/1

2x
¼ F

2

ib/1

2x
� ib/2

2x
þ c/0

2 þ
1
2
icx/2 þ

cgxt/
�
2/

2
2

4x2
þ cgxt/2

2

� ikl/2

2x
� 3iknl/

�
2/

2
2

8x3
¼ 0: ð10Þ

It can be noted here that the nonlinear dissipation results in
the term cgxt/

�
2/

2
2

4x2 .
The fixed points of this system /10 and /20 are the solu-

tions which cancel the time derivatives in equation (10). We
thus obtain the equations which correspond to the periodic
solutions of the system equation (2)

/10 � ib
2x

þ k
2
þ ix

2
� i
2x

� �
þ ib/20

2x
¼ F

2

/20
cgxt /20j j2

4x2
� 3iknl /20j j2

8x3
� ib
2x

þ icx
2

þ cgxt

2
� ikl
2x

� �

þ ib/10

2x
¼ 0: ð11Þ

Now, one can define UCA and QCA as the constant (with
respect to time s) solutions of equations given by equation
(9) for the fixed points /10 and /20 as UCA ¼ /10=ðixÞ and
QCA ¼ /20=ðixÞ. By simple manipulations, the system is
rewritten in this form

/10 ¼
F
2 � ib/20

2x

� ib
2x þ k

2 þ ix
2 � i

2x

ð12Þ

/20 aCA þ bCA /20j j2� � ¼ cCA ð13Þ

where coefficients aCA, bCA and aCA are given by

aCA ¼ b2

4x2
þ � ib

2x
þ k
2
þ ix

2
� i
2x

� �
� ib
2x

þ icx
2

þ cgxt

2
� ikl
2x

� �

bCA ¼ � ib
2x

þ k
2
þ ix

2
� i
2x

� �
cgxt

4x2
� 3iknl

8x3

� �

cCA ¼ � ibF
4x

: ð14Þ

Equation (13) is easily transformed into a polynomial of
degree three in /20j j2

bCAj j2 /20j j6 þ aCA þ bCAj j2 � aCAj j2 � bCAj j2� �
/20j j4

þ aCAj j2 /20j j2 ¼ cCAj j2: ð15Þ
In the same way as shown above, we define the amplitude
of the function |QCA| = |/20|/x and that of the function |
UCA| = |/10|/x. For the slow modulation |/10|, a simple
calculation using equation (12) gives

/10j j ¼ b2 � 2bcx2 þ c2x4 þ c2gx
2x2

t þ k2l þ 2bkl � 2cklx2

b2

/20j j2 þ 2c2gx
2x2

t þ 3klknl þ 3bknl � 3cknlx2

2b2x2

/20j j4 þ 4c2gx
2x2

t þ 9k2nl
16b2x4

/20j j6: ð16Þ

It is to be remarked that if the phase of the fixed points
/i0 is needed, it is simple to compute by noting that
equation (13) is written, with /20 = |/20|expih, as

cCA � (aCA|/20| + bCA|/20|
3) expih = 0. It is easy to show

that h = i ln((aCA|/20| + bCA|/20|
3)/cCA). Then, once its

amplitude and phase calculated, /20 is simply introduced
in equation (12) to calculate /10.

3.4 Inversion procedure

At this point, we have obtained the expressions for the
displacements of the air at the end of the tube and the
membrane at its centre (QHB and UHB, QCA and UCA) as
solutions of polynomial equations. We also calculated the
frequency responses from experimental data: QExp and
UExp. Since the two expressions (QHB and UHB, QCA and
UCA) share the same parameters, we need to identify two
functions simultaneously. For this purpose, the Mathemat-
ica built-in function “MultiNonlinearModelFit” [23] is the
most suitable. It is based upon the function “Nonlin-
earModelFit” and chooses automatically its method among
various classical methods like (conjugate) gradient, Leven-
berg-Marquardt, or (quasi) Newton. This function allows
us to fit two data sets with two expressions.

For each excitation amplitude, we therefore look for
numerical values of the parameters of our system for which
the analytic expressions QHB and UHB (where QCA and
UCA) best fit the experimental data spread over the excita-
tion frequency range QExp and UExp. This allows us to best
estimate the variation of the parameters of our system as a
function of the excitation amplitude in the linear and non-
linear domains.

In order for the MultiNonlinearModelFit function to
successfully identify our parameters, initial values of the
parameters must be specified. For the first excitation ampli-
tude where the system has a linear behavior we used the
experimentally determined parameters at low excitation
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amplitude as initial values. Subsequently the parameters
identified for the amplitude n are used as initial values for
the amplitude n + 1.

This calculation is a heavy computation, performed on a
DELL Poweredge R640 server, equipped with an Intel Xeon
6154 processor at 3 GHz and 512 GB of RAM, to determine
the variation of the amplitude of the excitation force and of
the seven model parameters. For 110 excitation amplitudes,
the calculation requires about 12 h of computation when
using the HBM and about 17 h of computation when using
the CX-A method.

4 Results
4.1 Introduction

In this part, we show and discuss the results of identifi-
cation. First we present examples of frequency responses at
different levels, and we discuss the ability of the numerical
frequency responses to depict the nonlinear behavior of the
system. The frequency responses are obtained with the
approximated solutions given by HBM and CX-A. Then
we compare typical experimental recordings with temporal
responses calculated by direct integration of the initial set of
equations (before HBM and CX-A approximations) using
the identified parameters. Finally we present the parame-
ters obtained by identification and we discuss their validity.
This parameter identification covers all the range of the
excitation levels, including the frequency responses and
the temporal examples shown at first.

4.2 Frequency responses

The curves presented in Figures 5–8 are the results of
the identification for four different excitation amplitudes
corresponding to a characteristic behavior of the system.
For all these figures, the red curves are the experimentally
determined frequency responses, the blue curves are the
results given from the identification using the HBM and
the green curves are the results given by the CX-A method.
The frequency responses are calculated by dividing the
amplitude of the responses by the amplitudes of the corre-
sponding amplifier voltages. The response amplitudes are

estimated from the rms amplitudes of the measurements,
with the assumption that the signal is harmonic.

The frequency responses of the tube are shown on the
right and the membrane on the left. These are the results
obtained for the first experimental configuration:
hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz. These four figures,
chosen among the one hundred and ten amplitudes of the
experiment, allow us to present the different types of behav-
ior observed in a classical non-linear system with two
degrees of freedom (see [4]). The first excitation amplitude
corresponding to a voltage applied to the loudspeaker
terminal equal to V = 0.01 V Figure 5. At this amplitude,
two resonance peaks are presented, one from the linear sys-
tem and the other from the non-linear absorber. A linear
behavior is observed. In Figure 6 a nonlinear behavior is
observed for the 0.27 V amplitude.

At this amplitude a hardening effect is observed in the
frequency response: the resonance frequency (as far as it
can be defined for nonlinear systems [1, 2]) increases when
the vibration amplitude increases and results in a right-
bend frequency response. On the figure, a gray dotted line
indicates the frequency where the discontinuity of the
curves is interpreted as a bifurcation, typical of such nonlin-
ear systems. They basically behave like a hardening Duffing
oscillator, and the discontinuity appears when the reso-
nance curve of the system is enough bent on the right so
that it has a vertical tangent, where the discontinuity takes
place when the source frequency is raised. We verified that
the reverse phenomenon happens when the source fre-
quency is lowered: there is also a discontinuity but at a
lower frequency.

The phenomenon of peak resonance decay is presented
in Figure 7 (V = 0.2 V). This phenomenon shows the pres-
ence of energy pumping. For the high excitation amplitude
(V = 1.12 V), a new resonance peak slightly shifted towards
the low frequencies appeared in Figure 8. For this excitation
amplitude we have the saturation of the membrane. From
these figures it is clear that the identified (blue and green)
and experimentally determined (red) frequency responses
are almost the same. Our identification method succeeds
in reproducing in the frequency domain all the usual non-
linear phenomena, i.e. mode hardening, bifurcation, energy
pumping.

Figure 4. Normalized frequency responses of the membrane determined analyticly (red) and experimentally (blue). (a) maximum
analytic solution (b) minimum analytic solution.
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Concerning the choice of the method used, the HBM is a
frequency method consisting in writing the system coordi-
nates in Fourier series where these coordinates are supposed
to be periodic. In this case the analysis consists of determin-
ing the Fourier coefficients which are the vibration ampli-
tudes of the oscillators. The CX-A method allows the
complex representation of the equations of motion by intro-
ducing the complex Manevitch variables. These variables
have the effect of separating the fast oscillations of the
system and the slow modulations of the complex amplitudes
/1 and /2. By a simple calculation we can deduce that
the displacement of the membrane q(s) written in this

form q sð Þ ¼ � i /2e
isx�/�

2e
�isxð Þ

2x . By replacing /2 by its polar

form /2 ¼ N 2e�i/CAm we can rewrite q(s) in the sinusoidal

form N2 sinðsx�/CAmÞ
x . The CX-A method and the HBM are

globally very similar. They try to translate the same time
dependence in a different way. We have not observed any
notable difference in the frequency results given from the
identification by using either of these two methods.

Figure 9 shows five peak curves of the tube frequency
response. This figure shows the maximum amplitude of
the tube’s frequency response for each excitation amplitude.
It is obtained by a projection of Figure 3 along the

frequency axis. The red curve is the peak curve determined
from the frequency response given by the mid-tube pressure
measurement. The blue and green curves are observed from
the frequency response determined numerically using the
parameters identified by the HBM and the CX-A method.
The black curve is observed from the frequency response
determined numerically using the parameters determined
experimentally at low excitation amplitude (at low ampli-
tudes, the parameters are constant: see Section 3.2).The
black dashed curve is obtained from the frequency response
determined by time integration with parameters given by
the mean value of the identified parameters within the
pumping zone. On this last curve we observe that we fit
the experimental data only in the pumping zone. This figure
shows that the model cannot fit the experimental data with
the two obvious choices of constant parameters we tried
here, but can fit it with parameters depending on the exci-
tation amplitude: the most characteristic features, i.e. the
plateau sound level and the pumping activation threshold,
are close to the experimental data.

4.3 Temporal responses

Figures 10 and 12 show the behavior of the system under
sinusoidal excitation in the vicinity of the tube resonance

Figure 5. Normalized results of identification (V = 0.01 V). Blue: identification using HBM. Green: CX-A method. Red:
experimental frequency response functions. (a) tube displacement, (b) membrane displacement. Configuration 1: hm = 0.23 mm,
Rm = 5 cm, fm = 45 Hz.

Figure 6. Normalized results of identification (V = 0.27 V). Blue: identification using HBM. Green: CX-A method. Red:
experimental frequency response functions. Gray dots: discontinuity, guide to the eye. (a) tube displacement, (b) membrane
displacement. Configuration 1: hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz.
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frequency and for different excitation amplitudes (Configu-
ration 1). The experimentally determined displacements of
the air at the end of the tube and of the membrane at its cen-
tre are shown (Figs. 10a, 11a and 12a). Time responses of the
tube and membrane, determined by numerical simulation
are given by using two different sets of parameters: one
obtained by identification from the HBM (Figs. 10b, 11b
and 12b) and the other by CX-A method (Figs. 10c, 11c
and 12c). The time responses of the tube are shown in blue
and the membrane in red. We have chosen to show simula-
tions for three excitation amplitudes where the different
regimes shown in the work of Bellet et al. [4] are presented.
One at low excitation level, with a voltage sent across the
loudspeaker that isV= 0.025 VFigure 10. At this excitation
amplitude, the periodic regime was experimentally
observed, where the displacement of the air at the end of
the tube and the membrane at its centre are in phase oppo-
sition. Numerically by using the parameters identified from
the HBM and the CX-A method, periodic regimes were
obtained which are in phase opposition. The amplitudes
and periods of vibration given numerically are similar to
those observed experimentally. However, a temporal phase
shift with respect to the experimental data was observed.

Figure 7. Normalized results of identification (V = 0.52 V). Blue: identification using HBM. Green: CX-A method. Red:
experimental frequency response functions. Gray dots: discontinuity, guide to the eye. (a) tube displacement, (b) membrane
displacement. Configuration 1: hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz.

Figure 8. Normalized results of identification (V = 1.12 V). Blue: identification using HBM. Green: CX-A method. Red:
experimental frequency response functions. Gray dots: discontinuity, guide to the eye. (a) tube displacement, (b) membrane
displacement. Configuration 1: hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz.

Figure 9. Ridge curves of U (maximum amplitudes over all
frequency range). Red: normalized experimental data. Blue:
numerical integration of the equations with parameters identi-
fied by HBM. Green: numerical integration with parameters
identified by CX-A. Continuous black: numerical integration
with parameters determined experimentally at low excitation
amplitude. Dashed black: numerical intergration with the mean
parameters determined by HBM inside the pumping zone.
Configuration 1: hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz.
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At high excitation amplitude we chose a voltage of
V = 0.61 V where the strongly modulated response is
observed experimentally Figure 11. By numerical calcula-
tion we obtained this response which characterizes the phe-
nomenon of energy pumping. At very high excitation
amplitude (V=1.3V: Figure 12), from the identified param-
eters we reproduced the same type of behavior observed
experimentally. A periodic response was obtained which
shows the saturation of the membrane. At this amplitude
the displacement of the air at the end of the tube and the
membrane at its centre are in phase.

For the periodic responses, it is obvious that our identi-
fication method is able to reproduce the same regime
observed experimentally since we have written the system
coordinates in harmonic and periodic forms. Also by using
these periodic models, we have been able to identify the
parameters of the system that allow to reproduce in the
time domain a strongly modulated response very close to
the experimentally measured time solution. Thus our
simplifying assumption is sufficient for the identification
of the parameters in this quasi-periodic regime (the use of
a quasi-periodic model to identify our parameters is not
necessary).

4.4 Estimated variation of the parameters

In order to analyze the variation of the model parame-
ters as a function of the excitation amplitude, this variation
was presented for the three configurations.

The identified parameters of our system are: The forcing
term F, the tube eigenpulsation xt, the tube dissipation k,
the membrane dissipation g, the linear and non-linear mem-
brane stiffness c1 and c3, the coupling coefficient b and
the mass term c. Figures 13–15 show the variations of the
parameters as a function of the voltage supplied to the
speaker terminal, for the first, second and third configura-
tion respectively. The blue squares correspond to the result
given by the HBM and the green triangles by the CX-A
method. The beginning and end of the energy pump-
ing are presented by the two grey bands. In the third exper-
iment, we do not see the end of the pumping plateau
because our setup cannot reach high enough excitation
amplitudes.

For the second and third configuration, in the pumping
area our method encountered a difficulty in identifying the
parameters from the CX-A method. The identification for
amplitude n + 1 uses as starting values the values identified

Figure 10. Time series of the two degrees of freedom of the system. f = 85 Hz, V = 0.025 V. The blue curves show the scaled
displacement of the air at the end of the tube and the red curves show the scaled displacement at the center of the membrane. Top left:
measured time responses. Top right: the numerically determined time responses using the parameters identified from the HBM.
Bottom: the temporal responses determined numerically using the parameters identified from the CX-A method. Configuration 1:
hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz. (a) The measured time responses. (b) The numerically determined time responses using the
parameters identified from the HBM. (c) The numerically determined time responses using the parameters identified from the CX-A
method.
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for amplitude n. In some cases, the optimization routine
converges towards obviously nonphysical results for some
values of n, but it can converge again towards physical
results for greater values of n. We did not display the useless
values on the graphs. It happens mostly in the pumping
regime, where the responses often deviate from harmonic
motion.

Figures 13a, 14a and 15a present the evolution of the
forcing term as a function of the excitation amplitude. A
linear dependence is observed. This dependence presents
an image of the forcing voltage sent to the speaker terminal.
The scaled force is defined by : 2St

hmmaSmx2
t
PSt, where P is the

pressure measured inside the loudspeaker coupling box (in
Pascal), St and Sm are the cross-sectional areas of the tube
and the membrane. From the system equations (1)–(3), we
deduce that over the same voltage range, the difference
observed in the forcing term for the three configurations
is due to the presence of the term 1

hmR2
m
. Figure 16 presents

the superposition of the variation of force scaled by the term
1

hmR2
m
of the three configurations. In the third experiment, the

maximum value of the source voltage is 0.75 V because this
level is high enough to observe entirely the pumping pla-
teau. The difference in the variation of the forcing term is
related to the difference in the sizes of the membranes in
the three configurations.

The variation of the natural pulsation of the tube as a
function of the voltage sent to the loudspeaker terminal is
presented in Figures 13b, 14b and 15b. In these figures
one can note the presence of 3 domains of decreasing levels.
The first domain is at low excitation amplitude. The second
one appears during the energy pumping and the third one
in the saturation zone of the membrane. This variation
shows that the natural pulsation of the tube is influenced
by the operating regime. This small variation can be
observed as an effect of the 1:1 resonance capture. It was
also noted that the same variation is identified for all three
configurations.

The variation of the tube dissipation is the same for all
three experiments (Figs. 15, 16c and 15c). An increase of
the excitation amplitude leads to an increase of the tube dis-
sipation. It varies from 0.07 for the lowest excitation ampli-
tude to a value of around 0.09 during energy pumping. At
saturation, a clear decrease to the value 0.04 is observed.
Then at saturation, with the increase of the excitation
amplitude, the dissipation, represented by the parameter
k, is slightly increased. This increase does not exceed a value
of 0.07 for the first and second experiments in which satu-
ration of the membrane is observed.

The pulsation xt and the dissipation k of the tube show
the same variation for the three configurations. This shows

Figure 11. Time series of the two degrees of freedom of the system. f = 85 Hz, V = 0.61 V. The blue curves show the scaled
displacement of the air at the end of the tube and the red curves show the scaled displacement at the centre of the membrane. Top left:
measured time responses. Top right: the numerically determined time responses using the parameters identified from the HBM.
Bottom: the temporal responses determined numerically using the parameters identified from the CX-A method. Configuration 1:
hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz. (a) Measured time responses. (b) The numerically determined time responses using the
parameters identified from the HBM. (c) The numerically determined temporal responses using the parameters identified from the
CX-A method.
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that our identification method succeeded in reproducing the
same results (related to the tube) for the three configura-
tions where we kept the same tube.

Figures 13d, 14d and 15d show the variation of the
identified membrane damping term. At low excitation
amplitudes the membrane damping term shows large fluc-
tuations. They are very noticeable in the result of the
second experiment. These fluctuations may be due to the
experimental noise presented at low excitation amplitudes.
Since this term is very small, it is may be sensitive to mea-
surement errors. It seems that in this regime, the sensitivity
of the model to the damping parameter is small, as the wide
range of damping does not change much the amplitudes of
the displacement or the velocity.

At low excitation amplitude the dissipation of the mem-
brane is low. When pumping is activated, an increase in dis-
sipation is observed. At saturation, the dissipation of the
membrane remains more or less constant.

At low excitation amplitudes, a large amount of energy
is dissipated in the tube. With energy pumping, the dissipa-
tion introduced by the membrane becomes dominant. At
saturation the proportion of energy dissipated in the tube
is reduced. This decrease is compensated by the membrane.
Then with the increase of the excitation amplitude the part
of the energy dissipated by the tube is slightly increased.
This can be attributed to the saturation of the membrane,

where the vibration amplitude of the membrane reaches its
maximum and cannot increase much with increasing excita-
tion amplitude because at these amplitudes the membrane
becomes very stiff.

This confirm the fact that our model is able to repro-
duce the main mechanisms of dissipation composed of three
parts. Firstly, at low amplitude most of the energy dissipa-
tion of the system is located within the primary linear sys-
tem while the NES, weakly coupled to the primary system
do not participate to dissipation. Secondly, as energy pump-
ing takes place, the dissipation is transferred from the
primary system to the NES. Thirdly, during saturation,
the two oscillators are strongly coupled and act as a unique
oscillator and most of the energy dissipation is achieved by
the NES.

The variation of the linear stiffness of the membrane is
shown in Figures 13e, 14e and 15e. The linear stiffness shows
almost a constant variation outside the pumping region.
When the energy pumping was activated, an increase
in the value of this termwas observed. During energy pump-
ing this stiffness decreases progressively. The linear stiff-
ness of the membrane is equal to kl ¼ c1 1� vð Þ ¼
2�1:0154p
9 1�m2mð Þ

Emh3mLtSt
c20qaR

6
m

f 2m
f 20
, where f0 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0154p4

12
Emh2m

1�m2mð ÞqtextmR4
m

r
is the

natural frequency of the membrane without taking into
account the pre-stress applied to the membrane [4]. This

Figure 12. Behavior of the system under sinusoidal excitation in the vicinity of the resonant frequency of the tube (V = 1.3 V). Blue:
U, red: Q. Top left: normalized experimental time responses. Top right: the numerically determined time responses using the
parameters identified from the HBM. Bottom: the temporal responses determined numerically using the parameters identified from
the CX-A method. Configuration 1: hm = 0.23 mm, Rm = 5 cm, fm = 45 Hz. (a) Measured time responses. (b) The numerically
determined time responses using the parameters identified from the HBM. (c) The numerically determined temporal responses using
the parameters identified from the CX-A method.
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Figure 13. The variation of the system parameters as a function of the voltage value sent to the speaker terminal for the first
configuration: hm1 = 0.23 mm, Rm1 = 5 cm, fm1 = 45 Hz. The blue squares correspond to the result given by the HBM and the green
triangles by the CX-A method. The beginning and the end of the energy pumping are presented by the two grey bands. (a) F as a
function of the excitation amplitude. (b) xt as a function of the excitation amplitude. (c) k as a function of the excitation amplitude.
(d) cg as a function of the excitation amplitude. (e) kl as a function of the excitation amplitude. (f) knl as a function of the excitation
amplitude. (g) b as a function of the excitation amplitude. (h) c as a function of the excitation amplitude.
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Figure 14. The variation of the system parameters as a function of the voltage value sent to the speaker terminal for the second
configuration: hm2 = 0.24 mm, Rm2 = 4 cm, fm2 = 44 Hz. The blue squares correspond to the result given by the HBM and the green
triangles by the CX-A method. The beginning and the end of the energy pumping are presented by the two grey bands. (a) F as a
function of the excitation amplitude. (b) xt as a function of the excitation amplitude. (c) k as a function of the excitation amplitude.
(d) cg as a function of the excitation amplitude. (e) kl as a function of the excitation amplitude. (f) knl as a function of the excitation
amplitude. (g) b as a function of the excitation amplitude. (h) c as a function of the excitation amplitude.
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Figure 15. The variation of the system parameters as a function of the voltage value sent to the speaker terminal for the third
configuration: hm3 = 0.62 mm, Rm3 = 5 cm, fm3 = 45 Hz. The blue squares correspond to the result given by the HBM and the green
triangles by the CX-A method. The beginning of the energy pumping is presented by the grey band. (a) F as a function of the
excitation amplitude. (b) xt as a function of the excitation amplitude. (c) k as a function of the excitation amplitude. (d) cg as a
function of the excitation amplitude. (e) kl as a function of the excitation amplitude. (f) knl as a function of the excitation amplitude.
(g) b as a function of the excitation amplitude. (h) c as a function of the excitation amplitude.
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expression explains the difference observed in the stiffness
values kl in the three configurations. The linear stiffness
depends on the thickness, radius and natural frequency of
the membrane, which are not the same in the three
configurations.

The non-linear stiffness of the membrane has a constant
variation as a function of the excitation amplitude (see
Figures 13f, 14f and 15f). The non-linear stiffness of the
membrane is equal to knl ¼ c3 ¼ 64

3p3 1�mtextm2ð Þ
Emh3mLtSt
c20qaR

6
m
. This

shows that the non-linear stiffness depends on the thickness
and radius of the membrane.

The variation of the coupling term is presented in
Figures 13g, 14g and 15g. An increase in the excitation level
is accompanied by an increase in the coupling term. For the
three configurations, it could be noticed that the coupling
term b remains more or less constant at low amplitude
and shows rapid increase of about 20% during energy
pumping and saturation. The expression of the coupling

term b ¼ 2LtSt
p2V t

(see [4]) shows that this term is inversely pro-

portional to the volume of the coupling box. The apparent
volume of the coupling box between the membrane and the
tube might be reduced by an increase of the inertial effects
inside the box then reducing the apparent volume of the
coupling box where the pressure effects dominate. Both
the high membrane vibration amplitude and the high pres-
sure inside the coupling box impose an apparent elongation
of the cm-thick, cylindrical holes connecting the coupling
box to the tube and membrane. The mass term follows
the variation of the coupling term (see Figs. 13f, 14f and
15f). This term is given by this expression c ¼ 8hmqmR

2
t

3LtqaR
2
m
. The

difference observed between the configurations is due to
the change in the size of the membrane. The increase in
the apparent membrane mass term could be explained by
the low vibration amplitude at low forcing and a strong
amplification during energy pumping and saturation, in
that case, the membrane drags a larger amount of air in
its movement increasing its apparent mass. For example,
a latex membrane of 4 cm radius and 0.2 mm thickness
weights 1 g and the mass of air that this membrane carries
during its movement with a 2 cm amplitude can be roughly
estimated at least as that of the volume of a cylinder of
diameter equal to that of the membrane and an height of
twice the vibrating amplitude corresponding to a volume

of air of 0.2l that is a added mass of about 20%, in line with
the observed augmentation of the mass term.

Various tests with modifications of the initial parame-
ters gave either the same results for relatively small modifi-
cations, or failed convergence for large modifications. It
means that the method is rather robust and shows little -
dispersion, except for cg in the lowest excitation levels as
discussed before. We also checked that there was coherence
in the relative variation of the parameters. For instance in
the firsts tests, when one stiffness parameter had a large
value, the others tended to be smaller. The same observa-
tion applies to the damping parameters. We also made
some checks of parameter independence by fixing some
parameters and identifying the other ones. Except for cg
there was no situation where two different sets of parame-
ters gave the same responses.

5 Conclusion

In this paper, a method for identifying the parameters of
a simplified non-linear model with two degrees of freedom is
developed and applied in the vibroacoustic domain. This
simplified model represents the behavior of a linear primary
acoustic system coupled to a non-linear membrane absorber
with a forced harmonic excitation that is valid only within a
small frequency–amplitude domain. We calculate the ana-
lytic dynamical response of the system, and fit those on
experimental data beyond the valid frequency–amplitude
domain. To ensure a better agreement with the experi-
ments, we chose to identify a new set of parameters for each
excitation amplitude. We calculate the analytic dynamical
response with two methods widely used in the non-linear
domain: harmonic balance method and complexification-
averaging method. These two methods lead to very similar
results overall.

We display results for different excitation amplitudes
where we observe a linear behavior, a non-linear behavior
without energy pumping, energy pumping, and a saturation
regime. The method finds parameters for which the model
and the experiment are agreeing, over a large frequency–
amplitude range. Although the parameters vary only with
amplitude, the agreement is good over all the frequency
range.

This method gives a better agreement on ridge curves
than when the parameters values are obtained from low
excitation amplitude experiments, where the nonlinear
terms are negligible. The plateau sound level and the pump-
ing activation threshold are at the correct amplitudes.

We compare experimental data and the time integration
of the initial model, with the identified parameters. The
same regimes are observed, including the quasi-periodic
regime, even if the parameter values are identified as peri-
odic analytic responses.

The variation of the system parameters as a function of
the excitation amplitude is almost the same for both
methods, which can be seen as a cross validation. The iden-
tified parameters have physically acceptable magnitudes
and the observed variations are compatible with the

Figure 16. Identified normalized force term F (using HBM)
divided by the term 1

hmR2
m
. Configuration 1: Red. Configuration 2:

Blue. Configuration 3: Green.
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physical phenomenons. The method is successfully applied
on two other sets of experiments where the membrane char-
acteristics are modified.

Despite the fact that the complexification-averaging
method is usable for the analysis of highly modulated
responses, it is less robust than the harmonic balance
method in the energy pumping zone, when the frequency
response of the system shows strong fluctuations. As identi-
fication by harmonic balance method is faster than the
complexification-averaging method, it therefore seems
preferable to use the harmonic balance method for
identification.
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