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Abstract. Performance criteria play a key role in the calibra-
tion and evaluation of hydrological models and have been
extensively developed and studied, but some of the most
used criteria still have unknown pitfalls. This study set out
to examine counterbalancing errors, which are inherent to
the Kling–Gupta efficiency (KGE) and its variants. A total
of nine performance criteria – including the KGE and its
variants, as well as the Nash–Sutcliffe efficiency (NSE) and
the modified index of agreement (d1) – were analysed using
synthetic time series and a real case study. Results showed
that, when assessing a simulation, the score of the KGE and
some of its variants can be increased by concurrent overes-
timation and underestimation of discharge. These counter-
balancing errors may favour bias and variability parameters,
therefore preserving an overall high score of the performance
criteria. As bias and variability parameters generally account
for two-thirds of the weight in the equation of performance
criteria such as the KGE, this can lead to an overall higher
criterion score without being associated with an increase in
model relevance. We recommend using (i) performance cri-
teria that are not or less prone to counterbalancing errors (d1,
modified KGE, non-parametric KGE, diagnostic efficiency)
and/or (ii) scaling factors in the equation to reduce the influ-
ence of relative parameters.

1 Introduction

Hydrological models are fundamental to solving problems
related to water resources. They help characterise hydrosys-
tems (Hartmann et al., 2014), predict floods (Kauffeldt et al.,
2016; Jain et al., 2018), and manage water resources (Muleta
and Nicklow, 2005). A lot of research efforts are thus dedi-
cated to improving the reliability, the robustness, and the rel-
evance of such models. Improvements can be made by work-
ing on (i) input data, (ii) model parameters and structure,
(iii) uncertainty quantification, (iv) model calibration (Beven,
2019), and also (v) appropriate benchmarks for assessing
model performance (Seibert et al., 2018). In this study, we
focus on the proper use of performance criteria for calibrat-
ing and evaluating hydrological models – an important part
that can easily be overlooked (Jackson et al., 2019).

A performance criterion aims to evaluate the goodness of
fit of a model to observed data. It is generally expressed as
a score, for which the best value corresponds to a perfect
fit between predictions and observations. In hydrology, the
Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)
is still one of the most commonly used criteria (Kling et
al., 2012), although the past decade has seen a gain in pop-
ularity of alternatives (Clark et al., 2021), e.g. the Kling–
Gupta efficiency (KGE) (Gupta et al., 2009). Many authors
have pointed out the inherent limitations of using perfor-
mance criteria, especially the fact that a single-score metric
cannot reflect all relevant hydrological aspects of a model
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(Gupta et al., 2009). The use of a multi-criteria framework
is thus often emphasised to quantify different aspects of a
model (Clark et al., 2021; Moriasi et al., 2015; Gupta et
al., 1998; Jackson et al., 2019; van Werkhoven et al., 2009;
Knoben et al., 2019; Althoff and Rodrigues, 2021; Ritter and
Muñoz-Carpena, 2013; Krause et al., 2005; Legates and Mc-
Cabe, 1999) alongside a scientific evaluation of the results
(Biondi et al., 2012). Knoben et al. (2019), Althoff and Ro-
drigues (2021), and Clark et al. (2021) pointed out that mod-
ellers should carefully think about which aspects they con-
sider to be the most important in their hydrological model
and how to evaluate them. In relation to the assessment of
model performance, Seibert et al. (2018) argued that the cur-
rent benchmarks poorly reflect what could and should be ex-
pected of a model. They suggested that one should define
lower and upper benchmarks based on the performance of
a simple bucket-type model with few parameters using the
same data set.

Performance criteria also have shortcomings at a distinc-
tive level. A number of studies have identified several limita-
tions of the NSE: (i) the contribution of the normalised bias
depends on the discharge variability of the basin; (ii) dis-
charge variability is inevitably underestimated because the
NSE is maximised when the variability equals the correlation
coefficient, which is always smaller than unity; and (iii) mean
flow is not a meaningful benchmark for highly variable dis-
charges (Gupta et al., 2009; Willmott et al., 2012). The KGE
aims to address these limitations but also has its own issues
(Gupta et al., 2009). Santos et al. (2018) identified pitfalls
when using the KGE with a prior logarithmic transformation
of the discharge. Knoben et al. (2019) warned against directly
comparing NSE and KGE scores as the KGE has no inherent
benchmark. Ritter and Muñoz-Carpena (2013) and Clark et
al. (2021) showed that NSE and KGE scores can be strongly
influenced by few data points, resulting in substantial uncer-
tainties in the predictions.

What is not fully addressed yet is the trade-off between
individual components (Wöhling et al., 2013) and especially
the impact of counterbalancing errors induced by bias and
variability parameters, which are integrated in many perfor-
mance criteria. While accurate bias and variability are de-
sired aspects of hydrological models, sometimes good evalu-
ations may accidentally result from negative and positive val-
ues cancelling each other (Jackson et al., 2019; Massmann et
al., 2018). This can be particularly detrimental to model cal-
ibration and evaluation as it generates an increase in the cri-
terion score without necessarily being associated with a bet-
ter model relevance. Some performance criteria naturally ad-
dress this problem by using absolute or squared error values,
but other criteria such as the KGE and its variants do not as
they use relative errors. The aim of this study is to assess the
extent to which criteria scores can be trusted for calibrating
and evaluating hydrological models when predictions have
concurrent over- and underestimated values. The influence
of counterbalancing errors is evaluated on nine performance

criteria including the NSE and KGE. This selection is far be-
ing from exhaustive but includes widely used and recently
proposed KGE variants, as well as more traditional criteria
such as the NSE or the modified index of agreement (d1)
for comparison purposes. We first use synthetic time series
to highlight the counterbalancing-errors mechanism. Second,
we show how counterbalancing errors can impair the inter-
pretation of hydrological models in a real case study. Finally,
we provide some recommendations about the use of scaling
factors and the choice of appropriate performance criteria to
nullify or reduce the influence of counterbalancing errors.

2 Performance criteria

2.1 Parameter description

All the performance criteria considered in this study are
based on the same or similar statistical indicators, which are
first described to avoid repetition.

We use xo(t) and xs(t) to refer to observed and simulated
values of calibration variable x at a specific time step t ; r and
rs correspond to the Pearson and the Spearman rank correla-
tion coefficients (Freedman et al., 2007), respectively.
β is the ratio between the mean of simulated values µs and

the mean of observed values µo:

β =
µs

µo
. (1)

βn corresponds to the bias (mean error) normalised by the
standard deviation of observed values σo:

βn =
µs−µo

σo
. (2)

α is the ratio between the standard deviation of simulated
values σs and the standard deviation of observed values σo:

α =
σs

σo
. (3)

γ is the ratio between the coefficient of the variation of sim-
ulated values (CVs = σs/µs) and the coefficient of the varia-
tion of observed values (CVo = σo/µo):

γ =
CVs

CVo
. (4)

Brel and |Barea| (Schwemmle et al., 2021) are based on the
flow duration curve (FDC). Brel(i) is defined as the relative
bias of the simulated and observed flow duration curves at
the exceedance probability i:

Brel =
xs(i)− xo(i)

xo(i)
, (5)

where xs(i) and xo(i) correspond to the simulated and ob-
served values of the calibration variable at exceedance prob-
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ability i. Brel is the mean of Brel(i) when looking at n obser-
vations:

Brel =
1
n

i=1∑
i=0

Brel(i). (6)

|Barea| is calculated as follows:

|Barea| =

1∫
0

|Bres(i)|di, (7)

with Bres being the residual bias:

Bres = Brel(i)−Brel. (8)

αNP (Pool et al., 2018) is also based on the FDC:

αNP = 1−
1
2

n∑
k=1

∣∣∣∣xs(I (k))

nµs
−
xo(J (k))

nµo

∣∣∣∣ , (9)

where I (k) and J (k) stand for the time steps of the kth largest
discharge for the simulated and observed time series, respec-
tively.

As β, βn, and Brel all represent the bias, they are therefore
designed as bias parameters in this study.

2.2 Score calculation

A total of nine performance criteria are analysed in this
study: the NSE, KGE, 2012 version of the KGE or modi-
fied KGE (KGE′), 2021 version of the KGE (KGE′′), non-
parametric KGE (KGENP), diagnostic efficiency (DE), Liu
mean efficiency (LME), least-squares combined efficiency
(LCE), and d1. The value considered to be the best score is
equal to 1 for all criteria, except for the DE, for which it is
equal to zero.

The NSE (Nash and Sutcliffe, 1970) is a normalised vari-
ant of the mean squared error (MSE) and compares a predic-
tion to the observed mean of the target variable:

NSE= 1−
∑
(xs(t)− xo(t))

2∑
(xo(t)−µo)

2 . (10)

Gupta et al. (2009) algebraically decomposed the NSE into
correlation, variability, and bias components:

NSE= 2αr −α2
−β2

n . (11)

The KGE was proposed by Gupta et al. (2009) as an alterna-
tive to the NSE. The optimal KGE corresponds to the closest
point of the three-dimensional Pareto front – of α, β, and r –
to the ideal value of [1; 1; 1]:

KGE= 1−
√
(α− 1)2+ (β − 1)2+ (r − 1)2. (12)

A modified Kling–Gupta efficiency was proposed by Kling
et al. (2012). The coefficient of variation is used instead of

the standard deviation to ensure that bias and variability are
not cross-correlated:

KGE′ = 1−
√
(γ − 1)2+ (β − 1)2+ (r − 1)2. (13)

Tang et al. (2021) proposed another variant (KGE′′) by using
the normalised bias instead of β to ensure that the score is not
overly sensitive to mean values – µo or µs – that are close to
zero (Santos et al., 2018; Tang et al., 2021):

KGE′′ = 1−
√
(α− 1)2+β2

n + (r − 1)2. (14)

Pool et al. (2018) cautioned against the implicit assump-
tions of the KGE – data linearity, data normality, and ab-
sence of outliers – and proposed a non-parametric alterna-
tive (KGENP) for limiting their impact. The non-parametric
form of the variability is calculated using the FDC, and the
Spearman rank correlation coefficient is used instead of the
Pearson correlation coefficient:

KGENP = 1−
√
(αNP− 1)2+ (β − 1)2+ (rS− 1)2. (15)

In a similar way, Schwemmle et al. (2021) used FDC-based
parameters to account for variability and bias in another KGE
variant: the diagnostic efficiency. This criterion is based on
constant, dynamic, and timing errors and aims to provide a
stronger link to hydrological processes (Schwemmle et al.,
2021):

DE=
√
B

2
rel+ |Barea|

2
+ (r − 1)2. (16)

In this study, we used a normalised diagnostic efficiency
(DE′) so that the best error score is equal to 1 for facilitat-
ing the comparison with other performance criteria:

DE′ = 1−
√
B

2
rel+ |Barea|

2
+ (r − 1)2. (17)

Liu (2020) proposed another alternative, the Liu mean ef-
ficiency, to improve the simulation of extreme events. The
LME thus aims to address the underestimation of variability
of the KGE, which is still a concern despite not being as se-
vere as with the NSE (Gupta et al., 2009; Mizukami et al.,
2019):

LME= 1−
√
(rα− 1)2+ (β − 1)2. (18)

Lee and Choi (2022) proposed the least-squares combined
efficiency to address the shortcomings of the LME identified
by Choi (2022), namely (i) an infinite number of solutions
for the maximum score and (ii) an inclination to overesti-
mate high flows and underestimate low flows. The LCE is
based on the least-squares statistics combined from both-way
regression lines rα and r/α:

LCE= 1−
√
(rα− 1)2+ (r/α− 1)2+ (β − 1)2. (19)
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Willmott et al. (1985) proposed a modified index of agree-
ment, which aim to address the issues associated with r and
the coefficient of determination, as well as the sensitivity of
the original index of agreement to outliers (Legates and Mc-
Cabe, 1999):

d1 = 1−
∑
|xs(t)− xo(t)|∑

(|xs(t)−µo| + |xo(t)−µo|)
. (20)

3 Synthetic time series

3.1 Generating synthetic time series with homothetic
transformations

A simulation performance can be assessed in terms of bias,
variability, and timing errors (Gupta et al., 2009). Bias and
variability errors correspond to a difference in the volume
and amplitude of discharges. Timing errors correspond to a
shift in time. We created a synthetic hydrograph correspond-
ing to one flood event as the reference (observed) time series.
We also generated synthetic transformations – of the refer-
ence time series – with different errors in terms of bias and
variability corresponding to the time series simulated by a
model. We did not consider any timing errors as our aim is to
assess counterbalancing errors induced by bias and variabil-
ity parameters. Synthetic transformations were generated by
multiplying the reference time series by the coefficient ω:

Qs(t)=Qo(t) ·ω, (21)

where Qs(t) stands for the transformed discharge at the time
t ,Qo(t) stands for the reference discharge at the time t , andω
stands for the coefficient. ω values were sampled uniformly
on the log-transformed interval [−0.36, 0.36] at a defined
step of 0.002 to ensure a fair distribution between underes-
timated and overestimated transformations. The exponentia-
tion in base 10 of the sampled values results in 361 ω values
evenly distributed around the ω = 1 homothety, which corre-
sponds to the reference time series (i.e. absence of transfor-
mation). We definedω bounds such that the transformed peak
discharge roughly ranges from half (ω ≈ 0.437≈ 10−0.36) to
twice (ω ≈ 2.291≈ 100.36) that of the reference time series.
Note that (i) the data linearity between simulated and ob-
served values is verified and (ii) ω homotheties still induce
small timing errors – which were considered to be negligible
– because the correlation coefficients (r and rs) also slightly
account for the shape of the transformation.

To study counterbalancing errors induced by bias and vari-
ability parameters, we generated time series that consist of
two successive flood events and considered all possible com-
binations of the 361 transformations for the simulated time
series (Fig. 1). This results in a total of 3612

= 130321 trans-
formations with two flood events, including (i) a perfect
transformation with ω = 1 for both flood events, (ii) bad–
good (BG) or good–bad (GB) transformations when ω = 1

for only one out of the two flood events, and (iii) bad–bad
(BB) transformations when ω 6= 1 for both flood events. The
performance of the transformations with regards to the refer-
ence time series were evaluated using the nine performance
criteria presented in Sect. 2.

3.2 Identifying counterbalancing errors on a
straightforward example

Figure 2 presents the following two hydrographs extracted
from the set of transformations: (i) a BB model with the com-
bination [ω1 = 0.75; ω2 = 1.2] and (ii) a BG model with the
combination [ω1 = 0.75; ω2 = 1]. The BG model stands out
as a better model because it perfectly reproduces the second
flood event and is identical to the BB model during the first
flood (ω1 = 0.75). Nevertheless, the KGE and its variants
– KGE′, KGE′′, KGENP, DE′, LME, and LCE – all favour
the BB model, whereas only the NSE and d1 evaluate the
BG model as better (Fig. 3a). Further results for common
and recently developed performance criteria are presented in
Fig. A1 in the Appendix.

The investigation of the components of the criteria
(Fig. 3b) reveals how a seemingly better model (i.e. the BG
model) can have a lower score than expected. Bias param-
eters are systematically better for the BB model, with 0.98
over 0.88 for β, −0.02 over −0.08 for βn, and −0.04 over
−0.12 for Brel. Timing parameters are systematically better
for the BG model, with 0.99 over 0.96 for r and 0.99 over
0.98 for rs. Variability parameters are mixed: (i) α favours the
BB model with 1.01 over 0.89, (ii) γ favours the BG model
with 1.01 over 1.04, (iii) αNP slightly favours the BG model
with 0.94 over 0.93, and (iv) |Barea| is equal for both models.
The rα and r/α parameters are better for the BB model; 2αr
is better for the BG model.

The β, βn, Brel, α, rα, and r/α parameters all provide a
better evaluation of bias and variability for the BB model.
Concurrent over- and underestimation of discharges over the
time series result in a good water balance: close to 1 for
β and Brel and 0 for βn. Depending on the criterion, the
variability parameter can also affect the score in a similar
counter-intuitive manner. α is heavily impacted by the coun-
terbalance, whereas it seems to be mitigated for γ , αNP, and
|Barea|. The timing parameters (r and rs) have an expected
score that favours the BG model. However, the score differ-
ence in terms of timing errors between BB and BG models
is very small (0.03 at best for r). The impact on the overall
score is thus minimised compared to the one induced by bias
and variability parameters, which can be cumulated (e.g. both
β and α counterbalancing errors in the KGE) or have a larger
difference – up to 0.12 for α. Counterbalancing errors can
thus result in better values for bias and variability, which in-
crease the overall score. In this case, the highest score may
not be the most appropriate indicator of model relevance.

The largest differences in score appear for the LME and
LCE criteria as all their parameters are affected by counter-
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Figure 1. Synthetic hydrograph corresponding to two flood events.

Figure 2. Synthetic examples extracted from the set of transformations. The first and second flood events of the bad–bad and bad–good
transformations were shifted with [ω1 = 0.75; ω2 = 1.2] and [ω1 = 0.75; ω2 = 1] combinations, respectively.

balancing errors (β, rα, and r/α). The KGE and KGE′′ also
show significant differences as they accumulate the coun-
terbalancing errors of α and β. The KGE′ demonstrates a
smaller difference than the KGE due to the use of γ . Both
FDC-based criteria KGENP and DE′ show the smallest dif-
ferences due to αNP and |Barea|, which have a nearly equal
value for both BB and BG models. The NSE has a slightly
better score on the BG model, while the difference is more
pronounced for d1.

This example demonstrates how relative error metrics can
cancel each other out and affect the design and the evalua-
tion of hydrological models. The counterbalancing errors es-
pecially affect bias parameters (β, βn, and Brel) but also the
variability parameter α.

3.3 Exploring counterbalancing errors with synthetic
transformations

Figure 4 shows the score distribution of the synthetic set of
hydrographs presented in Sect. 3.1. For each value of ω1,
the minimum and maximum criteria scores of the transfor-
mations resulting from all combinations with ω2 provide the
dashed envelope of the score distribution, with the maximum
transformation score at the top (1 corresponding to a perfect
model) and the worst at the bottom. The transformations cor-
responding to the BG models (with ω2 = 1) are represented
by the black line. All transformations included in the dashed
envelope can be identified as bad–bad models, except when
ω1 = 1 or ω2 = 1 (black line).

It is obvious that the KGE and its variants – KGE′, KGE′′,
KGENP, DE′, LME, and LCE – always evaluate one or sev-
eral BB models as being better than the BG model for the

https://doi.org/10.5194/hess-27-2397-2023 Hydrol. Earth Syst. Sci., 27, 2397–2411, 2023
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Figure 3. (a) Score of the BB and BG transformations according to the different performance criteria. (b) Values of the parameters used in
the calculation of the performance criteria.

Figure 4. Score of each transformation for all [ω1; ω2] combinations by performance criteria.

same ω1 value, except for ω1 = 1. On the other hand, the
NSE and d1 correctly identify the BG model as the best trans-
formation for all combinations of [ω1; ω2]; i.e. the black line
is always above the dashed envelope. The envelopes of the
KGE, KGE′, and KGE′′ criteria are similar, but they do not
display the same difference between the best scores and the
scores of the BG models. These differences are smaller for
the latter two because the KGE′ is based on γ instead of

α, and the KGE′′ is based on βn instead of β, for which it
is demonstrated in Sect. 3.2 that they both soften counter-
balancing errors. The envelope of the LCE criterion looks
like that of the KGE. However, the difference between the
best scores and the scores of the BG models is much higher.
This is likely due to the nature of the equation consisting of
three parameters affected by counterbalancing errors (β, rα,
and r/α). The LME criterion has a very distinctive envelope,

Hydrol. Earth Syst. Sci., 27, 2397–2411, 2023 https://doi.org/10.5194/hess-27-2397-2023
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for which the maximum score of 1 is reached for a lot of
BB models, even when both ω1 and ω2 are different from 1.
This can be explained by the interaction between r and α
that leads to an infinite number of solutions (Choi, 2022).
The KGENP and DE′ (FDC-based criteria) both show similar
envelopes with a break point near the maximum transforma-
tion score in both directions aroundω1 = 1. This is especially
pronounced for the DE′, for which the BG model is nearly
the best model between ω1 = 0.83 and ω1 = 1.17. These re-
sults show that counterbalancing errors can happen on a large
range of parameters, and when using the KGE or its variants,
there is a possibility for the more meaningful model (i.e. BG
model) to have a lower score than a compensated or bad–bad
model.

Figure 5 shows the value of ω2 corresponding to the best
evaluation for a given ω1 by performance criteria. As iden-
tified above, the NSE and d1 both evaluate the BG models
as the best transformations (NSE and d1 black lines coin-
cide at ω2 = 1, Fig. 5). Counterbalancing errors are apparent
for the KGE and its variants. For ω1 6= 1, the best transfor-
mations are always BB models and follow two conditions:
(i) if ω1 < 1 then ω2 > 1, and (ii) if ω1 > 1 then ω2 < 1.
This means that, in this case, such performance criteria will
always be flawed towards concurrent under- and overestima-
tion of discharges in a transformation.

4 Real case study

To highlight how counterbalancing errors can affect the as-
sessment of hydrological models in a real case study, we
used two different modelling approaches: artificial neural
networks (ANNs) and bucket-type models. The simulations
of the karst spring discharges of both models were evaluated
for the same 1-year validation period. To clearly highlight the
problem, we deliberately chose a bucket-type simulation that
is noticeably affected by counterbalancing errors yet is still
realistic. Further information on the modelling approaches,
the input data, the calibration strategy, and the simulation
procedure can be found in Cinkus et al. (2023).

4.1 Study site

The Unica springs are the outlet of a complex karstic system
influenced by a network of poljes. The recharge area is about
820 km2 and is located in a moderate continental climate
with a strong snow influence. Recharge comes from both
(i) allogenic infiltration from two sub-basins drained by sink-
ing rivers and (ii) autogenic infiltration through a highly kars-
tified limestone plateau (Gabrovšek et al., 2010; Kovačič,
2010; Petric, 2010). The network of connected poljes consti-
tutes a common hydrological entity that induces a high hy-
drological variability in the system and long and delayed high
discharges at the Unica springs (Mayaud et al., 2019). The
limestone massif can reach a height of 1800 m a.s.l. (above

sea level) and has significant groundwater resources (Ravbar
et al., 2012). A polje downstream of the springs can flood
when the Unica discharge exceeds 60 m3 s−1 for several
days. If the flow reaches 80 m3 s−1, the flooding can reach
the gauging station and influence its measurement. The flow
data are from the gauging station in Unica-Hasberg (ARSO,
2021a). Precipitation, height of snow cover, and height of
new snow data are from the meteorological stations in Posto-
jna and Cerknica (ARSO, 2021b). Temperature and relative
humidity data are from the Postojna station. Potential evapo-
transpiration is calculated from the Postojna station data with
the Penman–Monteith formula (Allen et al., 1998).

4.2 Modelling approaches

The first modelling approach is based on convolutional neu-
ral networks (CNNs) (LeCun et al., 2015), which is a spe-
cific type of ANN that is powerful in processing image-
like data but also very useful for processing sequential data.
The model consists of a single 1D convolutional layer with
a fixed kernel size of 3 and an optimised number of fil-
ters. This layer was complemented by a MAX-POOLING
LAYER, a Monte Carlo dropout layer with 10 % dropout
rate and two dense layers. The first dense layer had an op-
timised number of neurons, and the second layer had a single
output neuron. We programmed our models in Python 3.8
(van Rossum, 1995) using the following frameworks and li-
braries: Bayesian optimisation (Nogueira, 2014), Matplotlib
(Hunter, 2007), NumPy (van der Walt et al., 2011), Pan-
das (Reback et al., 2021; McKinney, 2010), scikit-learn (Pe-
dregosa et al., 2018), TensorFlow 2.7 (Abadi et al., 2016),
and Keras API (Chollet, 2015).

The second modelling approach is a bucket-type model,
which is a conceptual representation of a hydrosystem con-
sisting of several buckets that are supposed to be representa-
tive of the main processes involved. We used the adjustable
modelling platform KarstMod (Mazzilli et al., 2019). The
model structure consists of one upper bucket for simulating
soil and epikarst processes (including a soil available wa-
ter capacity) and two lower buckets corresponding to matrix
and conduits compartments. A very reactive transfer function
from the upper bucket to the spring is used to reproduce very
fast flows occurring in the system.

4.3 Impact of counterbalancing errors on model
evaluation

Figure 6a shows the results of the two hydrological models
for Unica springs. The models have overall good dynamics
and successfully reproduce the observed discharges. Regard-
ing high-flow periods, both models show a small timing error,
inducing a delay in the simulated peak flood. The first flood
event (February 2017) is slightly underestimated by the ANN
model and highly overestimated by the bucket-type model.
The second flood event (March 2017) is similarly underes-
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Figure 5. Graph of each [ω1; ω2] combination identified as the best transformation by each performance criteria. The NSE and d1 black
lines coincide at ω2 = 1.

Figure 6. (a) Observed and simulated spring discharge time series for the validation period. (b) Relative difference between simulated and
observed discharge for the validation period.
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timated by both models, but the bucket-type model demon-
strates a slightly better performance. The third flood event
(May 2017) is poorly simulated by the models, with both un-
derestimating the flood peak, but the ANN model is more
accurate in terms of timing and volume estimate, while the
bucket-type model has a better recession coefficient and flow
variability. The last flood event (September 2017) comprise
a small peak followed by a very high and long-lasting flood.
Both models fail to account for the small peak. The following
important flood event is highly overestimated by the bucket-
type model while being nicely simulated by the ANN model
despite the small underestimation and timing error. The small
flood events are better simulated by the ANN model than
the bucket-type model: (i) the ANN model simulates them
satisfactorily, except for the second one (mid-April), where
the simulated discharges are overestimated; (ii) the bucket-
type model does not simulate the first two events at all (mid-
January and mid-April) and largely overestimates the last two
(early and late June) in addition to timing errors. Both mod-
els can be improved during recession and low-flow periods.
The ANN model is rather close to the observed discharges
but seems to be too sensitive to precipitation (continuous os-
cillations). On the other hand, the bucket-type model shows
no oscillations but either overestimates or underestimates the
observed discharges. Some events are not well simulated by
both models (e.g. the May 2017 flood), which may be due
to uncertainties in the input data. Also, the data linearity be-
tween simulated and observed values is slightly skewed for
both models, which can affect the relevance of r (Barber et
al., 2020).

In general, the ANN model can be described as better be-
cause it is closer to the observed values in the high- and low-
flow periods. While this statement cannot be supported by
performance metrics, we believe that an expert assessment
based on intuition and experience is still valuable despite be-
ing intrinsically subjective. In this particular case, one can
assess the main, distinctive flaws of each model: (i) the ANN
model has continuous oscillations – especially during reces-
sion and low-flow periods – and lacks accuracy during reces-
sion periods; (ii) the bucket-type model highly overestimates
several flood events and is inaccurate during a lot of recession
and low-flow periods. Figure 6b also shows that the bucket-
type model has an overall higher bias than the ANN model.
Hydrological models are generally used for (i) the prediction
or forecast of water flooding or inrush, (ii) the management
of water resources, (iii) the characterisation of hydrosystems,
and more recently (iv) the study of the impact of climate
change on water resources. Most studies thus put the em-
phasis on volumes and also on extremes events (i.e. dry and
flood periods), which in this case are more satisfactorily re-
produced by the ANN model in terms of volume estimate,
timing, and variability.

This visual assessment is confirmed by only a few per-
formance criteria: the NSE, d1, and KGENP (Fig. 7a). These
criteria evaluate the ANN model as better, although the per-

formances of both models are quite close for the d1. How-
ever, the KGE and most of its variants (except the KGENP)
all favour the bucket-type model over the ANN model –
sometimes by a large margin. Further results for common
and recently developed performance criteria are presented in
Fig. A2 in the Appendix. It is interesting to note how similar
these results are to those of the synthetic example (Figs. 3a
and A1 in the Appendix). Looking at the values of the equa-
tions’ parameters (Fig. 7b), we find that bias parameters are
systematically better for the bucket-type model, with 1 over
0.92 for β, 0 over−0.06 for βn, and−0.07 over 0.18 for Brel.
Timing errors are systematically better for the ANN model,
with 0.95 over 0.92 for r and 0.94 over 0.83 for rs. Variabil-
ity parameters favour the bucket-type model with 1.1 over
0.78 for α, 1.1 over 0.85 for γ , 0.22 over 0.3 for |Barea|, and
a very close value that is better by 0.005 for the αNP parame-
ter. In summary, all bias and variability parameters have bet-
ter values for the bucket-type model, while timing and shape
parameters are better for the ANN model.

As the KGE and its variants are generally composed of
equally weighted bias, variability, and timing, their overall
score is heavily affected by compensation effects – except in
the case of a large error for one parameter. In our case, all pa-
rameters have similar errors, which results in a better KGE
for the bucket-type model compared to the ANN model. This
applies to all the KGE variants except the KGENP, where the
error for rs is significant, resulting in a better score for the
ANN model. The LME score is extremely high (0.99) for
the bucket-type model, which is probably due to the com-
pensation of r and α identified by Choi (2022). Also, using
γ instead of α for assessing the variability seems to lower
counterbalancing errors.

Interestingly, the cumulative sum of the absolute bias error
between simulated and observed values (Fig. 6b) is smaller
for the ANN model (1394 m3) than the bucket-type model
(1611 m3), but still the relative bias and variability param-
eters are better for the bucket-type model. This observation
highlights how counterbalancing errors can impair the eval-
uation of hydrological models: seemingly better parameters
values (bias and variability) that increase criteria scores are
not necessarily associated with an increase in model rele-
vance.

5 Recommendations

The aim of this paper is primarily to raise awareness among
modellers. Performance criteria generally aggregate several
aspects of the characteristics of a model into a single value,
which can lead to an inaccurate assessment of said aspects.
Ultimately, all criteria have their flaws and should be care-
fully selected with regards to the aim of the model.
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Figure 7. (a) Score of the ANN and bucket-type models according to the different performance criteria. (b) Values of the parameters used in
the calculation of the performance criteria.

5.1 Use of relevant performance criteria

Table 1 summarises the presence and impact of counterbal-
ancing errors, as well as the advantages and drawbacks (as re-
ported in other studies) of the different performance criteria.
The recommendations for counterbalancing errors are based
on the results of this research – i.e. synthetic and real case
studies. The KGE and all its variants are affected by counter-
balancing errors with varying degrees of intensity: (i) mildly
impacted (+) for the KGE′, KGENP, and DE; (ii) moder-
ately impacted (++) for the KGE, KGE′′, and LCE; and
(iii) strongly impacted (+++) for the LME. In this study,
the NSE and d1 stand out as clearly better since they have
no counterbalancing errors. However, they have other draw-
backs that are not associated with counterbalancing errors,
especially the NSE, with its limitations related to variability
(Gupta et al., 2009). We thus recommend using performance
criteria that are not or less prone to counterbalancing errors
(d1, KGE′, KGENP, DE).

5.2 Use of scaling factors

The assessment of the hydrological models in the real case
study shows how concurrent over- and underestimation can
generate counterbalancing errors in bias and variability pa-
rameters. For the case study considered in this paper, the
ANN model, although offering a better simulation, is eval-
uated as – sometimes considerably – worse than the bucket-
type model because it slightly underestimates the total vol-
ume. This has a great impact on the overall score, as the KGE
and its variant are calculated with both bias and variability
parameters accounting for two-thirds of the overall criterion
score.

While the overall balance (bias) may be a desired feature
in a model, we showed that a good value may be accidental
and result from counterbalancing errors. The common use of
the KGE neglects one of the original proposals, which is to
weight the parameters β, α, and r in the equation. Gupta et
al. (2009) proposed an alternative equation for adjusting the

emphasis on the different aspects of a model:

KGEs = 1−
√

[sα(α− 1)]2
+
[
sβ(β − 1)

]2
+ [sr(r − 1)]2, (22)

with sr, sβ , and sα being the scaling factors of r , β, and α,
respectively. By default, these factors are equal to 1, which
induces a weight of one-third for the parameter in absolute
value (r) and two-thirds for the parameters in relative val-
ues (β, α). To the best of our knowledge, only Mizukami et
al. (2019) ever considered changing the scaling factors when
using the KGE. We suggest that one carefully consider such
scaling factors for the calibration and the evaluation of hy-
drological models using the KGE and its variants. Depending
on the purpose of the model, they can help to emphasise par-
ticular aspects of a model or reduce the influence of relative
parameters and counterbalancing errors.

Figure 8 shows how emphasising absolute parameters with
scaling factors helps to reduce the influence of counterbal-
ancing errors for the KGE (Fig. 8a) and its most used variant
KGE′ (Fig. 8b). The default value (1–1–1) – corresponding
to scaling factors of 1 for α (KGE) or γ (KGE′), 1 for β,
and 1 for r , respectively – is compared to other factor com-
binations with different ratios between absolute and relative
parameters. The 2 : 1 ratio (2–2–1) increases counterbalanc-
ing errors as the emphasis is on the relative parameters, while
the 1 : 2, 1 : 3, 1 : 4, and 1 : 5 ratios decrease counterbalanc-
ing errors. The ANN model is evaluated as better with the
1 : 4 ratio for the KGE and the 1 : 3 ratio for the KGE′, high-
lighting that the KGE′ is less sensitive to counterbalancing
errors. This also shows how the score of a performance crite-
rion and, by extension, its interpretation can be radically dif-
ferent depending on the parameters used in the equation. This
is why a multi-criteria framework can strengthen the evalua-
tion of models and reduce the uncertainty associated with the
interpretation of individual performance criteria scores.

6 Conclusion

This study sets out to explore the influence of counterbalanc-
ing errors and to raise awareness among modellers about the
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Table 1. Presence and impact of counterbalancing errors (CEs) on the assessment of model performance according to different performance
criteria. The impact of CEs is denoted as null (–), mild (+), moderate (++), or strong (+++).

Criterion Year Affected Impact Advantages Drawbacks∗

by CE of CE

KGE 2009 Yes ++ Variability is not underestimated (Gupta et al., 2009) Still a slight underestimation of high
discharges (Gupta et al., 2009)
Bias and variability are cross-correlated
(Kling et al., 2012)
Implicit assumptions of data linearity,
data normality, and absence of outliers
(Pool et al., 2018)
No inherent benchmark (Knoben et al.,
2019)
Not suited to logarithmic transformation
of discharge (Santos et al., 2018)

KGE′ 2012 Yes + Bias and variability are not cross-correlated (Kling et al.,
2012)

KGE′′ 2021 Yes ++ The score is not overly sensitive to mean values close to zero
(Santos et al., 2018; Tang et al., 2021)

KGENP 2018 Yes + Reduces the impact of implicit assumptions of data linearity,
data normality, and absence of outliers by using non-
parametric parameters (Pool et al., 2018)

DE 2021 Yes + Aims to provide a stronger link to hydrological processes
(Schwemmle et al., 2021)

LME 2020 Yes +++ Improves the simulation of extreme events (Liu, 2020) Infinite number of solutions for the
maximum score (Lee and Choi, 2022)
Inclination to overestimate high flows and
underestimate low flows (Lee and Choi,
2022)

LCE 2022 Yes ++ Improve the simulation of extreme events (Lee and Choi,
2022)

NSE 1970 No – The contribution of βn depends on the
variability (Gupta et al., 2009)
Variability is underestimated (Gupta et
al., 2009)
The benchmark is inappropriate for highly
variable discharges (Gupta et al., 2009)

d1 2012 No – Addresses the shortcomings of r and the coefficient of
determination (Willmott, 1981)
The score is less sensitive to errors concentrated in outliers
in comparison to the original index of agreement (Willmott
et al., 1985)

∗ KGE drawbacks may likely apply to KGE variants, but this has not been studied extensively.

Figure 8. (a) KGE and (b) KGE′ scores of the ANN and bucket-type models (Fig. 6a) according to different scaling factors. The y-axis
numbers correspond to the scaling factors of the variability, bias, and timing parameters, with the default being 1–1–1.
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use of performance criteria for calibrating and evaluating hy-
drological models. A total of nine performance criteria (NSE,
KGE, KGE′, KGE′′, KGENP, DE, LME, LCE, and d1) are
analysed. The investigation of synthetic time series and real
hydrological models shows that concurrent over- and under-
estimation of multiple parts of a discharge time series may
favour bias and variability parameters. This especially con-
cerns the bias parameters (β, βn, and Brel) as their values are
all influenced by counterbalancing errors in both synthetic
time series and the real case study. On the other hand, the
impact of counterbalancing errors on the variability parame-
ters seems to depend on the time series: only the value of α
is influenced in the synthetic time series, while the values of
all variability parameters (α, γ , |Barea|, and αNP) are influ-
enced in the real hydrological models. As bias and variabil-
ity parameters generally account for two-thirds of the weight
in the equation of certain performance criteria, this can lead
to an overall higher criterion score without being associated
with an increase in model relevance. This is especially con-
cerning for the KGE and its variants as they generally use
relative parameters for evaluating bias and variability in hy-
drological models. These findings highlight the importance
of carefully choosing a performance criterion adapted to the
purpose of the model. Recommendations also include the use
of scaling factors to emphasise different aspects of a hydro-
logical model and to reduce the influence of relative parame-
ters on the overall score of the performance criterion. Further
research could explore the appropriate values of scaling fac-
tors to be used, depending on the modelling approach and the
purpose of the study.

Appendix A: Common and recently developed
performance criteria applied to the synthetic time series
and the real case study

Figure A1. Score of the BB and BG transformations according to
other common and recently developed performance criteria: the root
mean square error (RMSE), the coefficient of determination R2, the
index of agreement d (Willmott, 1981), the refined index of agree-
ment dr (Willmott et al., 2012), the Onyutha efficiency E, and the
revised R2 (RRS) (Onyutha, 2022).

Figure A2. Score of the ANN and bucket-type models according
to other common and recently developed performance criteria: the
root mean square error (RMSE), the coefficient of determination
R2, the index of agreement dr (Willmott, 1981), the refined index
of agreement dr (Willmott et al., 2012), the Onyutha efficiency E,
and the RRS (Onyutha, 2022).
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