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A POSTERIORI ERROR ESTIMATES FOR THE LARGE EDDY SIMULATION
APPLIED TO INCOMPRESSIBLE FLUIDS

GHINA NASSREDDINE1,2, PASCAL OMNES2,3, AND TONI SAYAH1

Abstract. We study the two dimensional time dependent Large Eddy Simulation method applied to
the incompressible Navier-Stokes system with Smagorinsky’s eddy viscosity model and a filter width
that depends on the local mesh size. The discrete model is based on the implicit Euler scheme and a
conforming finite element method for the time and space discretizations, respectively. We establish a
reliable and efficient a posteriori error estimation between the numerical LES solution and the exact
solution of the original Navier-Stokes system, which involves three types of error indicators respectively
related to the filter and to the discretizations in time and space. Numerical results show the effectiveness
of adaptive simulations.

Keywords : Large Eddy Simulation, finite element method, a posteriori estimation.

1. Introduction.

Let Ω be a bounded connected open domain in IR2, with a Lipschitz-continuous connected boundary
Γ = ∂Ω. Let [0, T ] denote an interval in IR where T is a positive constant. For a positive constant viscosity
ν, we consider the following time-dependent Navier-Stokes system, in which we choose a vanishing initial
condition for simplification only:

(P)


∂u

∂t
(t,x)− ν∆u(t,x) + u(t,x) · ∇u(t,x) +∇p(t,x) = f(t,x) in]0, T [×Ω,

divu(t,x) = 0 in[0, T ]× Ω,

u(t,x) = 0 on [0, T ]× Γ,

u(0,x) = 0 on Ω,

where f represents a density of body forces and supposed to be in [L2((0, T ) × Ω)]2 (although a more
general setting would be to consider f ∈ L2(0, T ;X ′) = L2(0, T ;H−1(Ω)2), where X ′ is the dual of the
Sobolev space X = H1

0 (Ω)
2). The unknowns are the velocity u and the pressure p of the fluid. Note

that the hypothesis of vanishing initial condition is only here for the sake of simplicity and may easily be
removed.

Since an exact solution of System (P ) is in general out of reach, one may resort to a numerical approx-
imation of it. A first method of simulation in fluid mechanics is the direct numerical simulation (DNS)
of the flow at all significant length scales. Since it is necessary to capture all fluctuations of the velocity
and pressure fields having an impact on the flow, DNS is very expensive and, for high Reynolds numbers,
is even not achievable. Under these circumstances, one often prefers the large eddy simulation (LES)
method, which consists in solving the large scales and in modelling the influence of small scales by adding
a supplementary non-linear diffusion term in the momentum equation. In LES, large scales are defined
by a spatial average of velocity, pressure and external forcing terms. A common method is to define this
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spatial average by convolution of these quantities with an appropriate filter function of width denoted
by δ. The velocity field will be decomposed as:

u(t,x) = ū(t,x) + u′(t,x),

with ū(t,x) the filtered part of the velocity field and u′(t,x) = u(t,x)− ū(t,x), the residue whose effect
on the large scale motions is the main issue in LES. Indeed, the convolution of the non-linear term u · ∇u
is not equal to the non-linear term applied to the convolution ū ·∇ū and the difference between these two
terms needs to be modeled. There is vast literature on this issue and we refer to monographs [27, 10, 21]
for a mathematically oriented review. The Smagorinksy model is the simplest model of LES that uses the
assumption of local balance between production and dissipation of turbulent kinetic energy to express
the turbulent viscosity according to the large scales (see [21]). The resulting filtered problem is expressed
as:

(P̄ )



∂ū

∂t
− ν∆ū−∇ · (ν̃ D(ū)) + ū · ∇(ū) +∇p̄ = f̄ in ]0, T [×Ω,

div ū = 0 in [0, T ]× Ω,

B(ū) = 0 on [0, T ]× Γ,

ū(0, .) = 0 on Ω,

where ν̃ = (csδ)
2||D(ū)||F , with D(ū) = 1

2 (∇ū+∇ūT ) and ||A||F = (

2∑
i,j=1

a2ij)
1/2 for any matrix A. The

value of the constant cs is an input of the model and a debated question among specialists (see, e.g., [10,
p. 76]). Moreover, finding relevant boundary conditions for ū in bounded domains is a central issue in
LES (see, e.g., [10, Part IV]); in (P̄ ), we have denoted by B a general boundary operator that we do not
discuss here. The boundary condition issue is also closely related to that of filtering with non constant
width δ, which is commonly used in practice (the value of δ is typically adjusted to the local size of the
mesh cells in numerical simulations) but introduces further problems since there is now a commutation
error between the operations of filtering and differentiating.

In view of all these questions, our approach here is not to further refine LES models, but rather to
consider a discretization of the Smagorinksy model with turbulent viscosity adjusted to the local size
of the mesh cells and to derive a posteriori error estimates between its solution and the exact solution
of (P ), which will allow us to locally refine or coarsen the mesh and/or the time steps according to local
error indicators. Adaptive LES is an active field of research in the quest for accurate simulations with an
affordable computational cost. Among works using mesh adaptation in the context of the Smagorinksy
model for incompressible flows, we may cite for example [1, 3, 19, 26]. However, these works are either
based on local error metrics driven by the Hessian of the numerical solution, a process that is independent
of the model and numerical method, or only mention a posteriori estimates, without indicating their actual
expression, nor giving a proof of their derivation, reliability and efficiency.

The present work provides a rigorous theory based on a posteriori error estimates for adaptivity in LES
simulations of incompressible flows. For a general introduction to a posteriori error estimation, we refer
for example to the books of Verfürth [30] or Ainsworth and Oden [2]. As far as time-dependent models
are concerned, a large number of contributions may be found. To cite only a few of them, we can refer,
for example, to Ladevèze [22] for constitutive relation error estimators for time-dependent non-linear FE
analysis, Verfürth [31] for the heat equation, Bernardi and Verfürth [9] for the time dependent Stokes
equations, Bernardi and Süli [8] for the time and space adaptivity for the second–order wave equation,
Bergam, Bernardi and Mghazli [4] for some parabolic equations, Ern and Vohralïk [16] for estimation
based on potential and flux reconstruction for the heat equation, and Bernardi and Sayah [7] for the time
dependent Stokes equations with mixed boundary conditions. In [25], Nassreddine and Sayah treated the
time dependent Navier-Stokes equations in two dimensions. They use [6, 7] for the linear (Stokes) part of
the problem and apply the continuous and discrete Gronwall lemma to treat the non-linear term. In this
contribution, we extend the method of [25] to the LES problem, for which we shall obtain three types of
computable error indicators; the first one is linked to the time discretization, the second one to the filter
and the last one to the space discretization. This leads to an adaptive strategy in which we sometimes
change the time step and sometimes adapt the mesh.
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The outline of the paper is as follows: Section 2 is devoted to some functional analysis tools and to the
variational formulation of the continuous Navier-Stokes system. In section 3, we introduce the discrete
filtered problem and we recall its main properties. In sections 4 and 5 we study the a posteriori error
indicators and derive quasi-optimal estimates, in the sense that we need to require higher regularity of
the exact solution. In section 6, we present numerical results in which uniform and adaptive refinement
strategies are applied and comparisons with a reference DNS simulation show the superiority of the LES
adaptive strategy.

2. Preliminaries

In this section, we begin by some notations and definitions which will be used later on and we recall the
continuous and discrete Gronwall Lemmas.
We denote by [Lp(Ω)]2 the space of measurable functions v such that |v|p is integrable. For v ∈ [Lp(Ω)]2,
the norm is defined by

||v||[Lp(Ω)]2 =
(∫

Ω

|v(x)|pdx
) 1

p

.

Let α = (α1, α2) be a couple of non negative integers and |α| = α1 +α2. We define the partial derivative
∂α by

∂α =
∂|α|

∂xα1
1 ∂xα2

2

.

Then, for any positive integer m and number p ≥ 1, we recall the classical Sobolev space

[Wm,p(Ω)]2 = {v ∈ [Lp(Ω)]2, ∂αv ∈ [Lp(Ω)]2, ∀ | α |≤ m}
equipped with the following semi-norm and norm :

|v|m,p,Ω =

 ∑
|α|=m

∫
Ω

|∂αv(x)|pdx


1/p

and ||v||m,p,Ω =

∑
k≤m

|v|pk,p,Ω


1/p

.

When p = 2, this space is the Hilbert space [Hm(Ω)]2. In view of the boundary conditions in system (P ),
we thus consider the space

X := H1
0 (Ω)

2
= {v ∈ H1(Ω)2,v = 0 on Γ}.

We denote by M the space of functions in L2(Ω) with a zero mean-value on Ω.

Lemma 2.1. For any 1 ≤ p < +∞, there exists a positive constant Sp only depending on Ω such that

∀v ∈ X, ||v||Lp(Ω)d ≤ Sp||v||X . (1)

Lemma 2.2. (See [29, page 291]) We have the following inequality for every v ∈ X

||v||L4(Ω)2 ≤ 21/4||v||1/2L2(Ω)2 ||v||
1/2
X . (2)

Remark 2.3. Restriction of the analysis to dimension 2 is mainly due to Lemma 2.2 which is valid in
dimension 2 only. A related result exists in dimension 3 (see, e.g. [29, Lemma 3.5, page 295]) but it states
that ||v||L4(Ω)3 ≤ 21/2||v||1/4L2(Ω)3 ||∇v||3/4L2(Ω)3×3 , which then prevents from pursuing like in dimension 2.

We introduce the kernel of the divergence operator

V =
{
v ∈ X; ∀q ∈M,

∫
Ω

q(x) divv(x) dx = 0
}
,

which is a closed subspace of X and coincides with

V =
{
v ∈ X; divv = 0 in Ω

}
.

Remark 2.4. The spaces M and X satisfy a uniform inf-sup condition (see [18]): There exists a constant
β∗ > 0 such that

∀q ∈M, sup
v∈X

∫
Ω

q(x) divv(x)dx

||v||X
≥ β∗||q||L2(Ω).
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As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval ]a, b[ with values in a separable functional space, say Y . More precisely, let || · ||Y denote the
norm of Y ; then for any r, 1 ≤ r ≤ ∞, we define

Lr(a, b;Y ) =

{
f measurable in ]a, b[;

∫ b

a

|f(t)|rY dt <∞

}
,

equipped with the norm

||f ||Lr(a,b;Y ) =
(∫ b

a

|f(t)|rY dt
)1/r

.

If r = ∞, then

L∞(a, b;Y ) =

{
f measurable in ]a, b[; sup

t∈[a,b]

||f(t)||Y <∞

}
equipped with the norm

||f ||L∞(a,b;Y ) = sup
t∈[a,b]

||f(t)||Y .

Definition 2.5. We introduce the trilinear form c defined by :

c(u,v,w) =

∫
Ω

(u · ∇v) ·wdx.

Lemma 2.6. For every u,v,w ∈ X we have

|c(u,v,w)| ≤ ||u||L4(Ω)2 ||v||X ||w||L4(Ω)2 ≤ S2
4 ||u||X ||v||X ||w||X .

Lemma 2.7. We assume that u,v ∈ X and divu = 0, then c(u,v,v) = 0.

As far as Problem (P ) is concerned, we recall classical existence and uniqueness results that may be
found, for example in [11, Th. V.1.4] and [29, Th. 3.1 and Th. 3.2] which require the definition
H := {v ∈ [L2(Ω)]d,divv = 0, γnv = 0}, where γnv is the normal trace operator on Γ.

Theorem 2.8. In dimension 2, with f ∈ [L2((0, T )×Ω)]2, Problem (P ) has a unique solution (u, p) be-
longing to L∞(0, T ;H)∩L2(0, T ;V )×W−1,∞(0, T ;M). Moreover, ∂u

∂t ∈ L2(0, T ;V ′) and u ∈ C0(0, T ;H).
Moreover, it holds that

||u||2L∞(0,T ;L2(Ω)2) + ν||u||2L2(0,T ;X) ≤ C||f ||2[L2((0,T )×Ω)]2 , (3)

with C a constant depending on Ω and ν. Moreover, the spaces to which (u, p) belong allow to write that

(FV)


∀v ∈ X, ⟨∂u

∂t
(t),v⟩+ ν(∇u(t),∇v) + c(u(t),u(t),v)− (divv, p(t)) = (f(t),v)

∀q ∈M, (divu(t), q) = 0

u(0) = 0.

In the next lemmas, we introduce the generalized and discrete Gronwall lemmas.

Lemma 2.9. (Generalized Gronwall Lemma) [32, p. 292] and [15, p. 252]. Let:

(1) f, g and k be an integrable functions defined from IR+ 7→ IR,
(2) g ≥ 0, k ≥ 0,
(3) g ∈ L∞,
(4) gk is an integrable function on IR+.

If z : IR+ 7→ IR satisfies

z(t) ≤ f(t) + g(t)

∫ t

0

k(τ)z(τ)dτ, ∀t ∈ IR+ (4)

then:

z(t) ≤ f(t) + g(t)

∫ t

0

k(τ)f(τ) exp
(∫ t

τ

k(s)g(s)ds
)
dτ. (5)
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Lemma 2.10. (Discrete Gronwall Lemma) [32, p. 294] let (yn)n, (fn)n and (gn)n be three positive
sequences that verify:

∀n ≥ 0, yn ≤ fn +

n−1∑
k=0

gkyk.

Then, we have:

∀n ≥ 0, yn ≤ fn +

n−1∑
k=0

fkgk exp
( n−1∑
j=k

gj
)
. (6)

Finally, we shall make an extensive use of the following inequalities, the first of which is Young’s inequality
with ε and is used three times to obtain the second:

Lemma 2.11. For any (a, b, c, d) ∈ R4
+ and any (ε1, ε2, ε3) ∈ R3

+, it holds that

ab ≤ 1

2
(ε1a

2 +
1

ε1
b2) and abcd ≤ 1

4
(ε1ε2a

4 +
ε1
ε2
b4 +

ε3
ε1
c4 +

1

ε1ε3
d4).

In particular, we shall use these inequalities as follows: For any (a, b, c, d) ∈ R4
+, and any (β, γ, δ) ∈ R∗

+
3,

there exist (α1, α2) ∈ R∗
+
2 such that

ab ≤ α1a
2 + βb2 and abcd ≤ α2a

4 + βb4 + γc4 + δd4.

3. The discrete problem

From now on, we assume that Ω is a polyhedron. In order to describe the time discretization with
an adaptive choice of local time steps, we introduce a partition of the interval [0, T ] into subintervals
[tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < · · · < tN = T . We denote by τn the length of [tn−1, tn], by
τ the N-tuple (τ1, . . . , τN ), by |τ | the maximum of the τn, 1 ≤ n ≤ N , and finally by στ the regularity
parameter

στ = max
2≤n≤N

τn
τn−1

. (7)

In what follows, we work with a regular family of partitions, i.e. we assume that στ is bounded indepen-
dently of τ . This has the practical implication that the time step should not be modified too abruptly in
the adaptive algorithm described in Section 6.3.
We introduce the operator πτ (resp. πl,τ ): For any Banach space Y and any function g continuous from
]0, T ] (resp. [0, T [) into Y , πτg (resp. πl,τg) denotes the step function which is constant and equal to g(tn)
(resp. g(tn−1)) on each interval ]tn−1, tn] (resp. [tn−1, tn[), 1 ≤ n ≤ N . Similarly, with any sequence
(ϕn)0≤n≤N in Y , we associate the step function πτϕτ (resp. πl,τϕτ ) which is constant and equal to ϕn
(resp. ϕn−1) on each interval ]tn−1, tn] (resp. [tn−1, tn[), 1 ≤ n ≤ N .

We now describe the space discretization. For each n, 0 ≤ n ≤ N , we consider (Tnh)h, a partition of Ω
by triangles that belongs to a regular family of triangulations in the usual sense:

• Ω̄ is the union of all elements of Tnh;
• the intersection of two different elements of Tnh, if not empty, is a vertex or a whole edge of both

of them; this, in particular, implies that meshes remain conforming (no hanging nodes) during
the adaptive refinement process.

• the ratio of the diameter hκ of an element κ in Tnh to the diameter of its inscribed circle is
bounded by a constant independent of n and h.

As usual, h denotes the maximal diameter of the elements of all Tnh, 0 ≤ n ≤ N , while for each n, hn
denotes the maximal diameter of the elements of Tnh. For each κ in Tnh and each non-negative integer k,
we denote by Pk(κ) the space of restrictions to κ of polynomials of 2 variables and total degree at most k.

In what follows, c, c′, C . . . stand for generic constants which may vary from line to line but are always
independent of h and n. From now on, we call finite element space associated to Tnh a space of functions
such that their restrictions to any element κ of Tnh belong to a space of polynomials of fixed degree.
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For each n and h, we associate with Tnh two finite element spaces Xnh and Mnh which are contained in
X and M , respectively, and such that the following inf-sup condition holds for a constant β > 0, which
is independent of n and h,

∀qh ∈Mnh, sup
vh∈Xnh

∫
Ω

qh(x) divvh(x) dx

∥vh∥X
≥ β||qh||L2(Ω). (8)

There exist many examples of finite element spaces satisfying this condition. We give an example involving
continuous discrete pressures. Velocities are discretized with the "Mini-Element"

Xnh =
{
vh ∈ X; ∀κ ∈ Tnh, vh|κ ∈ Pb(κ)

2
}
,

where the space Pb(κ) is spanned by functions in P1(κ) and the bubble function on κ (for each element κ,
the bubble function is equal to the product of the barycentric coordinates associated with the vertices
of κ). The pressure is discretized with classical continuous finite elements of order one

Mnh =
{
qh ∈M ∩H1(Ω); ∀κ ∈ Tnh, qh|κ ∈ P1(κ)

}
.

As usual, we denote by Vnh the kernel of the divergence

Vnh =
{
vh ∈ Xnh; ∀qh ∈Mnh,

∫
Ω

qh(x) div vh(x) dx = 0
}
.

As discussed in the Introduction, the fully discrete problem which we consider is a variational version
of (P̄ ) with a local choice of the filter size, in which we use homogeneous Dirichlet boundary conditions
for the velocity:

(FV n,h)



Having ūn−1
h ∈ X(n−1)h, find (ūn

h, p̄
n
h) ∈ Xnh ×Mnh solution of :

∀vh ∈ Xnh,
1

τn
(ūn

h − ūn−1
h ,vh) + ν(∇ūn

h,∇vh) + (νt(ū
n−1
h )D(ūn

h),D(vh))

+d(ūn−1
h , ūn

h,vh)− (p̄nh,divvh) = (f̄n,vh),

∀qh ∈Mnh, (div ūn
h, qh) = 0,

where the turbulent viscosity is locally defined on each mesh cell κ by

νt(v̄)|κ = (cshκ)
2||D(v̄)||F

and where the trilinear form d on X3 is defined by

d(u,v,w) = c(u,v,w) +
1

2

∫
Ω

(divu)v ·wdx.

We initialize the process by choosing ū0
h = 0. We also choose f̄n(x) =

1

τn

∫ tn

tn−1

f̄(t,x) dt for almost all

x ∈ Ω, where the source term f̄ results from a local average of the original source term f ; moreover we
suppose that f̄ ∈ [L2((0, T )× Ω)]2.

Note that this problem is linear, since we discretize all non-linear terms semi-explicitly.

We begin by showing a bound for the solution ūn
h of Problem (FV n,h).

Remark 3.1. We have: d(u,v,v) = 0, ∀(u,v) ∈ X2.

Theorem 3.2. At each time step, knowing ūn−1
h ∈ X(n−1)h, Problem (FV n,h) admits a unique solution

(ūn
h, p̄

n
h) with values in Xnh ×Mnh. This solution satisfies, for m = 1, . . . , N ,

||ūm
h ||2L2(Ω)2 + ν

m∑
n=1

τn∥ūn
h∥2X + 2

m∑
n=1

τn(νt(ū
n−1
h )D(ūn

h),D(ūn
h)) ≤ C||f̄ ||2[L2((0,T )×Ω)]2 . (9)

Proof. For ūn−1
h ∈ X(n−1)h, it is clear that Problem (FV n,h) has a unique solution (ūn

h, p̄
n
h) as a conse-

quence of the coercivity of the corresponding bilinear form on Xnh ×Xnh and the inf-sup condition (8).
The proof of (9) follows by testing (FV n,h) with ūn

h and summing the resulting inequalities. □
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4. A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, p) of Problem (FV )
and the numerical solution of Problem (FV n,h). The main result in this respect is given by Corollary 4.16.
Several steps are needed to obtain this result. We begin by constructing the a posteriori indicators in
Section 4.1 and then bound the error by the estimates in Section 4.2.

4.1. Construction of the error indicators. We first introduce the space

Znh = {gh ∈ L2(Ω)2; ∀κ ∈ Tnh, gh|κ ∈ P1(κ)
2},

and, for 1 ≤ n ≤ N , we fix an approximation f̄nh of the data f̄n in Znh. This is a technicality which is
needed in Section 5 in which we shall make use of Properties 4.1 and 4.2 below, which are valid only for
polynomial functions.

Next, for every element κ in Tnh, we denote by
• εκ the set of edges of κ that are not contained in ∂Ω,
• ∆κ the union of elements of Tnh that share at least one common vertex with κ,
• he the diameter of the edge e ∈ εκ,
• [·]e the jump through e for each edge e in εκ (specifying its sign is not necessary).
• nκ the unit outward normal vector to κ on ∂κ.

For the proofs of the next theorems, we introduce for an element κ of Tnh, the bubble function ψκ (resp.
ψe for the edge e) which is equal to the product of the 3 barycentric coordinates associated with the
vertices of κ (resp. of the 2 barycentric coordinates associated with the vertices of e). We also consider
a lifting operator Le defined on polynomials on e that vanish on ∂e into polynomials on the at most two
elements (κ, κ′) containing e and vanishing on ∂κ \ e and ∂κ′ \ e. This lifting operator is constructed by
affine transformation from a fixed operator on the reference element. We recall the next results from [30,
Lemma 3.3].

Property 4.1. Denoting by Pr(κ) the space of polynomials of degree smaller than r on κ, we have

∀v ∈ Pr(κ),

{
c||v||L2(κ) ≤ ||vψ1/2

κ ||L2(κ) ≤ c′||v||L2(κ),
|v|H1(κ) ≤ ch−1

κ ||v||L2(κ).

Property 4.2. Denoting by Pr(e) the space of polynomials of degree smaller than r on e, we have

∀ v ∈ Pr(e), c∥v∥L2(e) ≤ ∥vψ1/2
e ∥L2(e) ≤ c′∥v∥L2(e),

and, for all polynomials v in Pr(e) vanishing on ∂e, if κ is an element which contains e,

∥Lev∥L2(κ) + he | Lev |H1(κ)≤ ch1/2e ∥v∥L2(e).

We also introduce a Clément type regularization operator Cnh [13] which has the following properties,
see [5, section IX.3]: For any function w in H1(Ω)2, Cnhw belongs to the continuous affine finite element
space and satisfies for any κ in Tnh and e in εκ,

||w − Cnhw||L2(κ)2 ≤ chκ||w||H1(∆κ)2 and ||w − Cnhw||L2(e)2 ≤ ch1/2e ||w||H1(∆κ)2 . (10)

Note that we use the variant of Cnh which ensures that Cnhw belongs to H1
0 (Ω)

d when w belongs to
H1

0 (Ω)
d (see [13]). Furthermore, we introduce the Scott-Zhang operator Fnh [12] which has the following

properties : For any function v ∈ Hs(Ω)2, we have

∀hn ≤ 1, ∀v ∈ Hs(Ω)2, ||v −Fnhv||Ht(Ω)2 ≤ Chs−t
n |v|Hs(Ω)2 , (11)

where s ∈] 12 , 1[ and t ∈ [0, s] (see [12]). For the a posteriori error studies, we consider the piecewise affine
function ūh which takes in the interval [tn−1, tn] the values

ūh(t) =
t− tn−1

τn
(ūn

h − ūn−1
h ) + ūn−1

h , (12)

and the piecewise constant function p̄h equal to p̄nh on the interval ]tn−1, tn].
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Property 4.3. For any dimension d and for any non negative integer r, there exists a constant c̃ such
that for any polynomial function vh of degree r on κ

||vh||L∞(κ) ≤ c̃h
−d/2
κ ||vh||L2(κ). (13)

We prove optimal a posteriori error estimates by using the norm:

[[u− ūh]](tn) =
(
||u(tn)− ūh(tn)||2L2(Ω)2

+νmax
(∫ tn

0

||u(t)− ūh(t)||2Xdt,
n∑

m=1

∫ tm

tm−1

||u(t)− πτ ūh(t)||2Xdt
))1/2

.
(14)

To prove the upper bound, we follow the idea used by Bernardi and Verfurth [9] or Bernardi and Sayah [7]
for the Stokes problem in order to uncouple time and space errors. But in this work, the non linear term
coming from the Navier-Stokes system requires more sophisticated calculations.

We introduce an auxiliary problem corresponding to the time discretization and calculate upper bounds
for the errors between the corresponding solution and the exact solution firstly and the discrete filtered
solution of (FV n,h) secondly. Finally, we combine the obtained errors to derive the desired upper bound
for the a posteriori error estimation.

Setting u0 = 0 and setting fn(x) =
1

τn

∫ tn

tn−1

f(t,x) dt for almost all x ∈ Ω, we introduce the following

time semi-discrete problem:

(Paux)


Knowing un−1 ∈ X, find (un, pn) ∈ X ×M solution of

∀v ∈ X,
1

τn
(un − un−1,v) + ν(∇un,∇v) + (un−1∇un,v)− (divv, pn) = (fn,v),

∀q ∈M, (divun, q) = 0.

Lemma 4.4. Problem (Paux) has a unique solution because the bilinear form is coercive (owing to the
fact that divun−1 = 0) and because of the inf–sup condition. Furthermore, we have:

||um||2L2(Ω)2 + ν

m∑
n=1

τn∥un∥2X ≤ C||f ||2[L2((0,T )×Ω)]2 . (15)

We define the piecewise affine function uτ by its value on the interval [tn−1, tn]:

uτ (t) =
t− tn−1

τn
(un − un−1) + un−1 = − tn − t

τn
(un − un−1) + un, (16)

and we define pτ as the piecewise constant function equal to pn on the interval ]tn−1, tn]. An easy
calculation leads to the following lemma.

Lemma 4.5. By combining Problems (FV ) and (Paux), we observe that the pair (u−uτ , p−pτ ) satisfies
(u− uτ )(0) = 0, and, for t ∈]tn−1, tn], 1 ≤ n ≤ N and for (v(t), q) ∈ X ×M ,

⟨ ∂
∂t

(u− uτ )(t),v(t)⟩+ ν(∇ (u(t)− uτ (t)),∇v(t)) +

∫
Ω

[u(t) · ∇u(t)− uτ (t) · ∇uτ (t)] · v(t) dx

−(divv(t), p(t)− pτ (t)) = (f(t)− fn(t),v(t)) + ⟨Rτ (uτ )(t),v⟩.∫
Ω

q(t,x) div(u(t,x)− uτ (t,x)) dx = 0.

(17)
where

⟨Rτ (uτ )(t),v⟩ = −ν(∇(uτ − πτuτ )(t),∇v)−
∫
Ω

[uτ (t) · ∇uτ (t)− πl,τuτ (t) · ∇πτuτ (t)] · v dx. (18)
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Lemma 4.6. By combining Problems (Paux) and (FV n,h), we observe for v ∈ X and vh ∈ Xnh :

1

τn

(
(un − un−1)− (ūn

h − ūn−1
h ),v

)
+ ν
(
∇(un − ūn

h),∇v
)
+

∫
Ω

[un−1 · ∇un − ūn−1
h · ∇ūn

h] · v dx

− 1

2
(div ūn−1

h ūn
h,v)− (divv, pn − p̄nh)

= ⟨f̄n − f̄nh +Rh,1(ūh)(t),v − vh⟩+ ⟨Rh,2(ūh)(t),v⟩+ (fn − f̄n,v) (19)
and∫

Ω

q(t,x) div(un − ūn
h)(x)dx = −

∫
Ω

q(t,x) div(ūn
h)(x)dx, (20)

where the residuals Rh,1(ūh) and Rh,2(ūh) are defined by:

⟨Rh,1(ūh)(t),w⟩ = (f̄nh − 1

τn
(ūn

h − ūn−1
h ),w) + (divw, p̄nh)−

∫
Ω

(ūn−1
h · ∇ūn

h) ·w dx

−1

2
(div ūn−1

h (t)ūn
h(t),w)− ν(∇ūn

h,∇w)− (νth(ū
n−1
h )D(ūn

h),D(w))

−((νt(ū
n−1
h )− νth(ū

n−1
h ))D(ūn

h),D(w)),

(21)

where νth is a piecewise constant approximation of νt (a technicality needed in Section 5 in which we shall
use Properties 4.1 and 4.2 valid for polynomial functions) defined on each κ and for every v̄ ∈ X by:

νth(v̄)|κ =
1

|κ|

∫
κ

νt(v̄(x))dx (22)

and where

⟨Rh,2(ūh)(t),v⟩ = (νt(ū
n−1
h )D(ūn

h),D(v)). (23)

In order to derive the upper bounds, we use the integration by parts formula to rewrite the residual
operators Rτ (uh)(t), Rh,1(uh)(t) and Rh,2(uh)(t) in the following forms:

⟨Rτ (ūτ )(t),v⟩ =
tn − t

τn

∑
κ∈Tnh

{
ν

∫
κ

∇(un − un−1)(x) : ∇v(t,x) dx

+

∫
κ

[(un−1 · ∇(un − un−1)] · v(t,x) dx
}

− t− tn−1

τn

∑
κ∈Tnh

{∫
κ

[(un − un−1) · ∇uτ (t,x)] · v(t,x) dx
}
,

(24)

⟨Rh,1(ūh)(t),v − vh⟩ =∑
κ∈Tnh

{∫
κ

[f̄nh − 1

τn
(ūn

h − ūn−1
h ) + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h

−∇p̄nh](x) · (v − vh)(x)dx− 1

2

∑
e∈εκ

∫
e

[(ν∇ūn
h + νth(ū

n−1
h )D(ūn

h)− p̄nhI) · n(σ)] · (v − vh)(σ) dσ

−
∫
κ

[(νt(ū
n−1
h )− νth(ū

n−1
h )]D(ūn

h)) : D(v − vh)(x)dx

}
, (25)

⟨Rh,2(ūh)(t),v⟩ =
∑

κ∈Tnh

∫
κ

νt(ū
n−1
h )D(ūn

h) : D(v)(x) dx. (26)

All this leads to the following definition of the error indicators:

Definition 4.7. For each κ in Tnh,
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(ητn,κ)
2 = τn|ūn

h − ūn−1
h |2H1(κ)2 , (27)

(ηh,1n,κ)
2 = h2κ||f̄nh − 1

τn
(ūn

h − ūn−1
h ) + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h

−1

2
(div ūn−1

h )ūn
h −∇p̄nh||2L2(κ) +

1

2

∑
e∈εκ

he||[(ν∇ūn
h + νth(ū

n−1
h )D(ūn

h)− p̄nhI) · n]||2L2(e)

+|| div ūn
h||2L2(κ) + ||(νt(ūn−1

h )− νth(ū
n−1
h ))D(ūn

h)||2L2(κ), (28)

(ηh,2n,κ)
2 = ||νt(ūn−1

h )D(ūn
h)||2L2(κ). (29)

Remark 4.8. Even if these indicators are a little complex, each term in them is easy to compute since
it only depends on the discrete solution and involves (usually low degree) polynomials.

Lemma 4.9. The following estimates hold for 1 ≤ n ≤ N ,

(1) For all v in X and vh = Cnhv:

|⟨Rh,1(ūh),v − vh⟩| ≤ C
( ∑

κ∈Tnh

(ηh,1n,κ)
2
)1/2

||v||X . (30)

(2) For all v ∈ X:

|⟨Rh,2(ūh),v⟩| ≤ C
( ∑

κ∈Tnh

(ηh,2n,κ)
2
)1/2

||v||X . (31)

Proof. We proceed in two steps, one for each estimate.
1) We derive the result from formula (25) with vh = Cnhv, by using the continuous Cauchy-Schwarz
inequality, the properties of Cnh given by (10) and the discrete Cauchy-Schwarz inequality.
2) From (26), using the continuous and discrete Cauchy–Schwarz inequalities, we derive (31). □

4.2. Upper bounds of the error. In this section, we establish in Corollary 4.16 the upper bound
corresponding to the difference in the solutions of Problems (FV) and (FV n,h) with a condition on τn
and hn. The main idea is to decompose the error through the introduction of the solution uτ of Problem
(Paux), which leads to the intermediary Theorems 4.10 and 4.12, in which we apply the continuous and
discrete Gronwall lemmas.

Theorem 4.10. Let u ∈ L∞(0, T, L3(Ω)2). The following a posteriori error estimate holds between
the velocity u of Problem (FV ) and the velocity uτ associated with the solutions (un)0≤n≤N of Problem
(Paux) : For 1 ≤ m ≤ N ,

||u(tm)− uτ (tm)||2L2(Ω)2 + ν

∫ tm

0

||u(s)− uτ (s)||2Xds

≤ C
(
||f − πτ f ||2[L2((0,tm)×Ω)]2 +

m∑
n=1

τn||un − ūn
h||2X +

m∑
n=1

∑
κ∈Tnh

(
ητn,κ)

2
)
. (32)

Proof. By taking v = u− uτ and q = p− pτ in (17), we obtain:
1

2

d

dt
||v(t)||2L2(Ω)2 + ν||v(t)||2X = (f(t)− fn(t),v(t)) + ⟨Rτ (uτ )(t),v(t)⟩ −

∫
Ω

(v(t) · ∇u(t)) · v(t)). (33)

Let us bound the right-hand side of equation (33). The first and last terms can be bounded by using (1)
and (2), respectively, as well as Lemma 2.11, as follows:

|(f(t)− fn,v(t))| ≤ C||f(t)− πτ f ||2L2(Ω)2 +
ν

6
||v(t)||2X , (34)∣∣∣∣∫

Ω

(v(t) · ∇u(t)) · v(t))
∣∣∣∣ ≤ ||u(t)||X ||v(t)||2L4(Ω)2 ≤

√
2||u(t)||X ||v(t)||L2(Ω)2 ||v(t)||X

≤ C||u(t)||2X ||v(t)||2L2(Ω)2 +
ν

6
||v(t)||2X . (35)
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Furthermore, the residual term in the right hand side of Equation (33) can be decomposed as:

⟨Rτ (uτ )(t),v⟩ = T1 + T2 + T3, (36)

where T1|[tn−1,tn] =
tn − t

τn

∑
κ∈Tnh

ν

∫
κ

∇(un − un−1)(x) : ∇v(t,x) dx,

T2|[tn−1,tn] =
tn − t

τn

∑
κ∈Tnh

∫
κ

(un−1 · ∇v(t,x)) · (un − un−1)dx

and T3|[tn−1,tn] = − t− tn−1

τn

∑
κ∈Tnh

∫
κ

[(un − un−1) · ∇v(t,x)] · uτ (t,x) dx.

Using the continuous and then discrete Cauchy-Schwarz inequalities, the fact that
∣∣∣∣ t− tn
τn

∣∣∣∣ ≤ 1 for all

t ∈ [tn−1, tn] and using Lemma 2.11, we bound T1 in the following way:

|T1| ≤ ν
∑

κ∈Tnh

|un − un−1|H1(κ)2 |v|H1(κ)2 ≤ C
∑

κ∈Tnh

|un − un−1|2H1(κ)2 +
ν

36
||v||2X . (37)

In order to bound T2, we insert u(t,x) and uτ :

|T2| ≤

∣∣∣∣∣ ∑
κ∈Tnh

∫
κ

[(un−1 − uτ (t,x)) · ∇v(t,x)] · (un − un−1)dx

∣∣∣∣∣
+

∣∣∣∣∣ ∑
κ∈Tnh

∫
κ

[(uτ (t,x)− u(t,x)) · ∇v(t,x)] · (un − un−1)dx

∣∣∣∣∣
+

∣∣∣∣∣ ∑
κ∈Tnh

∫
κ

(u(t,x) · ∇v(t,x)) · (un − un−1)dx

∣∣∣∣∣
= T2,1 + T2,2 + T2,3.

(38)

Using that uτ =
t− tn−1

τn
(un − un−1) + un−1, the fact that

∣∣∣∣ t− tn−1

τn

∣∣∣∣ ≤ 1 and Lemma 2.11, we obtain:

T2,1 ≤
∑

κ∈Tnh

||un − un−1||L4(κ)2 |v|H1(κ)2 ||un − un−1||L4(κ)2

≤ C
∑

κ∈Tnh

||un − un−1||4L4(κ)2 +
ν

36
||v||2X .

Using (2) as well as the fact that (15) and the triangular inequality imply that ||un − un−1||2L2(Ω)2 is
bounded by a constant, we obtain

T2,1 ≤ C||un − un−1||2L2(Ω)2 ||u
n − un−1||2X +

ν

36
||v||2X ≤ C

∑
κ∈Tnh

|un − un−1|2H1(κ)2 +
ν

36
||v||2X . (39)

On the other hand, using Lemma 2.11, it holds that

T2,2 ≤
∑

κ∈Tnh

||uτ (t)− u(t)||L4(κ)2 |v|H1(κ)2 ||un − un−1||L4(κ)2

≤ C
∑

κ∈Tnh

||uτ (t)− u(t)||2L4(κ)2 ||u
n − un−1||2L4(κ)2 +

ν

36
||v||2X .

Using the discrete Cauchy-Schwarz inequality, then (2), (3) and Lemma 4.4, we obtain:

T2,2 ≤ C||uτ (t)− u(t)||2L4(Ω)2 ||u
n − un−1||2L4(Ω)2 +

ν

36
||v||2X .

≤ C||uτ (t)− u(t)||X ||un − un−1||X +
ν

36
||v||2X .
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Since v = u− uτ and using Lemma 2.11 once again, we obtain

T2,2 ≤ C
∑

κ∈Tnh

|un − un−1|2H1(κ)2 +
2ν

36
||v||2X . (40)

Now, we bound T2,3 by taking into consideration that u is supposed to be in L∞(0, T, L3(Ω)); then we
use the discrete Cauchy-Schwarz inequality, Lemmas 2.11 and 2.1 and we obtain

T2,3 ≤
∑

κ∈Tnh

||u(t)||L3(κ)2 |v|H1(κ)2 ||un − un−1||L6(κ)

≤ C
∑

κ∈Tnh

|un − un−1|2H1(κ)2 +
ν

36
||v||2X . (41)

In order to bound |T3|, we use the fact that
∣∣∣∣ t− tn−1

τn

∣∣∣∣ ≤ 1 for all t ∈ [tn−1, tn] and we insert u:

|T3| ≤
∣∣∣ ∑
κ∈Tnh

∫
κ

[(un−un−1) ·∇v(t,x)] · (uτ −u)(t,x) dx
∣∣∣+ ∣∣∣ ∑

κ∈Tnh

∫
κ

[(un−un−1) ·∇v(t,x)] ·u(t,x) dx
∣∣∣.

By using that v = uτ − u and that c(u,v,v) = 0 the first term in the right-hand side vanishes. The
second term is treated exactly like T2,3 and we obtain

T3 ≤ C
∑

κ∈Tnh

|un − un−1|2H1(κ)2 +
ν

36
||v||2X . (42)

Finally, gathering (33), (34), (35), (36), (37), (38), (39), (40), (41) and (42), we obtain on each [tn−1, tn]

1

2

d

dt
||v(t)||2L2(Ω)2 + ν||v(t)||2X ≤ ν

2
||v(t)||2X + C||f(t)− πτ f ||2L2(Ω)2 + C

∑
κ∈Tnh

|un − un−1|2H1(κ)2

+ C||u(t)||2X ||v(t)||2L2(Ω)2 . (43)

Then, we simplify (43), take into account the definitions of πτu and πl,τu, and integrate equation be-
tween 0 and t; we obtain

||v(t)||2L2(Ω)2 + ν

∫ t

0

||v(s)||2Xds ≤ C
(
||f − πτ f ||2[L2((0,t)×Ω)]2 + ||πτu− πl,τu||2L2(0,t,X)

)
+C

∫ t

0

||u(τ)||2X ||v(τ)||2L2(Ω)2dτ.

We apply the Gronwall Lemma 2.9 with functions given by the following form :

z(t) = ||v(t)||2L2(Ω)2 + ν

∫ t

0

||v(s)||2Xds, f(t) = C
(
||f − πτ f ||2[L2((0,t)×Ω)]2 + ||πτu− πl,τu||2L2(0,t,X)

)
,

g(t) = C and k(τ) = ||u(τ)||2X .

We obtain the following bound:

||u(t)− uτ (t)||2L2(Ω)2 + ν

∫ t

0

||u(τ)− uτ (τ)||2Xdτ ≤ C
(
||f − πτ f ||2[L2((0,t)×Ω)]2 + ||πτu− πl,τu||2L2(0,t,X)

)
+ C

∫ t

0

f(τ)||u(τ)||2X exp
(
C

∫ t

τ

||u(s)||2Xds
)
dτ.

Since f is an increasing function of time, we bound it by f(tm); we use (3) to bound the integrals of
||u||2X . Applying the resulting inequality at t = tm, we get:

||u(tm)−uτ (tm)||2L2(Ω)2+ν

∫ tm

0

||u(τ)−uτ (τ)||2Xdτ ≤ C
(
||f−πτ f ||2[L2((0,tm)×Ω)]2+

m∑
n=1

τn||un−un−1||2X
)
.

(44)
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To obtain (32), we use the triangle inequality below in the last term in the right-hand side of (44), then
use hypothesis (7) and definition (27)

||un − un−1||X ≤ ||un − ūn
h||X + ||ūn

h − ūn−1
h ||X + ||un−1 − ūn−1

h ||X .
□

To derive an a posteriori estimate between the solution u of problem (FV) and the solution ūh corre-
sponding to the solutions ūn

h of (FV n,h), it suffices to get an a posteriori estimate between the solution
uτ of Problem (Paux) and ūh and to apply the triangle inequality using the previous theorem. In order to
get an a posteriori error estimate between the solutions uτ and ūh, we introduce the operator Π (see [9])
defined from X into itself as follows: For each v in X, Πv denotes the velocity w of the unique weak
solution (w, r) in X ×M of the Stokes problem:{

∀t ∈ X, (∇w,∇t)− (div t, r) = 0,

∀q ∈M, (divw, q) = (divv, q).
(45)

The next lemma states some properties of the operator Π. We refer to [9, Lemma 4.2] or [24, Lemma
4.2.4]

Lemma 4.11. The operator Π has the following properties:

(1) For all v in V , Πv is zero,
(2) The following estimates hold for all v in X,

||v −Πv||X ≤ ||v||X and ||Πv||X ≤ 1

β∗
||divv||L2(Ω).

(3) ∀vh ∈ Vnh and 1 ≤ n ≤ N :

||Πvh||L2(Ω)2 ≤ ch1/2n ||divvh||L2(Ω).

We are now in a position to prove a posteriori estimates between the solution uτ of Problem (Paux) and
the solution ūh of (FV n,h).

Theorem 4.12. Suppose there exists a positive constant Cs such that for all 1 ≤ n ≤ N we have
hn ≤ Csτn. The following a posteriori error estimate holds between the solutions um and ūm

h of Problems
(Paux) and (FV n,h).

||um − ūm
h ||2L2(Ω)2 + ν

m∑
n=1

τn||un − ūn
h||2X

≤ C

m∑
n=1

τn

( ∑
κ∈Tnh

(
h2κ||f̄n − f̄nh ||2L2(κ) + ||fn − f̄n||2L2(κ)2 + (ηh,1n,κ)

2 + (ηh,2n,κ)
2
) )

. (46)

Proof. For abbreviation we set en = un − ūn
h and εn = pn − p̄nh, 0 ≤ n ≤ N . For any 1 ≤ n ≤ N , we have

1

2
||en||2L2(Ω)2−

1

2
||en−1||2L2(Ω)2+

1

2
||en−en−1||2L2(Ω)+ντn||e

n||2X = (en−en−1, en)+ντn(∇en,∇en). (47)

Adding and subtracting Πen in both terms in the right-hand side of (47) and since div(en − Πen) = 0,
we obtain:

(en − en−1, en) + ντn(∇en,∇en) = (en − en−1,Πen) + ντn(∇en,∇Πen)

+ (en − en−1, en −Πen) + ντn(∇en,∇(en −Πen))

− τn(div(e
n −Πen), εn). (48)

By taking v = en −Πen in (19), we have for every vh ∈ Xnh

(en − en−1, en) + ντn(∇en,∇en) = (en − en−1,Πen) + ντn(∇en,∇Πen) + τn(f̄
n − f̄nh ,v − vh)

+ τn(f
n − f̄n,v) + τn⟨Rh,1(ūh),v − vh⟩+ τn⟨Rh,2(ūh),v⟩

− τn(u
n−1 · ∇un − ūn−1

h · ∇ūn
h,v) +

1

2
τn(div ū

n−1
h ūn

h,v). (49)
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Next, we evaluate all terms in the right-hand side of (49) separately by repeatedly using both inequalities
in Lemma 2.11 for various values of (β, γ, δ). Taking into account that Πen = −Πūn

h and using Lemma
4.11, the first and second terms can be bounded as:

(en − en−1,Πen) ≤ 1

4
||en − en−1||2L2(Ω)2 + Cτn||div ūn

h||2L2(Ω) (50)

and
ντn(∇en,∇Πen) ≤ ντn

28
||en||2X + Cτn||div ūn

h||2L2(Ω). (51)

To estimate the third and fourth terms of (49), we take vh = Cnhv, use estimation (10) and Lemma 4.11
to derive :

τn(f̄
n − f̄nh ,v − Cnhv) + τn(f

n − f̄n,v)

≤ τn

( ∑
κ∈Tnh

chκ||f̄n − f̄nh ||L2(κ)2 |v|H1(∆κ)2 + S2||fn − f̄n||L2(Ω)2 ||v||X
)

≤ Cτn

( ∑
κ∈Tnh

(h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2)
)1/2

|v|H1(Ω)2

≤ Cτn

( ∑
κ∈Tnh

(h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2)
)
+
ντn
28

||en||2X . (52)

The fifth and sixth terms of (49) can be bounded as (cf Lemma 4.9)

τn⟨Rh,1(ūh)(t),v − vh⟩ ≤ Cτn

( ∑
κ∈Tnh

(ηh,1n,κ)
2
)1/2

||v||X ≤ C
∑

κ∈Tnh

τn(η
h,1
n,κ)

2 +
ντn
28

||en||2X . (53)

τn⟨Rh,2(ūh)(t),v⟩ ≤ Cτn

( ∑
κ∈Tnh

(ηh,2n,κ)
2
)1/2

||v||X ≤ C
∑

κ∈Tnh

τn(η
h,2
n,κ)

2 +
ντn
28

||en||2X . (54)

Finally, we bound the last two terms of (49). We have the relation:

τn(u
n−1 · ∇un − ūn−1

h · ∇ūn
h,v) +

τn
2
(div ūn−1

h ūn
h,v)

= −τn(en−1 · ∇un,v)− τn
2
(div en−1un,v)− τn(ū

n−1
h · ∇en,v)− τn

2
(div ūn−1

h en,v).

We set A = A1+A2 where A1 = −τn(en−1 ·∇un,v) and A2 = −τn
2
(div en−1un,v), and B = −τn(ūn−1

h ·

∇en,v) − τn
2
(div ūn−1

h en,v). We first bound A1 by using the L4 − L2 − L4 inequality, the fact that
v = en −Πen and Πen = −Πūn

h, then (2) and Lemma 4.11; we obtain

|A1| ≤ Cτn||en−1||L4(Ω)2 ||un||X(||en||L4(Ω)2 + ||Πen||L4(Ω)2)

≤ Cτn||en−1||1/2L2(Ω)2 ||e
n−1||1/2X ||un||X

(
||en||1/2L2(Ω)2 ||e

n||1/2X + (h1/2n ||div ūn
h||L2(Ω))

1/2||en||1/2X

)
. (55)

We bound separately the two terms that result from the expansion of the product in the right-hand side
of (55), that we denote by A1,1 and A1,2. First, using Lemma 2.11 we have

A1,1 ≤ τn
(
C||en−1||2L2(Ω)2 ||u

n||2X +
ν

28στ
||en−1||2X +

ν

28
||en||2X

)
+ δτn||en||2L2(Ω)2 ||u

n||2X

Inserting en−1 in the last term and using that τn||un||2X is bounded by (15), we can choose δ such that

A1,1 ≤ τn
(
C||en−1||2L2(Ω)2 ||u

n||2X +
ν

28στ
||en−1||2X +

ν

28
||en||2X

)
+

1

16
||en − en−1||2L2(Ω)2 . (56)

Secondly, using Lemma 2.11, we have:

A1,2 ≤ Cτn
(
|| div ūn

h||L2(Ω)||en||X + h1/2n ||un||2X ||en−1||L2(Ω)2 ||en−1||X
)
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Using the relation hn ≤ Csτn and the fact that (15) allows to bound τ1/2n ||un||X by a constant, we have,
using Lemma 2.11 twice

A1,2 ≤ Cτn||div ūn
h||L2(Ω)||en||X + Cτn||un||X ||en−1||L2(Ω)2 ||en−1||X

≤ τn(C|| div ūn
h||2L2(Ω) +

ν

28
||en||2X) + τn

(
C||un||2X ||en−1||2L2(Ω)2 +

ν

28στ
||en−1||2X

)
. (57)

Finally, summing (56) and (57), we get

|A1| ≤ τn
(
C||en−1||2L2(Ω)2 ||u

n||2X +
2ν

28στ
||en−1||2X +

2ν

28
||en||2X +C||div ūn

h||2L2(Ω)

)
+

1

16
||en−en−1||2L2(Ω)2 .

(58)
As far as A2 is concerned, we first use that div en−1 = −div ūn−1

h , then use (2), Lemma 2.11 and a
triangular inequality. We get, for any β > 0

|A2| ≤ Cτn||divun−1
h ||L2(Ω)||un||L4(Ω)2 ||v||L4(Ω)2

≤ Cτn||divun−1
h ||2L2(Ω) + βτn||un||L2(Ω)2 ||un||X(||en||L2(Ω)2 ||en||X + ||Πen||L2(Ω)2 ||Πen||X)

≤ Cτn||divun−1
h ||2L2(Ω) + β(A2,1 +A2,2 +A2,3) (59)

Using that τn||un||2X and ||un||2L2(Ω)2 are bounded we get

A2,1 =τn||un||L2(Ω)2 ||un||X ||en − en−1||L2(Ω)2 ||en||X

≤1

2
τn(||en − en−1||2L2(Ω)2 ||u

n||2X + ||un||2L2(Ω)2 ||e
n||2X)

≤C||en − en−1||2L2(Ω)2 + Cτn||en||2X ,

A2,2 = τn||un||L2(Ω)2 ||un||X ||en−1||L2(Ω)2 ||en||X ≤ τn(||un||2X ||en−1||2L2(Ω)2 + C||en||2X),

A2,3 = τn||un||L2(Ω)2 ||un||X ||Πen||L2(Ω)2 ||Πen||X ≤Cτn||un||L2(Ω)2 ||un||X(h1/2n ||div ūn
h||L2(Ω))||en||X

≤Cτn(|| div ūn
h||2L2(Ω) + ||un||2L2(Ω)2τn||u

n||2X ||en||2X)

≤Cτn(||div ūn
h||2L2(Ω) + ||en||2X).

Since β in (59) can be freely chosen, this yields the following bound for A2

|A2| ≤ Cτn|| divun−1
h ||2L2(Ω) +

1

16
||en − en−1||2L2(Ω)2 + τn

3ν

28
||en||2X + Cτn||un||2X ||en−1||2L2(Ω)2 . (60)

Let us now bound the term B. It can be written as follows:

B = −τn(ūn−1
h · ∇(en −Πen +Πen), en −Πen)− τn

2
(div ūn−1

h (en −Πen +Πen), en −Πen)

= −τn(ūn−1
h · ∇Πen, en −Πen)− τn

2
(div ūn−1

h Πen, en −Πen)

= −τn(ūn−1
h · ∇Πen, en)− τn

2
(div ūn−1

h Πen, en) = B1 +B2

Using the fact that Πen = −Πūn
h, Lemma 4.11, then (2) and Lemma 2.11, we get, for any β > 0

|B1| ≤ Cτn||ūn−1
h ||L4(Ω)||div ūn

h||L2(Ω)||en||L4(Ω)

≤ Cτn||div ūn
h||2L2(Ω) + βτn||ūn−1

h ||L2(Ω)2 ||ūn−1
h ||X ||en||L2(Ω)||en||X (61)

A term very similar to the second one in the right-hand side of (61) was already bounded in (59), replacing
un by ūn−1

h ; since (9) yields similar bounds as (15), choosing β small enough leads to

|B1| ≤ Cτn||div ūn
h||2L2(Ω) +

1

16
||en − en−1||2L2(Ω)2 + τn

2ν

28
||en||2X + Cτn||ūn−1

h ||2X ||en−1||2L2(Ω)2 . (62)

Moreover, using once more the fact that Πen = −Πūn
h, Lemma 2.11, then (2) and Lemma 4.11 we get

|B2| ≤ Cτn||div ūn−1
h ||2L2(Ω) + βτn||Πūn

h||2L4(Ω)2 ||e
n||2L4(Ω)2

≤ Cτn||div ūn−1
h ||2L2(Ω) + βτn||Πūn

h||L2(Ω)2 ||Πūn
h||X ||en||L2(Ω)2 ||en||X

≤ Cτn||div ūn−1
h ||2L2(Ω) + Cβτnh

1/2
n ||div ūn

h||L2(Ω)2 ||ūn
h||X ||en||L2(Ω)2 ||en||X .
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Using the fact that hn ≤ Csτn, the fact that τ1/2n ||ūn
h||X is bounded thanks to (9), Lemma 2.11 and

inserting en−1, we obtain

|B2| ≤ Cτn||div ūn−1
h ||2L2(Ω) + Cβτn(||en||2X + ||ūn

h||2X ||en − en−1||2L2(Ω)2 + ||ūn
h||2X ||en−1||2L2(Ω)2).

Using once more that τn||ūn
h||2X is bounded, we may choose β such that

|B2| ≤ Cτn||div ūn−1
h ||2L2(Ω) + τn

ν

28
||en||2X +

1

16
||en − en−1||2L2(Ω)2 + Cτn||ūn

h||2X ||en−1||2L2(Ω)2). (63)

Thus, by summing (50), (51), (52), (53), (54), (58), (60), (62) and (63), using Equations (47), (49), the
fact that e0 = 0, and summing over n from 1 to m, we obtain:

1

2
||em||2L2(Ω)2 +

1

2

m∑
n=1

||en − en−1||2L2(Ω)2 + ν

m∑
n=1

τn||en||2X

≤ 12ν

28

m∑
n=1

τn||en||2X +
2ν

28στ

m∑
n=1

τn||en−1||2X +
1

2

m∑
n=1

||en − en−1||2L2(Ω)2 (64)

+ C

m∑
n=1

τn

( ∑
κ∈Tnh

(h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2)
)
+ C

m∑
n=1

( ∑
κ∈Tnh

(τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2)
)

+ C

m∑
n=1

τn(|| div ūn
h||2L2(Ω) + ||div ūn−1

h ||2L2(Ω)) + C
m∑

n=1

τn
(
||un||2X + ||ūn

h||2X + ||ūn−1
h ||2X

)
||en−1||2L2(Ω)2 .

Moreover, we perform a change of indices, we use (7) to bound τn+1 by σττn; we also use the fact that
e0 = 0 and ū0

h = 0 and the fact that || div ūn
h||2L2(κ) ≤ (ηh,1n,κ)

2. Simplifying, we obtain

1

2
||em||2L2(Ω)2 +

ν

2

m∑
n=1

τn||en||2X ≤ C

m−1∑
n=0

τn+1

(
||un+1||2X + ||ūn+1

h ||2X + ||ūn
h||2X

)
||en||2L2(Ω)2

+ C

m∑
n=1

τn

( ∑
κ∈Tnh

(h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2)
)
+ C

m∑
n=1

( ∑
κ∈Tnh

(τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2)
)
.

We apply the Gronwall Lemma 2.10 with the following functions:

ym = ||em||2L2(Ω)2 + ν

m∑
n=1

τn||en||2X ,

fm = C

m∑
n=1

τn

( ∑
κ∈Tnh

(
h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2 + (ηh,1n,κ)

2 + (ηh,2n,κ)
2
) )

and
gn = Cτn+1

(
||un+1||2X + ||ūn+1

h ||2X + ||ūn
h||2X

)
.

We obtain:

||em||2L2(Ω)2 + ν

m∑
n=1

τn||en||2X ≤ fm (65)

+ C

m−1∑
n=0

fnτn+1

(
||un+1||2X + ||ūn+1

h ||2X + ||ūn
h||2X

)
× exp

(
C

m−1∑
j=n

τj+1(||uj+1||2X + ||ūj+1
h ||2X) + ||ūj

h||
2
X

)
.

By remarking that for every n ≤ m it holds that fn ≤ fm, and using the bounds provided by (9) and (15),
the last line in (65) can be bounded by Cfm, and we finally obtain (46). This concludes the proof of
Theorem 4.12 where we proved a posteriori error estimate between the velocity uτ of Problem (Paux)
and the velocity ūh of Problem (FV n,h). □

The following lemma relates the integral of ||(uτ − ūh)||2X with its values at the different time steps
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Lemma 4.13. It holds that

1

4

m∑
n=1

τn||un − ūn
h||2X ≤

m∑
n=1

∫ tn

tn−1

||uτ (s)− ūh(s)||2Xds ≤
1 + στ

2

m∑
n=1

τn||un − ūn
h||2X . (66)

Proof. For the proof of this lemma, we refer to [6] page 15. □

Corollary 4.14. We suppose hn ≤ Csτn,∀n = 1 . . .m with m ∈ {1, · · · , N}. The following a posteriori
error estimate holds between the velocity u solution of problem (FV ) and the solution ūh associated to
the solutions ūn

h of problem (FV n,h):

||u(tm)− ūm
h ||2L2(Ω)2 + ν

∫ tm

0

||u(s)− ūh(s)||2X ≤ C
( m∑

n=1

∑
κ∈Tnh

(τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2 + (ητn,κ)
2)

+

m∑
n=1

τn
∑

κ∈Tnh

(h2κ||f̄n − f̄nh ||2L2(κ)2 + ||fn − f̄n||2L2(κ)2) + ||f − πτ f ||2[L2((0,tm)×Ω)]2

)
. (67)

Proof. We use the triangle inequality in the left-hand side of (67) by inserting uτ (tm) = um in its first
term and the function uτ in its second term. Then, the proof is a direct consequence of Theorems 4.10
on the one hand and of the second inequality in (66) and Theorem 4.12 on the other hand. □

Next, the following theorem can be found in Theorem 4.10 in [7] as far as the first inequality is concerned
and follows the same steps as Theorem 4.10 in [6] as far as the second inequality is concerned.

Theorem 4.15. The following a posteriori error estimate holds between the solution (u,p) of Problem
(FV) and (ūh, πτpτ ) associated with the solutions of Problem (FV n,h): For 1 ≤ n ≤ N,

m∑
n=1

∫ tn

tn−1

||u(s)− πτ ūh(s)||2Xds ≤ c

(∫ tm

0

||u(s)− ūh(s)||2Xds+
m∑

n=1

∑
κ∈Tnh

(ητn,κ)
2

)
(68)

and

|| ∂
∂t

(u− ūh) + u · ∇u− πl,τ ūh · ∇πτ ūh − 1

2
div(πl,τ ūh)πτ ūh +∇(p− p̄h)||L2(0,tm,X′)

≤ C
( m∑

n=1

∑
κ∈Tnh

(τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2 + (ητn,κ)
2) + ||f − πτ f ||2[L2((0,tm)×Ω)]2 (69)

+

m∑
n=1

∑
κ∈Tnh

(
τnh

2
κ||f̄n − f̄nh ||2L2(κ)2 + τn||fn − f̄n||2L2(κ)2

)) 1
2

.

Finally, Definition (14) of the [[·]] norm, inequalities (68), (67) and (69) lead to the following result:

Corollary 4.16. We suppose that hn ≤ Csτn,∀n = 1, · · · ,m with m ∈ {1, · · · , N}. The pressure and
the velocity verify the following a posteriori error bound:

[[u− ūh]]
2(tm) + || ∂

∂t
(u− ūh) + u∇u− πl,τ ūh∇πτ ūh − 1

2
div πl,τ ūhπτ ūh +∇(p− p̄h)||2L2(0,tm,X′)

≤ C
( m∑
n=1

∑
κ∈Tnh

(τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2 + (ητn,κ)
2) + ||f − πτ f ||2[L2((0,tm)×Ω)]2

+

m∑
n=1

∑
κ∈Tnh

(τnh
2
κ||f̄n − f̄nh ||2L2(κ) + τn||fn − f̄n||2L2(κ))

)
. (70)

Remark 4.17. Due to the use of the Gronwall Lemma and of Lemma 2.11, the dependence of the
constant C in (70) with respect to ν involves an exponential of 1

ν . This may look very unfavorable as ν
is small in turbulent flows. However, from a practical point of view, numerical experiments presented in
Section 6.2 show that this dependence is not that dramatic.
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5. Upper bounds of the indicators

In this section, we prove three theorems regarding upper bounds for the error indicators proposed in
Section 4. We follow exactly the same steps like in [6, Theorems 4.11 and 4.12] by simply changing the
form of the non-linear terms. Taken together, these theorems will establish the following general estimate

τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2 + (ητn,κ)
2 ≤ Lwκ

, (71)

where Lwκ is an expression depending on the errors, on the data approximations, and on terms related
to the LES viscosity, evaluated on the union of the elements of Tnh sharing a face with κ. The discussion
is presented in terms of three theorems, each of which providing an upper bound of one term in the
left-hand side of (71). In all, suitable regularity assumptions on the exact solution are performed.

Theorem 5.1. Let D(u) ∈ L∞(0, T,Ω) and suppose that hn ≤ Csτn. The following estimate holds:

τn(η
h,1
n,κ)

2 ≤ CL(wκ), (72)

where wκ denotes the union of the elements of Tnh that share at least a face with κ and

L(W ) = |u− ūn
h|2L2(tn−1,tn,H1(W )2) + |u− ūn−1

h |2L2(tn−1,tn,H1(W )2)

+ h2κ||f − fn||2L2(tn−1,tn,L2(W ))2 + τn
∑

κ′⊂W

h2κ′ ||fn − f̄n||2L2(κ′)2 + τn
∑

κ′⊂W

h2κ′ ||f̄n − f̄nh ||2L2(κ′)2

+ || ∂
∂t

(u− ūh) + u · ∇u− πl,τ ūh · ∇πτ ūh − 1

2
div πl,τ ūhπτ ūh +∇(p− p̄h)||2L2(tn−1,tn,H−1(W )2)

+ ||νt(u)− νth(u)||2L2(tn−1,tn,L2(W )) + ||(νt(u)D(u)||2L2(tn−1,tn,L2(W )). (73)

Proof. We proceed in 4 steps:
(1) We consider t ∈]tn−1, tn[ and we insert νt(ūn−1

h )D(u(t)), then νth(ūn−1
h )D(u(t)), then νt(u(t))D(u(t))

and νth(u(t))D(u(t)) in the fourth term of (ηh,1n,κ)
2 defined in (28) and we obtain :

||(νt(ūn−1
h )− νth(ū

n−1
h ))D(ūn

h)||2L2(κ) ≤ C
(
||(νt(ūn−1

h )− νth(ū
n−1
h ))D(ūn

h − u(t))||2L2(κ)

+ ||(νt(ūn−1
h )− νt(u(t)))D(u(t))||2L2(κ) + ||(νth(u(t))− νth(ū

n−1
h ))D(u(t))||2L2(κ) (74)

+ ||(νt(u(t))− νth(u(t)))D(u(t))||2L2(κ)

)
.

We integrate from tn−1 to tn, we bound the first term in the right-hand side of (74) by:∫ tn

tn−1

||(νt(ūn−1
h )− νth(ū

n−1
h ))D(ūn

h − u(t))||2L2(κ)dt

=

∫ tn

tn−1

(∫
κ

[(
csh

2
κ||D(ūn−1

h )||F − 1

|κ|

∫
κ

csh
2
κ||D(ūn−1

h )||F dx
)
D(ūn

h − u(t))
]2
dx
)
dt

≤ c2sh
4
κ||D(ūn−1

h )||2L∞(κ)

∫ tn

tn−1

||D(ūn
h − u)||2L2(κ)dt.

By using the inverse inequality (13), the fact that hκ ≤ cτn and equation (9), we have:∫ tn

tn−1

||(νt(ūn−1
h )− νth(ū

n−1
h ))D(ūn

h − u(t))||2L2(κ)dt

≤ Chκτn||D(ūn−1
h )||2L2(κ)

∫ tn

tn−1

||D(ūn
h − u(t))||2L2(κ)dt

≤ Chκ|ūn
h − u|2L2(tn−1,tn,H1(κ)2).



A POSTERIORI ERROR ESTIMATES FOR LES OF INCOMPRESSIBLE FLUIDS 19

By using that ||D(u)||L∞(0,T,Ω) is bounded, we bound the second term in the right-hand side of (74) by:∫ tn

tn−1

||(νt(ūn−1
h )− νt(u(t)))D(u)||2L2(κ)dt

=

∫ tn

tn−1

(∫
κ

[
csh

2
κ(||D(ūn−1

h )||F − ||D(u(t))||F )D(u(t))
]2
dx
)
dt

≤ c2sh
4
κ||D(u)||L∞(0,T,Ω)

∫ tn

tn−1

||D(u− ūn−1
h )||2L2(κ)dt

≤ Ch4κ|u− ūn−1
h |2L2(tn−1,tn,H1(κ)2).

The operator defined in (22) verifies the following property: For every v̄1 and v̄2 ∈ Z, we have:

||νth(v̄1)− νth(v̄2)||L2(κ) ≤ csh
2
κ||D(v̄1 − v̄2)||L2(κ). (75)

Indeed we have

|νth(v̄1)− νth(v̄2)| ≤
1

|κ|

∫
κ

|νt(v̄1(x))− νt(v̄2(x))|dx ≤ 1

|κ|

∫
κ

csh
2
κ||D(v̄1 − v̄2)(x)||F dx.

By using the Hölder inequality, we obtain (75). This leads to the following bound of the third term in
the right-hand side of (74):∫ tn

tn−1

||(νth(u(t))− νth(ū
n−1
h ))D(u(t))||2L2(κ)dt ≤ ||D(u)||2L∞(0,T,Ω)

∫ tn

tn−1

||νth(u(t))− νth(ū
n−1
h )||2L2(κ)dt

≤ Ch4κ|u− ūn−1
h |2L2(tn−1,tn,H1(κ)2).

Finally, ∫ tn

tn−1

||(νt(u(t))− νth(u(t)))D(u(t))||2L2(κ)dt ≤ C||νt(u)− νth(u)||2L2(tn−1,tn,L2(κ)).

By regrouping the previous inequalities, we obtain:∫ tn

tn−1

||(νt(ūn−1
h )− νth(ū

n−1
h ))D(ūn

h)||2L2(κ)dt ≤ C
(
hκ|ūn

h − u|2L2(tn−1,tn,H1(κ)2)

+ h4κ|u− ūn−1
h |2L2(tn−1,tn,H1(κ)2) + ||νt(u)− νth(u)||2L2(tn−1,tn,L2(κ))

)
, (76)

which provides a bound for the fourth term of (ηh,1n,κ)
2.

Next, the solution (u, p) of problem (FV ) and the solution (ūh, p̄h) associated with the solution (ūn
h, p̄

n
h)0≤n≤m

of Problem (FV n,h) verify: ∀v ∈ Z and t ∈]tn−1, tn], 1 ≤ n ≤ m,

(f̄nh − 1

τn
(ūn

h − ūn−1
h ),v) + (divv, p̄nh)− (ūn−1

h · ∇ūn
h,v)−

1

2
(div ūn−1

h ūn
h,v)

− ν(∇ūn
h,∇v)− (νth(ū

n−1
h )D(ūn

h),D(v))

= ⟨ ∂
∂t

(u− ūh)(t),v⟩+ ν(∇(u(t)− ūn
h),∇v) +

∫
Ω

[u(t) · ∇u(t)− ūn−1
h · ∇ūn

h] · v(t) dx

− 1

2

(
div ūn−1

h ūn
h,v

)
− (divv, p(t)− p̄h(t))− (f(t)− fn,v)− (fn − f̄n,v)− (f̄n − f̄nh ,v)

+

∫
Ω

(νt(u(t))D(u)(t)− νth(ū
n−1
h )D(ūn

h)) : D(v)dx−
∫
Ω

νt(u(t))D(u)(t) : D(v)dx. (77)

This equality will help us bound successively the first and second terms of (ηh,1n,κ)
2 for a given κ.

(2) Regarding the first term in (ηh,1n,κ)
2, we set

αn
h =

(
f̄nh − 1

τn
(ūn

h − ūn−1
h )−∇p̄nh + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h

)
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and choose in (77) :

v = vκ =

{
αn
hψκ on κ,

0 on Ω\κ,

where ψκ is the bubble function which is equal to the product of the barycentric coordinates associated
with the vertices of κ. Integrating between tn−1 and tn and using the Cauchy-Schwarz inequality yields

τn||αn
hψ

1/2
κ ||2L2(κ)2

≤
∫ tn

tn−1

(
ν|u− ūn

h|H1(κ)2 |vκ|H1(κ)2 + (||f − fn||L2(κ) + ||fn − f̄n||L2(κ) + ||f̄n − f̄nh ||L2(κ))||vκ||L2(κ)

+ || ∂
∂t

(u− ūh) + u · ∇u− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h +∇(p− p̄h)||X′(κ)(t)|vκ|H1(κ)2

)
dt

+

∫ tn

tn−1

(∫
κ

(νt(u)(t)D(u)(t)− νth(ū
n−1
h )D(ūn

h)) : D(vκ)dx
)
dt−

∫ tn

tn−1

(∫
κ

νt(u)(t)D(u)(t) : D(vκ)dx
)
dt.

The Cauchy-Schwarz inequality allows to write:

τn||αn
hψ

1/2
κ ||2L2(κ)2 ≤ ντ

1
2
n |u− ūn

h|L2(tn−1,tn,H1(κ))|vκ|H1(κ)

+ (τ
1
2
n ||f − fn||L2(tn−1,tn,L2(κ)) + τn||fn − f̄n||L2(κ) + τn||f̄n − f̄nh ||L2(κ))||vκ||L2(κ)2

+ τ
1
2
n || ∂

∂t
(u− ūh) + u · ∇u− ūn−1

h · ∇ūn
h − 1

2
div ūn−1

h ūn
h +∇(p− p̄h)||L2(tn−1,tn,H−1(κ))|vκ|H1(κ)

+ τ
1
2
n

(
||νt(u)(t)D(u)(t)− νth(ū

n−1
h )D(ūn

h)||L2(tn−1,tn,L2(κ)) + ||νt(u)(t)D(u)(t)||L2(tn−1,tn,L2(κ))

)
|vκ|H1(κ).

Multiplying the above inequality with h2κ and using Property 4.1, we obtain:

τnh
2
κ||αn

hψ
1/2
κ ||2L2(κ)2 ≤ Cτ

1
2
n hκ||vκ||L2(κ)

(
ν|u− ūn

h|L2(tn−1,tn,H1(κ))

+ hκ||f − fn||L2(tn−1,tn,L2(κ)) + τ
1
2
n hκ||fn − f̄n||L2(κ) + τ

1
2
n hκ||f̄n − f̄nh ||L2(κ)

+ || ∂
∂t

(u− ūh)(t) + u · ∇u− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h +∇(p− p̄h)||L2(tn−1,tn,H−1(κ))

+ ||νt(u)(t)D(u)(t)− νth(ū
n−1
h )D(ūn

h)||L2(tn−1,tn,L2(κ)) + ||(νt(u)(t)D(u)(t)||L2(tn−1,tn,L2(κ))

)
.

Now, we replace vκ by αn
hψk and use Property 4.1 to get rid of ψ1/2

k in the norm in the left-hand side and
to get rid of ψk in the norm of vκ in the right-hand side. Moreover, we use Lemma 2.11 and we obtain

τnh
2
κ||αn

h||2L2(κ)2 ≤ 1

2
τnh

2
κ||αn

h||2L2(κ)2

+ C
(
|u− ūn

h|2L2(tn−1,tn,H1(κ)) + h2κ||f − fn||2L2(tn−1,tn,L2(κ)) + τnh
2
κ||fn − f̄n||2L2(κ) + τnh

2
κ||f̄n − f̄nh ||2L2(κ)

+ || ∂
∂t

(u− ūh)(t) + u · ∇u− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h +∇(p− p̄h)||2L2(tn−1,tn,H−1(κ))

+ ||(νt(u)(t)D(u)(t)− νth(ū
n−1
h )D(ūn

h)||2L2(tn−1,tn,L2(κ)) + ||(νt(u)(t)D(u)(t)||2L2(tn−1,tn,L2(κ))

)
. (78)

We insert νt(ūn−1
h )D(ūn

h) and νt(u(t))D(ūn
h) into ||νt(u)(t)D(u)(t)− νth(ū

n−1
h )D(ūn

h)||2L2(κ) :

||νt(u(t))D(u(t))− νth(ū
n−1
h )D(ūn

h)||2L2(κ)

≤ C
(
||(νt(u(t))− νt(ū

n−1
h ))D(ūn

h)||2L2(κ) + ||(νt(u(t))(D(u(t))− D(ūn
h))||2L2(κ)

+ ||(νt(ūn−1
h )− νth(ū

n−1
h ))D(ūn

h)||2L2(κ)

)
. (79)
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By integrating between tn−1 and tn, and using the inverse inequality (13), the fact hκ ≤ cτn and the
bound (9), we bound the first term in the right-hand side of (79) by:∫ tn

tn−1

||(νt(u(t))− νt(ū
n−1
h ))D(ūn

h)||2L2(κ)dt =

∫ tn

tn−1

(∫
κ

[
csh

2
κ(||D(u(t))||F − ||D(ūn−1

h )||F )D(ūn
h)
]2
dx
)
dt

≤ c2sh
4
κ

∫ tn

tn−1

(∫
κ

[
||D(u(t)− ūn−1

h )||F |D(ūn
h)|
]2
dx
)
dt

≤ c2sh
4
κ||D(ūn

h)||2L∞(κ)

∫ tn

tn−1

||D(u(t)− ūn−1
h )||2L2(κ)dt

≤ Chκ|u− ūn−1
h |2L2(tn−1,tn,H1(κ)2). (80)

By using that D(u) ∈ L∞(0, T,Ω), the second term in the right-hand side of (79) can be bounded by:∫ tn

tn−1

||(νt(u(t))(D(u(t))− D(ūn
h))||2L2(κ)dt =

∫ tn

tn−1

(∫
κ

[
csh

2
κ||D(u(t))||FD(u(t)− ūn

h)
]2
dx
)
dt

≤ c2sh
4
κ||D(u)||2L∞(0,T,Ω)

∫ tn

tn−1

||D(u(t)− ūn
h)||2L2(κ)dt

≤ Ch4κ|u− ūn
h|2L2(tn−1,tn,H1(κ)2). (81)

Integrating (79) between tn−1 and tn, using the above two inequalities and (76), we obtain:∫ tn

tn−1

||νt(u(t))D(u(t))− νth(ū
n−1
h )D(ūn

h)||2L2(κ)dt

≤ C
(
|ūn

h − u|2L2(tn−1,tn,H1(κ)2) + |u− ūn−1
h |2L2(tn−1,tn,H1(κ)2) + ||νt(u)− νth(u)||2L2(tn−1,tn,L2(κ))

)
. (82)

We replace (82) into (78) and simplify, we obtain:

τnh
2
κ||αn

h||2L2(κ)2 ≤ C
(
|u− ūn

h|2L2(tn−1,tn,H1(κ)2) + |u− ūn−1
h |2L2(tn−1,tn,H1(κ)2)

+ h2κ||f − fn||2L2(tn−1,tn,L2(κ)) + τnh
2
κ||fn − f̄n||2L2(κ) + τnh

2
κ||f̄n − f̄nh ||2L2(κ)

+ || ∂
∂t

(u− ūh)(t) + u · ∇u− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h +∇(p− p̄h)||2L2(tn−1,tn,H−1(κ)2)

+ ||νt(u)− νth(u)||2L2(tn−1,tn,L2(κ)) + ||(νt(u)(t)D(u)(t)||2L2(tn−1,tn,L2(κ))

)
.

We replace αn
h by its value and we obtain:

τnh
2
κ||(f̄nh − 1

τn
(ūn

h − ūn−1
h )−∇p̄nh + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h

− 1

2
div ūn−1

h ūn
h)||2L2(κ)2 ≤ CL(κ), (83)

where we recall that L(·) is defined in (73).
(3) Regarding the second term in (ηh,1n,κ)

2, for every e ∈ εκ, we note by κ′ the other element containing e.
We introduce the function:

Rh,1
n,e = [(ν∇ūn

h + νth(ū
n−1
h )D(ūn

h))n− p̄nhn]e

and, recalling that Le is defined at the beginning of Section 4, we choose in (77) v = ve = Le(R
h,1
n,eψe)

extended by 0 outside of κ̃ := κ∪κ′. Integrating by parts the diffusion and pressure terms, we notice that

the resulting trace terms on e sum up to
∫
e

Rh,1
n,e(R

h,1
n,eψe); moving all other terms in the right-hand side
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of the equality, integrating between tn−1 and tn and applying the Cauchy-Schwarz inequality we obtain:

τn||Rh,1
n,e(ψe)

1
2 ||2L2(e) ≤ τ

1
2
n

(
ν|u− ūn

h|L2(tn−1,tn,H1(κ̃)2 |ve|H1(κ̃)2

+
(
||f − fn||L2(tn−1,tn,L2(κ̃)2) + τ

1
2
n ||fn − f̄n||L2(κ̃)2 + τ

1
2
n ||f̄n − f̄nh ||L2(κ̃)2

)
||ve||L2(κ̃)2

+ || ∂
∂t

(u− ūh) +∇(p− p̄h) + u · ∇u− ūn−1
h ∇ · ūn

h − 1

2
div ūn−1

h ūn
h||L2(tn−1,tn,H−1(κ̃)2)|ve|H1(κ̃)2

+ τ
1
2
n ||ve||L2(κ̃)2 ||f̄nh − 1

τn
(ūn

h − ūn−1
h ) + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h ∇ūn

h

− 1

2
div ūn−1

h ūn
h −∇p̄nh||L2(κ̃)2

+
(
||νt(u)(t)D(u)(t)− νth(ū

n−1
h )D(ūn

h)||L2(tn−1,tn,L2(κ̃)) + ||νt(u)(t)D(u)(t)||L2(tn−1,tn,L2(κ̃))

)
|ve|H1(κ̃)2

)
.

Multiplying by he, and using Property 4.2 for ve = Le(R
h,1
n,eψe), we obtain:

τnhe||Rh,1
n,e(ψe)

1
2 ||2L2(e) ≤ Cτ

1
2
n h

1
2
e ||Rh,1

n,e(ψe)||L2(κ̃)2

(
|u− ūn

h|L2(tn−1,tn,H1(κ̃)2)

+ he(||f − fn||L2(tn−1,tn,L2(κ̃)2) + τ
1
2
n ||fn − f̄n||L2(κ̃)2 + τ

1
2
n ||f̄n − f̄nh ||L2(κ̃)2)

+ || ∂
∂t

(u− ūh) +∇(p− p̄h) + u · ∇u− ūn−1
h ∇ · ūn

h − 1

2
div ūn−1

h ūn
h||L2(tn−1,tn,H−1(κ̃)2)

+ heτ
1
2
n ||f̄nh − 1

τn
(ūn

h − ūn−1
h ) + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h

− 1

2
div ūn−1

h ūn
h −∇p̄nh||L2(κ̃)2

+ ||νt(u)(t)D(u)(t)− νth(ū
n−1
h )D(ūn

h)||L2(tn−1,tn,L2(κ̃)) + ||νt(u)(t)D(u)(t)||L2(tn−1,tn,L2(κ̃))

]
.

Using (82), the fact ψe ≤ 1 implies ψe ≤ ψ
1
2
e and using Lemma 2.11, we obtain:

τnhe||Rh,1
n,e(ψe)

1
2 ||2L2(e) ≤ C

(
ν|u− ūn

h|2L2(tn−1,tn,H1(κ̃)2) + |u− ūn−1
h |2L2(tn−1,tn,H1(κ̃)2)

+ h2e||f − fn||2L2(tn−1,tn,L2(κ̃)2) + τnh
2
e||fn − f̄n||2L2(κ̃)2 + τnh

2
e||f̄n − f̄nh ||2L2(κ̃)2

+ || ∂
∂t

(u− ūh) +∇(p− p̄h) + u · ∇u− ūn−1
h · ∇ūn

h − 1

2
div ūn−1

h ūn
h||2L2(tn−1,tn,H−1(κ̃)2)

+ τnh
2
e||f̄nh − 1

τn
(ūn

h − ūn−1
h ) + ν∆ūn

h +∇ · (νth(ūn−1
h )D(ūn

h))− ūn−1
h · ∇ūn

h

− 1

2
div ūn−1

h ūn
h −∇p̄nh||2L2(κ̃)2

+ ||νt(u)− νth(u)||2L2(tn−1,tn,L2(κ̃)) + ||νt(u)D(u)||2L2(tn−1,tn,L2(κ̃))

)
+

1

2
τnhe||Rh,1

n,e(ψe)
1
2 ||2L2(e)2 .

Then we simplify, use the first property of Proposition 4.2, replace Rh,1
n,e by its value, sum over e ⊂ ∂κ

using that he ≤ hκ and then use (83); we obtain:

τn

( ∑
e∈εκ

he|| [(ν∇ūn
h + νth(ū

n−1
h )D(ūn

h))n− p̄nhn]e||2L2(e)

)
≤ CL(wκ). (84)

(4) Regarding the third term in (ηh,1n,κ)
2, since t 7→ ūh(t,x) is an affine function with value ūn

h(x) in t = tn
and using divu(t,x) = 0, we have

τn
4
||div ūn

h(x)||2L2(κ) ≤ ||div ūh(t,x)||2L2(tn−1,tn,L2(κ)) = ||div(u(t,x)− ūh(t,x)||2L2(tn−1,tn,L2(κ))

≤ |u(t,x)− ūh(t,x)|2L2(tn−1,tn,H1(κ)2). (85)

Combining (76), (83), (84) and (85), we obtain the desired result. □

Secondly, we estimate the indicator ηh,2n,κ.
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Theorem 5.2. Let D(u) ∈ L∞(0, T,Ω) and suppose that hn ≤ Csτn. We have the following estimate:

τn(η
h,2
n,κ)

2 ≤ C
(
hκ|ūn−1

h − u|2L2(tn−1,tn,H1(κ)2)

+ h4κ|ūn
h − u|2L2(tn−1,tn,H1(κ)2) + ||νt(u)D(u)||2L2(tn−1,tn,L2(κ))

)
. (86)

Proof. We write that τn(ηh,2n,κ)
2 =

∫ tn
tn−1

(ηh,2n,κ)
2dt and we insert νt(u)(t)D(u)(t) and νt(u)(t)D(ūn

h) into
(ηh,2n,κ)

2 and then use triangular inequalities. Using (80) and (81) we obtain the result. □

Remark 5.3. In Theorems 5.1 and 5.2, the term ||νt(u)D(u)||2L2(tn−1,tn,L2(κ)) comes from the fact that
the LES solves a system that differs from the original Navier-Stokes equations. It is of order h4κ because νt
scales like h2κ and we remark that it is a higher order term as compared to other error terms.

To conclude, we estimate ητn,κ.

Theorem 5.4. We have the following estimate:

(ητn,κ)
2 ≤ C

(
|u− ūh|2L2(tn−1,tn,H1(κ)2) + |u− πτ ūh|2L2(tn−1,tn,H1(κ)2)

)
. (87)

Proof. Using the definition of ūh(t), we obtain ∀t ∈ [tn−1, tn] :
t− tn
τn

(ūn
h − ūn−1

h ) = ūh(t)− πτ ūh(t).

Inserting u(t) in the right-hand side of this equality and taking the gradient of both sides, integrating
on κ and using the triangular inequality, we obtain∣∣∣∣ t− tn

τn

∣∣∣∣2 ||∇(ūn
h − ūn−1

h )(x)||2L2(κ) ≤ 2(||∇(u− ūh)(t,x)||2L2(κ) + ||∇(u− πτ ūh)(t,x)||2L2(κ)).

Integrating between tn−1 and tn we obtain the result with C = 6. □

As a final conclusion of Sections 4 and 5, we have obtained the equivalence of the error indicators of
Definition 4.7 with the error between the exact solution of the Navier-Stokes equations and the discrete
filtered solution, up to terms representing the data oscillation (with respect to time) for f , the change
of source term due to the filtering process (f̄n instead of fn), the approximation of f̄n by f̄nh , that of νt
by νth and finally a term related to the additional turbulent diffusion operator.

6. Numerical results

In this section, we present numerical simulations using the FreeFem++ code (see [20]) and the finite
element spaces and time marching scheme discussed in Section 3. They show that LES provides lower
error indicators and lower deviations from a reference solution than pure Navier-Stokes simulations; they
also show that the efficiency index does not vary much with increasing Reynolds number and, finally, that,
compared to uniform refinement, adaptive LES offers a substantial reduction in the number of degrees of
freedom needed in the simulations to reach a given error indicator value.

We consider the domain Ω given by Figure 1 with the following properties: AB = 1.5, BC = DE = 1,

Figure 1. The domain
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CD = 0.25, EF = 2.45, FG = AL = 1.5, GH = LK = 0.4, HI = KJ = 1.1, LG = KH = JI = 4.2.
Concerning uniform meshes, we divide the edges of ∂Ω into segments of equal lengths, and we define M
to be the number of such mesh segments per unit length. For M = 8 this leads to a mesh with around
900 vertices and 1800 triangles, for a total of around 6500 degrees of freedom

We consider ν =
1

Re
where Re is the Reynolds number and we choose the density of body forces f equal

to (−2, 0) in the rectangle LGHK and to (0, 0) elsewhere. This implies, as shown on Fig. 3, that the flow
will move from the right to the left at the center of the domain; when the flow hits the left boundary,
it splits into an upper flow and a lower flow; the BCDE obstacle will cause recirculations in the upper
flow. This will in turn generate turbulent interactions with the main flow at the center of the domain.
In all the calculations, we chose the Smagorinsky constant to be cs = 0.1.

From the calculation of (ūn
h, p̄

n
h) solution of (FV n,h) at each time step, we compute the error estimators

of Definition 4.7; in the actual calculation we replace νth by νt for the sake of simplicity; this has almost
no effect on the results.

6.1. Comparison of error indicators for calculations with or without LES. The indicator is
defined by:

(ηhn)
2 =

∑
κ∈Tnh

τn(η
h,1
n,κ)

2 + τn(η
h,2
n,κ)

2 , (ητn)
2 =

∑
κ∈Tnh

(ητn,κ)
2 and ηn =

(
(ηhn)

2 + (ητn)
2
) 1

2 . (88)

To study the effect of the addition of the turbulent diffusion term in the LES method, we compare error
indicators in time and space for simulations with or without LES for various values of Re ∈ {200, 5000}
and M ∈ {8, 16, 32, 64}. In all simulations the final time is set to T = 3. We choose the time step to be
∆t = 1

4M . We define :

ηh,1 =

√√√√√√√
∑
n

∑
κ∈Tnh

τn(η
h,1
n,κ)

2

∑
n

τn|ūn
h|2H1(Ω)

, ηh,2 =
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∑
n

∑
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τn(η
h,2
n,κ)

2

∑
n

τn|ūn
h|2H1(Ω)

,

ητ =

√√√√√√√
∑
n

∑
κ∈Tnh

(ητn,κ)
2

∑
n

τn|ūn
h|2H1(Ω)

and η =

√√√√√√√
∑
n

(ηn)
2

∑
n

τn|ūn
h|2H1(Ω)

.

The results are in Table 1 for Re = 200 and in Table 2 for Re = 5000. The total number of degrees
of freedom in each simulation is indicated under the column # dof. It is clear that the space and time
estimators using the LES method are smaller than those of the Navier-Stokes problem without LES. In
addition, improvement is more important for high Reynolds numbers and coarse meshes, which is an
indication that the LES method exactly plays the role expected from it. However, these conclusions are
based only on observation of indicators; to confirm this trend, we will directly measure the difference
between numerical solutions on different meshes and reference solutions obtained on the finest mesh that
we could use given the resources at our disposal. This is the subject of the next sub-section.

NS without LES NS with LES
estimators time (s) estimators time (s)

M # dof ηh,1 ηh,2 ητ η CPU ηh,1 ηh,2 ητ η CPU
8 604K 0.324 0 0.028 0.325 28.5 0.260 7.5× 10−4 0.026 0.262 42.2
16 4.75M 0.149 0 0.014 0.150 211 0.139 2.6× 10−4 0.014 0.138 312
32 38.2M 0.0630 0 0.008 0.0639 1702 0.0618 8.1× 10−5 0.008 0.0623 2333
64 308M 0.0296 0 0.004 0.0299 14858 0.0295 2.1× 10−5 0.004 0.0298 19350

Table 1. Comparison between estimators with and without LES for Re = 200 and T = 3.
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NS without LES NS with LES
estimators time (s) estimators time(s)

M ηh,1 ηh,2 ητ η CPU ηh,1 ηh,2 ητ η CPU
8 0.552 0 0.060 0.555 26.5 0.396 8.2× 10−4 0.039 0.398 39.4
16 0.496 0 0.047 0.498 217 0.357 3.6× 10−4 0.044 0.359 307
32 0.444 0 0.036 0.445 1703 0.306 1.6× 10−4 0.035 0.308 2410
64 0.292 0 0.024 0.293 14688 0.226 6.4× 10−5 0.023 0.228 18880

Table 2. Comparison between estimators with and without LES for Re = 5000 and T = 3.

6.2. Comparisons of errors and estimators. In this section, we compare the relative norms of dif-
ferences between a reference solution uF obtained by a simulation without LES on a fine mesh (M = 256
and ∆t = 0.25/M) and solutions uC of simulations on coarse meshes without LES on the one hand and
with LES on the other hand for different Reynolds numbers. This serves us as a measure of the errors
between the numerical solutions obtained on coarse meshes and the exact, unknown solution. We also
compare the error estimators and these measures of the errors in order to estimate the unknown constants
appearing in the upper bounds of Section 4, see Remark 4.17. The relative difference norm is defined by:

eFC =

√√√√ |uC − uF |2H1(Ω)

|uF |2H1(Ω)

.

The relative norms of the differences are in Table 3 and Table 4 for Re ∈ {200, 5000} and T = 3. We
note MF = 256 the number of segments per unit length used to cut the edges of ∂Ω in the fine mesh
and MC ∈ {8, 16, 32, 64} in the different coarse meshes. In addition, the difference between the solutions
with and without LES is also calculated on the fine mesh (this is noted MF = 256 and MC = 256 in the
tables below).

The tables show a general trend indicating that the differences between the LES solutions and the
reference solution are smaller than those observed without LES. This trend is particularly notable for
high Reynolds numbers and coarse meshes, on which solutions without LES are particularly inaccurate.
This broadly confirms the observations made from the error estimators in the previous section.

eFC without LES eFC with LES
MF = 256 and MC = 8 0.743 0.628
MF = 256 and MC = 16 0.359 0.349
MF = 256 and MC = 32 0.164 0.166
MF = 256 and MC = 64 0.078 0.079
MF = 256 and MC = 256 − 5.19× 10−4

Table 3. Relative norm of the difference between the solution of the NS problem on
a reference fine mesh and solution of the NS problem with and without LES on coarse
meshes for Re = 200 and T = 3.

Figure 2 shows the ratio of eFC in Tables 3 and 4 with estimator η in Tables 1 and 2 (the same vertical
scale was chosen on both figures). This figure shows that this ratio, and thus the constant C appearing
in (70), seem to increase with the Reynolds number, but not dramatically. On coarse meshes and without
LES this constant seems to be larger, but remains moderate with LES.

6.3. Comparison between uniform and adapted LES problems. In the previous sections, we
proved that solutions obtained with LES are more accurate than those obtained without LES. Therefore,
we only use LES in this sub-section. We are now seeking to obtain more accurate simulations by using
an algorithm for adapting the mesh and the time step using the associated estimators, seeking to balance
the time estimator and the space estimator. We propose an adaptation algorithm described below. We
measure its efficiency by comparing the estimators calculated on the one hand on uniform meshes and with
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eFC without LES eFC with LES
MF = 256 and MC = 8 3.052 0.983
MF = 256 and MC = 16 2.617 0.963
MF = 256 and MC = 32 1.612 0.840
MF = 256 and MC = 64 0.975 0.694
MF = 256 and MC = 256 − 0.246

Table 4. Relative norm of the difference between the solution of the NS problem on
a reference fine mesh and solution of the NS problem with and without LES on coarse
meshes for Re = 5000 and T = 3.
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Figure 2. Estimation of ratio of errors over estimators with (left) and without (right) LES.

constant time steps and on the other hand on meshes and with time steps adapted using our algorithm,
which is driven by a tolerance denoted ε set by the user, chosen all the smaller as the desired precision
is high. At each time step, knowing ūn

h, the following operations are performed

(1) we calculate (ūn+1
h , p̄n+1

h ),

(2) we calculate ηhn and ητn defined in (88),
(3) If ηhn + ητn > ε, we adapt in time or in space :

(a) If ηhn < ητn and if the time step τn is greater than a minimum time step (∆t)min, we adapt
in time so that the next estimator in time is slightly less than the estimator in space

(b) If ηhn < ητn and τn = (∆t)min, then
(i) if ηhn >

ε
2 , we adapt in space.

(ii) Otherwise, adaptation in time is impossible and adaptation in space useless.
(c) If ηhn > ητn

(i) If the maximum number of mesh refinements is not reached, we adapt in space
(ii) Otherwise we keep the calculation

(4) If ηhn + ητn < 0.9ε we can increase the time step; in doing so we try to balance the space and time
estimators

(5) Otherwise we ensure that the estimators are balanced
(a) If ητn ≪ ηhn, the time step is increased to balance the estimators, even if this means having

to refine in space at the following iteration.
(b) If the estimators are balanced, nothing is done.

Figure 4 shows the resulting meshes at different values of t, for the particular value ε = 0.08. Since we
start from a vanishing velocity at t = 0 and since the momentum source term is piecewise constant in the
computational domain, large variations of the velocity and its gradient occur near the discontinuity line
of the source term; this is well captured by the mesh which concentrates cells around this line at t = 1.
Then, as complex interactions with boundaries occur, the mesh at t = 3 is refined in the vicinity of some
parts of the boundary, including, as expected, that of the upper obstacle, since geometric singularities
usually affect negatively the regularity of the solution. It is important to note that mesh density is not
necessarily driven by velocity modulus, since the estimators rather depend on variations of the velocity
gradients. Additionally, many cells are avoided in a wide part of the domain, in particular in the vicinity
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of a large part of the boundary. This results in huge savings in terms of computational resources: the
smallest cell length is around 2.1× 10−3, while the largest is around 5.7× 10−1.

Figure 3. Velocity modulus
for Re = 1000 and t = 1 (up-
per row) and t = 3 (lower row,
with a different color scale).

Figure 4. Adapted meshes
for Re = 1000 and t = 1 (up-
per row) and t = 3 (lower row).

For Re = 1000, Figure 5 shows a comparison, in logarithmic scale, of the error indicators for the uniform
LES problems and adapted LES problem with respect to the number of degrees of freedom. The uniform
curve was obtained by simulations on several uniform meshes with constant time steps. For each of these
meshes the number of degrees of freedom is the product of the number of time steps by the number of
unknowns discretizing the problem on the considered mesh. The adaptive curve was obtained by choosing
several different values of ε (see algorithm above) and for each of these values, we added the number of
degrees of freedom at each time step, which may vary during the calculation when the algorithm decides
that a mesh adaptation is necessary. This figure shows the effectiveness of the adapted algorithm versus
the uniform one.

Figure 5. Comparison between uniform and adaptive LES estimators with respect to
the total numbers of degrees of freedom in logarithmic scale.
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7. Conclusions and perspectives

We have obtained reliable and efficient a posteriori error estimators between the numerical solution of
LES equations and the exact solution of the Navier-Stokes problem in two space dimensions. The error
indicators are of three types: one related to the time discretization, one to the space discretization
and finally one to the additional diffusion term introduced by the Smagorinsky model for large eddies.
Numerical simulations have shown the usefulness of such indicators to perform adaptive LES.

A first possible extension of this work is to investigate the case of three space dimensions; even under
idealized existence and uniqueness assumptions, we have noticed in Remark 2.3 that one of our main
tools in two dimensions does not carry over to three dimensions, so that other techniques are to be
found. Furthermore, in practice, using homogeneous Dirichlet boundary conditions for the discrete filtered
velocity is not the method of choice because this implies resolving the viscous boundary layers, which may
be particularly thin for high Reynolds numbers; practitioners often resort to "laws of the wall", which
would then need to be included in the analysis in order to account for the additional error that these
boundary conditions generate. Another possible additional research path is to consider other types of
finite elements, be they conforming like the Taylor-Hood pairs [28] or non-conforming like the Crouzeix-
Raviart [14] or the Matthies-Tobiska [23] families. Finally, other, more sophisticated, LES models are
routinely used in Computational Fluid Dynamics, like for example that of Germano et al. [17]; it would
be worth extending the present work to these alternative LES models.
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