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A POSTERIORI ERROR ESTIMATES FOR THE LARGE EDDY SIMULATION
APPLIED TO INCOMPRESSIBLE FLUIDS

Ghina Nassreddine1,2,* , Pascal Omnes2,3 and Toni Sayah1

Abstract. We study the two dimensional time dependent Large Eddy Simulation method applied to
the incompressible Navier–Stokes system with Smagorinsky’s eddy viscosity model and a filter width
that depends on the local mesh size. The discrete model is based on the implicit Euler scheme and a
conforming finite element method for the time and space discretizations, respectively. We establish a
reliable and efficient a posteriori error estimation between the numerical LES solution and the exact
solution of the original Navier–Stokes system, which involves three types of error indicators respectively
related to the filter and to the discretizations in time and space. Numerical results show the effectiveness
of adaptive simulations
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1. Introduction

Let Ω be a bounded connected open domain in R2, with a Lipschitz-continuous connected boundary Γ = 𝜕Ω.
Let [0, 𝑇 ] denote an interval in R where 𝑇 is a positive constant. For a positive constant viscosity 𝜈, we
consider the following time-dependent Navier–Stokes system, in which we choose a vanishing initial condition
for simplification only:

(𝑃 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕u
𝜕𝑡 (𝑡,x)− 𝜈∆u(𝑡,x) + u(𝑡,x) · ∇u(𝑡,x) +∇𝑝(𝑡,x) = f(𝑡,x) in ]0, 𝑇 [×Ω,

div u(𝑡,x) = 0 in [0, 𝑇 ]× Ω,
u(𝑡,x) = 0 on [0, 𝑇 ]× Γ,
u(0,x) = 0 on Ω,

where f represents a density of body forces and supposed to be in [𝐿2((0, 𝑇 ) × Ω)]2 (although a more general
setting would be to consider f ∈ 𝐿2(0, 𝑇 ;𝑋 ′) = 𝐿2(0, 𝑇 ;𝐻−1(Ω)2), where 𝑋 ′ is the dual of the Sobolev space
𝑋 = 𝐻1

0 (Ω)2). The unknowns are the velocity u and the pressure 𝑝 of the fluid. Note that the hypothesis of
vanishing initial condition is only here for the sake of simplicity and may easily be removed.
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Since an exact solution of System (𝑃 ) is in general out of reach, one may resort to a numerical approximation
of it. A first method of simulation in fluid mechanics is the direct numerical simulation (DNS) of the flow at
all significant length scales. Since it is necessary to capture all fluctuations of the velocity and pressure fields
having an impact on the flow, DNS is very expensive and, for high Reynolds numbers, is even not achievable.
Under these circumstances, one often prefers the large eddy simulation (LES) method, which consists in solving
the large scales and in modelling the influence of small scales by adding a supplementary non-linear diffusion
term in the momentum equation. In LES, large scales are defined by a spatial average of velocity, pressure and
external forcing terms. A common method is to define this spatial average by convolution of these quantities
with an appropriate filter function of width denoted by 𝛿. The velocity field will be decomposed as:

u(𝑡,x) = ū(𝑡,x) + u′(𝑡,x),

with ū(𝑡,x) the filtered part of the velocity field and u′(𝑡,x) = u(𝑡,x)− ū(𝑡,x), the residue whose effect on the
large scale motions is the main issue in LES. Indeed, the convolution of the non-linear term u · ∇u is not equal
to the non-linear term applied to the convolution ū · ∇ū and the difference between these two terms needs to
be modeled. There is vast literature on this issue and we refer to monographs [10, 21, 27] for a mathematically
oriented review. The Smagorinksy model is the simplest model of LES that uses the assumption of local balance
between production and dissipation of turbulent kinetic energy to express the turbulent viscosity according to
the large scales (see [21]). The resulting filtered problem is expressed as:

(𝑃 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕ū
𝜕𝑡 − 𝜈∆ū−∇ · (̃︀𝜈 D(ū)) + ū · ∇(ū) +∇𝑝 = f̄ in ]0, 𝑇 [×Ω,

div ū = 0 in [0, 𝑇 ]× Ω,
ℬ(ū) = 0 on [0, 𝑇 ]× Γ,

ū(0, .) = 0 on Ω,

where ̃︀𝜈 = (𝑐𝑠𝛿)2‖D(ū)‖𝐹 , with D(ū) = 1
2 (∇ū + ∇ū𝑇 ) and ‖𝐴‖𝐹 = (

∑︀2
𝑖,𝑗=1 𝑎

2
𝑖𝑗)1/2 for any matrix A. The

value of the constant 𝑐𝑠 is an input of the model and a debated question among specialists (see, e.g., [10],
p. 76). Moreover, finding relevant boundary conditions for ū in bounded domains is a central issue in LES (see,
e.g., [10], Part IV); in (𝑃 ), we have denoted by ℬ a general boundary operator that we do not discuss here.
The boundary condition issue is also closely related to that of filtering with non constant width 𝛿, which is
commonly used in practice (the value of 𝛿 is typically adjusted to the local size of the mesh cells in numerical
simulations) but introduces further problems since there is now a commutation error between the operations of
filtering and differentiating.

In view of all these questions, our approach here is not to further refine LES models, but rather to consider a
discretization of the Smagorinksy model with turbulent viscosity adjusted to the local size of the mesh cells and
to derive a posteriori error estimates between its solution and the exact solution of (𝑃 ), which will allow us
to locally refine or coarsen the mesh and/or the time steps according to local error indicators. Adaptive LES is
an active field of research in the quest for accurate simulations with an affordable computational cost. Among
works using mesh adaptation in the context of the Smagorinksy model for incompressible flows, we may cite
for example [1, 3, 19, 26]. However, these works are either based on local error metrics driven by the Hessian
of the numerical solution, a process that is independent of the model and numerical method, or only mention
a posteriori estimates, without indicating their actual expression, nor giving a proof of their derivation, reliability
and efficiency.

The present work provides a rigorous theory based on a posteriori error estimates for adaptivity in LES
simulations of incompressible flows. For a general introduction to a posteriori error estimation, we refer for
example to the books of Verfürth [30] or Ainsworth and Oden [2]. As far as time-dependent models are concerned,
a large number of contributions may be found. To cite only a few of them, we can refer, for example, to
Ladevèze [22] for constitutive relation error estimators for time-dependent non-linear FE analysis, Verfürth [31]
for the heat equation, Bernardi and Verfürth [8] for the time dependent Stokes equations, Bernardi and Süli
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[7] for the time and space adaptivity for the second-order wave equation, Bergam et al. [4] for some parabolic
equations, Ern and Vohral̈ık [16] for estimation based on potential and flux reconstruction for the heat equation,
and Bernardi and Sayah [6] for the time dependent Stokes equations with mixed boundary conditions. In [25],
Nassreddine and Sayah treated the time dependent Navier–Stokes equations in two dimensions. They use [5,6]
for the linear (Stokes) part of the problem and apply the continuous and discrete Gronwall lemma to treat the
non-linear term. In this contribution, we extend the method of [25] to the LES problem, for which we shall
obtain three types of computable error indicators; the first one is linked to the time discretization, the second
one to the filter and the last one to the space discretization. This leads to an adaptive strategy in which we
sometimes change the time step and sometimes adapt the mesh.

The outline of the paper is as follows: Section 2 is devoted to some functional analysis tools and to the
variational formulation of the continuous Navier–Stokes system. In Section 3, we introduce the discrete filtered
problem and we recall its main properties. In Sections 4 and 5 we study the a posteriori error indicators and
derive quasi-optimal estimates, in the sense that we need to require higher regularity of the exact solution. In
Section 6, we present numerical results in which uniform and adaptive refinement strategies are applied and
comparisons with a reference DNS simulation show the superiority of the LES adaptive strategy.

2. Preliminaries

In this section, we begin by some notations and definitions which will be used later on and we recall the
continuous and discrete Gronwall lemmas.

We denote by [𝐿𝑝(Ω)]2 the space of measurable functions v such that |v|𝑝 is integrable. For v ∈ [𝐿𝑝(Ω)]2,
the norm is defined by

‖v‖[𝐿𝑝(Ω)]2 =
(︂∫︁

Ω

|v(x)|𝑝 dx
)︂ 1

𝑝

.

Let 𝛼 = (𝛼1, 𝛼2) be a couple of non negative integers and |𝛼| = 𝛼1 +𝛼2. We define the partial derivative 𝜕𝛼 by

𝜕𝛼 =
𝜕|𝛼|

𝜕𝑥𝛼1
1 𝜕𝑥𝛼2

2

·

Then, for any positive integer 𝑚 and number 𝑝 ≥ 1, we recall the classical Sobolev space

[𝑊𝑚,𝑝(Ω)]2 =
{︀
v ∈ [𝐿𝑝(Ω)]2, 𝜕𝛼v ∈ [𝐿𝑝(Ω)]2, ∀ | 𝛼 |≤ 𝑚

}︀
equipped with the following semi-norm and norm :

|v|𝑚,𝑝,Ω =

⎧⎨⎩ ∑︁
|𝛼|=𝑚

∫︁
Ω

|𝜕𝛼v(x)|𝑝𝑑x

⎫⎬⎭
1/𝑝

and ‖v‖𝑚,𝑝,Ω =

⎧⎨⎩∑︁
𝑘≤𝑚

|v|𝑝𝑘,𝑝,Ω

⎫⎬⎭
1/𝑝

.

When 𝑝 = 2, this space is the Hilbert space [𝐻𝑚(Ω)]2. In view of the boundary conditions in system (𝑃 ), we
thus consider the space

𝑋 := 𝐻1
0 (Ω)2 =

{︀
v ∈ 𝐻1(Ω)2,v = 0 on Γ

}︀
.

We denote by 𝑀 the space of functions in 𝐿2(Ω) with a zero mean-value on Ω.

Lemma 2.1. For any 1 ≤ 𝑝 < +∞, there exists a positive constant 𝑆𝑝 only depending on Ω such that

∀v ∈ 𝑋, ‖v‖𝐿𝑝(Ω)𝑑 ≤ 𝑆𝑝‖v‖𝑋 . (1)

Lemma 2.2 (See [29], page 291). We have the following inequality for every v ∈ 𝑋

‖v‖𝐿4(Ω)2 ≤ 21/4‖v‖1/2
𝐿2(Ω)2‖v‖

1/2
𝑋 . (2)
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Remark 2.3. Restriction of the analysis to dimension 2 is mainly due to Lemma 2.2 which is valid in dimension
2 only. A related result exists in dimension 3 (see, e.g., [29], Lem. 3.5, page 295) but it states that ‖v‖𝐿4(Ω)3 ≤
21/2‖v‖1/4

𝐿2(Ω)3‖∇v‖3/4
𝐿2(Ω)3×3 , which then prevents from pursuing like in dimension 2.

We introduce the kernel of the divergence operator

𝑉 =
{︂
v ∈ 𝑋; ∀𝑞 ∈𝑀,

∫︁
Ω

𝑞(x) div v(x) dx = 0
}︂
,

which is a closed subspace of 𝑋 and coincides with

𝑉 = {v ∈ 𝑋; div v = 0 in Ω}.

Remark 2.4. The spaces 𝑀 and 𝑋 satisfy a uniform inf-sup condition (see [18]): There exists a constant
𝛽* > 0 such that

∀𝑞 ∈𝑀, sup
v∈𝑋

∫︀
Ω
𝑞(x) div v(x) dx

‖v‖𝑋

≥ 𝛽*‖𝑞‖𝐿2(Ω).

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval ]𝑎, 𝑏[ with values in a separable functional space, say 𝑌 . More precisely, let ‖·‖𝑌 denote the norm of 𝑌 ;
then for any 𝑟, 1 ≤ 𝑟 ≤ ∞, we define

𝐿𝑟(𝑎, 𝑏;𝑌 ) =

{︃
f measurable in ]𝑎, 𝑏[;

∫︁ 𝑏

𝑎

|f(𝑡)|𝑟𝑌 d𝑡 <∞

}︃
,

equipped with the norm

‖f‖𝐿𝑟(𝑎,𝑏;𝑌 ) =

(︃∫︁ 𝑏

𝑎

|f(𝑡)|𝑟𝑌 d𝑡

)︃1/𝑟

.

If 𝑟 = ∞, then

𝐿∞(𝑎, 𝑏;𝑌 ) =

{︃
f measurable in ]𝑎, 𝑏[; sup

𝑡∈[𝑎,𝑏]

‖f(𝑡)‖𝑌 <∞

}︃
equipped with the norm

‖f‖𝐿∞(𝑎,𝑏;𝑌 ) = sup
𝑡∈[𝑎,𝑏]

‖f(𝑡)‖𝑌 .

Definition 2.5. We introduce the trilinear form 𝑐 defined by:

𝑐(u,v,w) =
∫︁

Ω

(u · ∇v) ·w dx.

Lemma 2.6. For every u,v,w ∈ 𝑋 we have

|𝑐(u,v,w)| ≤ ‖u‖𝐿4(Ω)2‖v‖𝑋‖w‖𝐿4(Ω)2 ≤ 𝑆2
4 ‖u‖𝑋‖v‖𝑋‖w‖𝑋 .

Lemma 2.7. We assume that u,v ∈ 𝑋 and div u = 0, then 𝑐(u,v,v) = 0.

As far as Problem (𝑃 ) is concerned, we recall classical existence and uniqueness results that may be found,
for example in Theorem V.1.4 of [11] and Theorems 3.1 and 3.2 of [29] which require the definition 𝐻 := {v ∈
[𝐿2(Ω)]𝑑,div v = 0, 𝛾𝑛v = 0}, where 𝛾𝑛v is the normal trace operator on Γ.
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Theorem 2.8. In dimension 2, with f ∈ [𝐿2((0, 𝑇 )×Ω)]2, Problem (𝑃 ) has a unique solution (u, 𝑝) belonging
to 𝐿∞(0, 𝑇 ;𝐻)∩𝐿2(0, 𝑇 ;𝑉 )×𝑊−1,∞(0, 𝑇 ;𝑀). Moreover, 𝜕u

𝜕𝑡 ∈ 𝐿
2(0, 𝑇 ;𝑉 ′) and u ∈ 𝒞0(0, 𝑇 ;𝐻). Moreover, it

holds that
‖u‖2𝐿∞(0,𝑇 ;𝐿2(Ω)2) + 𝜈‖u‖2𝐿2(0,𝑇 ;𝑋) ≤ 𝐶‖f‖2[𝐿2((0,𝑇 )×Ω)]2 , (3)

with 𝐶 a constant depending on Ω and 𝜈. Moreover, the spaces to which (u, 𝑝) belong allow to write that

(FV)

⎧⎪⎪⎨⎪⎪⎩
∀v ∈ 𝑋,

⟨︀
𝜕u
𝜕𝑡 (𝑡),v

⟩︀
+ 𝜈(∇u(𝑡),∇v) + 𝑐(u(𝑡),u(𝑡),v)− (div v, 𝑝(𝑡)) = (f(𝑡),v)

∀𝑞 ∈𝑀, (div u(𝑡), 𝑞) = 0

u(0) = 0.

In the next lemmas, we introduce the generalized and discrete Gronwall lemmas.

Lemma 2.9 (Generalized Gronwall lemma ([32], p. 292 and [15], p. 252)). Let:

(1) 𝑓, 𝑔 and 𝑘 be integrable functions defined from R+ ↦→ R,
(2) 𝑔 ≥ 0, 𝑘 ≥ 0,
(3) 𝑔 ∈ ℒ∞,
(4) 𝑔𝑘 is an integrable function on R+.

If 𝑧 : R+ ↦→ R satisfies

𝑧(𝑡) ≤ 𝑓(𝑡) + 𝑔(𝑡)
∫︁ 𝑡

0

𝑘(𝜏)𝑧(𝜏) d𝜏, ∀𝑡 ∈ R+ (4)

then:

𝑧(𝑡) ≤ 𝑓(𝑡) + 𝑔(𝑡)
∫︁ 𝑡

0

𝑘(𝜏)𝑓(𝜏) exp
(︂∫︁ 𝑡

𝜏

𝑘(𝑠)𝑔(𝑠) d𝑠
)︂

d𝜏. (5)

Lemma 2.10 (Discrete Gronwall lemma ([32], p. 294)). Let (𝑦𝑛)𝑛, (𝑓𝑛)𝑛 and (𝑔𝑛)𝑛 be three positive sequences
that verify:

∀𝑛 ≥ 0, 𝑦𝑛 ≤ 𝑓𝑛 +
𝑛−1∑︁
𝑘=0

𝑔𝑘𝑦𝑘.

Then, we have:

∀𝑛 ≥ 0, 𝑦𝑛 ≤ 𝑓𝑛 +
𝑛−1∑︁
𝑘=0

𝑓𝑘𝑔𝑘 exp

⎛⎝𝑛−1∑︁
𝑗=𝑘

𝑔𝑗

⎞⎠. (6)

Finally, we shall make an extensive use of the following inequalities, the first of which is Young’s inequality
with 𝜀 and is used three times to obtain the second:

Lemma 2.11. For any (𝑎, 𝑏, 𝑐, 𝑑) ∈ R4
+ and any (𝜀1, 𝜀2, 𝜀3) ∈ R3

+, it holds that

𝑎𝑏 ≤ 1
2

(︂
𝜀1𝑎

2 +
1
𝜀1
𝑏2
)︂

and 𝑎𝑏𝑐𝑑 ≤ 1
4

(︂
𝜀1𝜀2𝑎

4 +
𝜀1
𝜀2
𝑏4 +

𝜀3
𝜀1
𝑐4 +

1
𝜀1𝜀3

𝑑4

)︂
.

In particular, we shall use these inequalities as follows: For any (𝑎, 𝑏, 𝑐, 𝑑) ∈ R4
+, and any (𝛽, 𝛾, 𝛿) ∈ R*+

3, there
exist (𝛼1, 𝛼2) ∈ R*+

2 such that

𝑎𝑏 ≤ 𝛼1𝑎
2 + 𝛽𝑏2 and 𝑎𝑏𝑐𝑑 ≤ 𝛼2𝑎

4 + 𝛽𝑏4 + 𝛾𝑐4 + 𝛿𝑑4.
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3. The discrete problem

From now on, we assume that Ω is a polyhedron. In order to describe the time discretization with an adaptive
choice of local time steps, we introduce a partition of the interval [0, 𝑇 ] into subintervals [𝑡𝑛−1, 𝑡𝑛], 1 ≤ 𝑛 ≤ 𝑁 ,
such that 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 . We denote by 𝜏𝑛 the length of [𝑡𝑛−1, 𝑡𝑛], by 𝜏 the N-tuple (𝜏1, . . . , 𝜏𝑁 ),
by |𝜏 | the maximum of the 𝜏𝑛, 1 ≤ 𝑛 ≤ 𝑁 , and finally by 𝜎𝜏 the regularity parameter

𝜎𝜏 = max
2≤𝑛≤𝑁

𝜏𝑛
𝜏𝑛−1

· (7)

In what follows, we work with a regular family of partitions, i.e. we assume that 𝜎𝜏 is bounded independently
of 𝜏 . This has the practical implication that the time step should not be modified too abruptly in the adaptive
algorithm described in Section 6.3.

We introduce the operator 𝜋𝜏 (resp. 𝜋𝑙,𝜏 ): For any Banach space 𝑌 and any function 𝑔 continuous from ]0, 𝑇 ]
(resp. [0, 𝑇 [) into 𝑌 , 𝜋𝜏𝑔 (resp. 𝜋𝑙,𝜏𝑔) denotes the step function which is constant and equal to 𝑔(𝑡𝑛) (resp.
𝑔(𝑡𝑛−1)) on each interval ]𝑡𝑛−1, 𝑡𝑛] (resp. [𝑡𝑛−1, 𝑡𝑛[), 1 ≤ 𝑛 ≤ 𝑁 . Similarly, with any sequence (𝜑𝑛)0≤𝑛≤𝑁 in
𝑌 , we associate the step function 𝜋𝜏𝜑𝜏 (resp. 𝜋𝑙,𝜏𝜑𝜏 ) which is constant and equal to 𝜑𝑛 (resp. 𝜑𝑛−1) on each
interval ]𝑡𝑛−1, 𝑡𝑛] (resp. [𝑡𝑛−1, 𝑡𝑛[), 1 ≤ 𝑛 ≤ 𝑁 .

We now describe the space discretization. For each 𝑛, 0 ≤ 𝑛 ≤ 𝑁 , we consider (𝒯𝑛ℎ)ℎ, a partition of Ω by
triangles that belongs to a regular family of triangulations in the usual sense:

– Ω̄ is the union of all elements of 𝒯𝑛ℎ;
– the intersection of two different elements of 𝒯𝑛ℎ, if not empty, is a vertex or a whole edge of both of them;

this, in particular, implies that meshes remain conforming (no hanging nodes) during the adaptive refinement
process;

– the ratio of the diameter ℎ𝜅 of an element 𝜅 in 𝒯𝑛ℎ to the diameter of its inscribed circle is bounded by a
constant independent of 𝑛 and ℎ.

As usual, ℎ denotes the maximal diameter of the elements of all 𝒯𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑁 , while for each 𝑛, ℎ𝑛 denotes
the maximal diameter of the elements of 𝒯𝑛ℎ. For each 𝜅 in 𝒯𝑛ℎ and each non-negative integer 𝑘, we denote by
𝑃𝑘(𝜅) the space of restrictions to 𝜅 of polynomials of 2 variables and total degree at most 𝑘.

In what follows, 𝑐, 𝑐′, 𝐶 . . . stand for generic constants which may vary from line to line but are always
independent of ℎ and 𝑛. From now on, we call finite element space associated to 𝒯𝑛ℎ a space of functions such
that their restrictions to any element 𝜅 of 𝒯𝑛ℎ belong to a space of polynomials of fixed degree.

For each 𝑛 and ℎ, we associate with 𝒯𝑛ℎ two finite element spaces 𝑋𝑛ℎ and 𝑀𝑛ℎ which are contained in 𝑋 and
𝑀 , respectively, and such that the following inf-sup condition holds for a constant 𝛽 > 0, which is independent
of 𝑛 and ℎ,

∀𝑞ℎ ∈𝑀𝑛ℎ, sup
vℎ∈𝑋𝑛ℎ

∫︀
Ω
𝑞ℎ(x) div vℎ(x) dx

‖vℎ‖𝑋
≥ 𝛽‖𝑞ℎ‖𝐿2(Ω). (8)

There exist many examples of finite element spaces satisfying this condition. We give an example involving
continuous discrete pressures. Velocities are discretized with the “Mini-Element”

𝑋𝑛ℎ =
{︀
vℎ ∈ 𝑋; ∀𝜅 ∈ 𝒯𝑛ℎ, vℎ|𝜅 ∈ 𝑃𝑏(𝜅)2

}︀
,

where the space 𝑃𝑏(𝜅) is spanned by functions in 𝑃1(𝜅) and the bubble function on 𝜅 (for each element 𝜅, the
bubble function is equal to the product of the barycentric coordinates associated with the vertices of 𝜅). The
pressure is discretized with classical continuous finite elements of order one

𝑀𝑛ℎ =
{︀
𝑞ℎ ∈𝑀 ∩𝐻1(Ω); ∀𝜅 ∈ 𝒯𝑛ℎ, 𝑞ℎ|𝜅 ∈ 𝑃1(𝜅)

}︀
.

As usual, we denote by 𝑉𝑛ℎ the kernel of the divergence

𝑉𝑛ℎ =
{︂
vℎ ∈ 𝑋𝑛ℎ; ∀𝑞ℎ ∈𝑀𝑛ℎ,

∫︁
Ω

𝑞ℎ(x) div vℎ(x) dx = 0
}︂
.
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As discussed in the Introduction, the fully discrete problem which we consider is a variational version of (𝑃 )
with a local choice of the filter size, in which we use homogeneous Dirichlet boundary conditions for the velocity:

(︀
FV𝑛,ℎ

)︀
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Having ū𝑛−1
ℎ ∈ 𝑋(𝑛−1)ℎ, find (ū𝑛

ℎ, 𝑝
𝑛
ℎ) ∈ 𝑋𝑛ℎ ×𝑀𝑛ℎ solution of :

∀vℎ ∈ 𝑋𝑛ℎ,
1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ ,vℎ

)︀
+ 𝜈(∇ū𝑛

ℎ,∇vℎ) +
(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ),D(vℎ)
)︀

+𝑑
(︀
ū𝑛−1

ℎ , ū𝑛
ℎ,vℎ

)︀
− (𝑝𝑛

ℎ,div vℎ) =
(︀
f̄𝑛,vℎ

)︀
,

∀𝑞ℎ ∈𝑀𝑛ℎ, (div ū𝑛
ℎ, 𝑞ℎ) = 0,

where the turbulent viscosity is locally defined on each mesh cell 𝜅 by

𝜈𝑡(v̄)|𝜅 = (𝑐𝑠ℎ𝜅)2‖D(v̄)‖𝐹

and where the trilinear form 𝑑 on 𝑋3 is defined by

𝑑(u,v,w) = 𝑐(u,v,w) +
1
2

∫︁
Ω

(div u) v ·w dx.

We initialize the process by choosing ū0
ℎ = 0. We also choose f̄𝑛(x) = 1

𝜏𝑛

∫︀ 𝑡𝑛

𝑡𝑛−1 f̄(𝑡,x) d𝑡 for almost all x ∈ Ω,
where the source term f̄ results from a local average of the original source term f ; moreover we suppose that
f̄ ∈ [𝐿2((0, 𝑇 )× Ω)]2.

Note that this problem is linear, since we discretize all non-linear terms semi-explicitly.
We begin by showing a bound for the solution ū𝑛

ℎ of Problem (FV𝑛,ℎ).

Remark 3.1. We have: 𝑑(u,v,v) = 0, ∀(u,v) ∈ 𝑋2.

Theorem 3.2. At each time step, knowing ū𝑛−1
ℎ ∈ 𝑋(𝑛−1)ℎ, Problem (FV𝑛,ℎ) admits a unique solution (ū𝑛

ℎ, 𝑝
𝑛
ℎ)

with values in 𝑋𝑛ℎ ×𝑀𝑛ℎ.
This solution satisfies, for 𝑚 = 1, . . . , 𝑁 ,

‖ū𝑚
ℎ ‖

2
𝐿2(Ω)2 + 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖ū𝑛
ℎ‖2𝑋 + 2

𝑚∑︁
𝑛=1

𝜏𝑛
(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ),D(ū𝑛
ℎ)
)︀
≤ 𝐶

⃦⃦
f̄
⃦⃦2

[𝐿2((0,𝑇 )×Ω)]2
. (9)

Proof. For ū𝑛−1
ℎ ∈ 𝑋(𝑛−1)ℎ, it is clear that Problem (FV𝑛,ℎ) has a unique solution (ū𝑛

ℎ, 𝑝
𝑛
ℎ) as a consequence of

the coercivity of the corresponding bilinear form on 𝑋𝑛ℎ ×𝑋𝑛ℎ and the inf-sup condition (8). The proof of (9)
follows by testing (FV𝑛,ℎ) with ū𝑛

ℎ and summing the resulting inequalities. �

4. A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, 𝑝) of Problem (FV) and
the numerical solution of Problem (FV𝑛,ℎ). The main result in this respect is given by Corollary 4.16. Several
steps are needed to obtain this result. We begin by constructing the a posteriori indicators in Section 4.1 and
then bound the error by the estimates in Section 4.2.

4.1. Construction of the error indicators

We first introduce the space

𝑍𝑛ℎ =
{︀
gℎ ∈ 𝐿2(Ω)2; ∀𝜅 ∈ 𝒯𝑛ℎ, gℎ|𝜅 ∈ 𝑃1(𝜅)2

}︀
,

and, for 1 ≤ 𝑛 ≤ 𝑁 , we fix an approximation f̄𝑛
ℎ of the data f̄𝑛 in 𝑍𝑛ℎ. This is a technicality which is needed

in Section 5 in which we shall make use of Properties 4.1 and 4.2 below, which are valid only for polynomial
functions.

Next, for every element 𝜅 in 𝒯𝑛ℎ, we denote by



2166 G. NASSREDDINE ET AL.

– 𝜀𝜅 the set of edges of 𝜅 that are not contained in 𝜕Ω,
– ∆𝜅 the union of elements of 𝒯𝑛ℎ that share at least one common vertex with 𝜅,
– ℎ𝑒 the diameter of the edge 𝑒 ∈ 𝜀𝜅,
– [·]𝑒 the jump through 𝑒 for each edge 𝑒 in 𝜀𝜅 (specifying its sign is not necessary),
– n𝜅 the unit outward normal vector to 𝜅 on 𝜕𝜅.

For the proofs of the next theorems, we introduce for an element 𝜅 of 𝒯𝑛ℎ, the bubble function 𝜓𝜅 (resp. 𝜓𝑒

for the edge 𝑒) which is equal to the product of the 3 barycentric coordinates associated with the vertices of 𝜅
(resp. of the 2 barycentric coordinates associated with the vertices of 𝑒). We also consider a lifting operator ℒ𝑒

defined on polynomials on 𝑒 that vanish on 𝜕𝑒 into polynomials on the at most two elements (𝜅, 𝜅′) containing
𝑒 and vanishing on 𝜕𝜅 ∖ 𝑒 and 𝜕𝜅′ ∖ 𝑒. This lifting operator is constructed by affine transformation from a fixed
operator on the reference element. We recall the next results from Lemma 3.3 of [30].

Property 4.1. Denoting by 𝑃𝑟(𝜅) the space of polynomials of degree smaller than 𝑟 on 𝜅, we have

∀𝑣 ∈ 𝑃𝑟(𝜅),

{︃
𝑐‖𝑣‖𝐿2(𝜅) ≤

⃦⃦⃦
𝑣𝜓

1/2
𝜅

⃦⃦⃦
𝐿2(𝜅)

≤ 𝑐′‖𝑣‖𝐿2(𝜅),

|𝑣|𝐻1(𝜅) ≤ 𝑐ℎ−1
𝜅 ‖𝑣‖𝐿2(𝜅).

Property 4.2. Denoting by 𝑃𝑟(𝑒) the space of polynomials of degree smaller than 𝑟 on 𝑒, we have

∀ 𝑣 ∈ 𝑃𝑟(𝑒), 𝑐‖𝑣‖𝐿2(𝑒) ≤
⃦⃦⃦
𝑣𝜓1/2

𝑒

⃦⃦⃦
𝐿2(𝑒)

≤ 𝑐′‖𝑣‖𝐿2(𝑒),

and, for all polynomials 𝑣 in 𝑃𝑟(𝑒) vanishing on 𝜕𝑒, if 𝜅 is an element which contains 𝑒,

‖ℒ𝑒𝑣‖𝐿2(𝜅) + ℎ𝑒 | ℒ𝑒𝑣 |𝐻1(𝜅)≤ 𝑐ℎ1/2
𝑒 ‖𝑣‖𝐿2(𝑒).

We also introduce a Clément type regularization operator 𝒞𝑛ℎ [13] which has the following properties, see
Section IX.3 of [9]: For any function w in 𝐻1(Ω)2, 𝒞𝑛ℎw belongs to the continuous affine finite element space
and satisfies for any 𝜅 in 𝒯𝑛ℎ and 𝑒 in 𝜀𝜅,

‖w − 𝒞𝑛ℎw‖𝐿2(𝜅)2 ≤ 𝑐ℎ𝜅‖w‖𝐻1(Δ𝜅)2 and ‖w − 𝒞𝑛ℎw‖𝐿2(𝑒)2 ≤ 𝑐ℎ1/2
𝑒 ‖w‖𝐻1(Δ𝜅)2 . (10)

Note that we use the variant of 𝒞𝑛ℎ which ensures that 𝒞𝑛ℎw belongs to 𝐻1
0 (Ω)𝑑 when w belongs to 𝐻1

0 (Ω)𝑑

(see [13]). Furthermore, we introduce the Scott–Zhang operator ℱ𝑛ℎ [12] which has the following properties:
For any function v ∈ 𝐻𝑠(Ω)2, we have

∀ℎ𝑛 ≤ 1, ∀v ∈ 𝐻𝑠(Ω)2, ‖v −ℱ𝑛ℎv‖𝐻𝑡(Ω)2 ≤ 𝐶ℎ𝑠−𝑡
𝑛 |v|𝐻𝑠(Ω)2 , (11)

where 𝑠 ∈] 12 , 1[ and 𝑡 ∈ [0, 𝑠] (see [12]). For the a posteriori error studies, we consider the piecewise affine
function ūℎ which takes in the interval [𝑡𝑛−1, 𝑡𝑛] the values

ūℎ(𝑡) =
𝑡− 𝑡𝑛−1

𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ ū𝑛−1

ℎ , (12)

and the piecewise constant function 𝑝ℎ equal to 𝑝𝑛
ℎ on the interval ]𝑡𝑛−1, 𝑡𝑛].

Property 4.3. For any dimension 𝑑 and for any non negative integer 𝑟, there exists a constant 𝑐 such that for
any polynomial function vℎ of degree 𝑟 on 𝜅

‖vℎ‖𝐿∞(𝜅) ≤ 𝑐ℎ
−𝑑/2
𝜅 ‖vℎ‖𝐿2(𝜅). (13)
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We prove optimal a posteriori error estimates by using the norm:

[[u− ūℎ]](𝑡𝑛)

=

(︃
‖u(𝑡𝑛)− ūℎ(𝑡𝑛)‖2𝐿2(Ω)2 + 𝜈max

(︃∫︁ 𝑡𝑛

0

‖u(𝑡)− ūℎ(𝑡)‖2𝑋 d𝑡,
𝑛∑︁

𝑚=1

∫︁ 𝑡𝑚

𝑡𝑚−1

‖u(𝑡)− 𝜋𝜏 ūℎ(𝑡)‖2𝑋 d𝑡

)︃)︃1/2

. (14)

To prove the upper bound, we follow the idea used by Bernardi and Verfurth [8] or Bernardi and Sayah [6] for
the Stokes problem in order to uncouple time and space errors. But in this work, the non linear term coming
from the Navier–Stokes system requires more sophisticated calculations.

We introduce an auxiliary problem corresponding to the time discretization and calculate upper bounds for
the errors between the corresponding solution and the exact solution firstly and the discrete filtered solution of
(FV𝑛,ℎ) secondly. Finally, we combine the obtained errors to derive the desired upper bound for the a posteriori
error estimation.

Setting u0 = 0 and setting f𝑛(x) = 1
𝜏𝑛

∫︀ 𝑡𝑛

𝑡𝑛−1 f(𝑡,x) d𝑡 for almost all x ∈ Ω, we introduce the following time
semi-discrete problem:

(𝑃aux)

⎧⎪⎪⎨⎪⎪⎩
Knowing u𝑛−1 ∈ 𝑋, find (u𝑛, 𝑝𝑛) ∈ 𝑋 ×𝑀 solution of

∀v ∈ 𝑋, 1
𝜏𝑛

(u𝑛 − u𝑛−1,v) + 𝜈(∇u𝑛,∇v) + (u𝑛−1∇u𝑛,v)− (div v, 𝑝𝑛) = (f𝑛,v),

∀𝑞 ∈𝑀, (div u𝑛, 𝑞) = 0.

Lemma 4.4. Problem (𝑃aux) has a unique solution because the bilinear form is coercive (owing to the fact that
div u𝑛−1 = 0) and because of the inf-sup condition. Furthermore, we have:

‖u𝑚‖2𝐿2(Ω)2 + 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖u𝑛‖2𝑋 ≤ 𝐶‖f‖2[𝐿2((0,𝑇 )×Ω)]2 . (15)

We define the piecewise affine function u𝜏 by its value on the interval [𝑡𝑛−1, 𝑡𝑛]:

u𝜏 (𝑡) =
𝑡− 𝑡𝑛−1

𝜏𝑛

(︀
u𝑛 − u𝑛−1

)︀
+ u𝑛−1 = − 𝑡𝑛 − 𝑡

𝜏𝑛

(︀
u𝑛 − u𝑛−1

)︀
+ u𝑛, (16)

and we define 𝑝𝜏 as the piecewise constant function equal to 𝑝𝑛 on the interval ]𝑡𝑛−1, 𝑡𝑛]. An easy calculation
leads to the following lemma.

Lemma 4.5. By combining Problems (FV) and (𝑃aux), we observe that the pair (u − u𝜏 , 𝑝 − 𝑝𝜏 ) satisfies
(u− u𝜏 )(0) = 0, and, for 𝑡 ∈]𝑡𝑛−1, 𝑡𝑛], 1 ≤ 𝑛 ≤ 𝑁 and for (v(𝑡), 𝑞) ∈ 𝑋 ×𝑀 ,⎧⎪⎪⎨⎪⎪⎩

⟨︀
𝜕
𝜕𝑡 (u− u𝜏 )(𝑡),v(𝑡)

⟩︀
+ 𝜈(∇ (u(𝑡)− u𝜏 (𝑡)),∇v(𝑡)) +

∫︀
Ω

[u(𝑡) · ∇u(𝑡)− u𝜏 (𝑡) · ∇u𝜏 (𝑡)] · v(𝑡) dx

−(div v(𝑡), 𝑝(𝑡)− 𝑝𝜏 (𝑡)) = (f(𝑡)− f𝑛(𝑡),v(𝑡)) + ⟨𝑅𝜏 (u𝜏 )(𝑡),v⟩.∫︀
Ω
𝑞(𝑡,x) div(u(𝑡,x)− u𝜏 (𝑡,x)) dx = 0.

(17)

where

⟨𝑅𝜏 (u𝜏 )(𝑡),v⟩ = −𝜈(∇(u𝜏 − 𝜋𝜏u𝜏 )(𝑡),∇v)−
∫︁

Ω

[u𝜏 (𝑡) · ∇u𝜏 (𝑡)− 𝜋𝑙,𝜏u𝜏 (𝑡) · ∇𝜋𝜏u𝜏 (𝑡)] · v dx. (18)

Lemma 4.6. By combining Problems (𝑃aux) and (FV𝑛,ℎ), we observe for v ∈ 𝑋 and vℎ ∈ 𝑋𝑛ℎ:

1
𝜏𝑛

(︀(︀
u𝑛 − u𝑛−1

)︀
−
(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
,v
)︀

+ 𝜈(∇(u𝑛 − ū𝑛
ℎ),∇v) +

∫︁
Ω

[︀
u𝑛−1 · ∇u𝑛 − ū𝑛−1

ℎ · ∇ū𝑛
ℎ

]︀
· v dx
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− 1
2
(︀
div ū𝑛−1

ℎ ū𝑛
ℎ,v

)︀
− (div v, 𝑝𝑛 − 𝑝𝑛

ℎ)

=
⟨︀
f̄𝑛 − f̄𝑛

ℎ +𝑅ℎ,1(ūℎ)(𝑡),v − vℎ

⟩︀
+
⟨︀
𝑅ℎ,2(ūℎ)(𝑡),v

⟩︀
+
(︀
f𝑛 − f̄𝑛,v

)︀
(19)

𝑎𝑛𝑑∫︁
Ω

𝑞(𝑡,x) div(u𝑛 − ū𝑛
ℎ)(x) dx = −

∫︁
Ω

𝑞(𝑡,x) div(ū𝑛
ℎ)(x) dx, (20)

where the residuals 𝑅ℎ,1(ūℎ) and 𝑅ℎ,2(ūℎ) are defined by:

⟨︀
𝑅ℎ,1(ūℎ)(𝑡),w

⟩︀
=
(︂
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
,w
)︂

+ (div w, 𝑝𝑛
ℎ)−

∫︁
Ω

(︀
ū𝑛−1

ℎ · ∇ū𝑛
ℎ

)︀
·w dx

− 1
2
(︀
div ū𝑛−1

ℎ (𝑡)ū𝑛
ℎ(𝑡),w

)︀
− 𝜈(∇ū𝑛

ℎ,∇w)−
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ),D(w)
)︀

−
(︀(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ),D(w)
)︀
, (21)

where 𝜈𝑡ℎ is a piecewise constant approximation of 𝜈𝑡 (a technicality needed in Sect. 5 in which we shall use
Properties 4.1 and 4.2 valid for polynomial functions) defined on each 𝜅 and for every v̄ ∈ 𝑋 by:

𝜈𝑡ℎ(v̄)|𝜅 =
1
|𝜅|

∫︁
𝜅

𝜈𝑡(v̄(x)) dx (22)

and where ⟨︀
𝑅ℎ,2(ūℎ)(𝑡),v

⟩︀
=
(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ),D(v)
)︀
. (23)

In order to derive the upper bounds, we use the integration by parts formula to rewrite the residual operators
𝑅𝜏 (uℎ)(𝑡), 𝑅ℎ,1(uℎ)(𝑡) and 𝑅ℎ,2(uℎ)(𝑡) in the following forms:

⟨𝑅𝜏 (ū𝜏 )(𝑡),v⟩ =
𝑡𝑛 − 𝑡

𝜏𝑛

∑︁
𝜅∈𝒯𝑛ℎ

{︂
𝜈

∫︁
𝜅

∇
(︀
u𝑛 − u𝑛−1

)︀
(x) : ∇v(𝑡,x) dx

+
∫︁

𝜅

[︀
u𝑛−1 · ∇

(︀
u𝑛 − u𝑛−1

)︀]︀
· v(𝑡,x) dx

}︂
− 𝑡− 𝑡𝑛−1

𝜏𝑛

∑︁
𝜅∈𝒯𝑛ℎ

{︂∫︁
𝜅

[︀(︀
u𝑛 − u𝑛−1

)︀
· ∇u𝜏 (𝑡,x)

]︀
· v(𝑡,x) dx

}︂
, (24)

⟨︀
𝑅ℎ,1(ūℎ)(𝑡),v − vℎ

⟩︀
=
∑︁

𝜅∈𝒯𝑛ℎ

{︂∫︁
𝜅

[︂
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ 𝜈∆ū𝑛

ℎ +∇ ·
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2

div ū𝑛−1
ℎ ū𝑛

ℎ −∇𝑝𝑛
ℎ

]︂
(x) · (v − vℎ)(x) dx

− 1
2

∑︁
𝑒∈𝜀𝜅

∫︁
𝑒

[︀(︀
𝜈∇ū𝑛

ℎ + 𝜈𝑡ℎ(ū𝑛−1
ℎ )D(ū𝑛

ℎ)− 𝑝𝑛
ℎI
)︀
· n(𝜎)

]︀
· (v − vℎ)(𝜎) d𝜎

−
∫︁

𝜅

[︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀]︀
D(ū𝑛

ℎ) : D(v − vℎ)(x) dx
}︂
, (25)

⟨︀
𝑅ℎ,2(ūℎ)(𝑡),v

⟩︀
=
∑︁

𝜅∈𝒯𝑛ℎ

∫︁
𝜅

𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ) : D(v)(x) dx. (26)

All this leads to the following definition of the error indicators:
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Definition 4.7. For each 𝜅 in 𝒯𝑛ℎ,(︀
𝜂𝜏

𝑛,𝜅

)︀2 = 𝜏𝑛
⃒⃒
ū𝑛

ℎ − ū𝑛−1
ℎ

⃒⃒2
𝐻1(𝜅)2

, (27)(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
= ℎ2

𝜅

⃦⃦⃦⃦
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ 𝜈∆ū𝑛

ℎ +∇ ·
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2
(︀
div ū𝑛−1

ℎ

)︀
ū𝑛

ℎ −∇𝑝𝑛
ℎ

⃦⃦⃦⃦2

𝐿2(𝜅)

+
1
2

∑︁
𝑒∈𝜀𝜅

ℎ𝑒

⃦⃦[︀(︀
𝜈∇ū𝑛

ℎ + 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)− 𝑝𝑛
ℎI
)︀
· n
]︀⃦⃦2

𝐿2(𝑒)

+ ‖div ū𝑛
ℎ‖

2
𝐿2(𝜅) +

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
, (28)(︀

𝜂ℎ,2
𝑛,𝜅

)︀2
=
⃦⃦
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
. (29)

Remark 4.8. Even if these indicators are a little complex, each term in them is easy to compute since it only
depends on the discrete solution and involves (usually low degree) polynomials.

Lemma 4.9. The following estimates hold for 1 ≤ 𝑛 ≤ 𝑁 ,

(1) For all v in 𝑋 and vℎ = 𝒞𝑛ℎv:

⃒⃒⟨︀
𝑅ℎ,1(ūℎ),v − vℎ

⟩︀⃒⃒
≤ 𝐶

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︀
𝜂ℎ,1

𝑛,𝜅

)︀2)︃1/2

‖v‖𝑋 . (30)

(2) For all v ∈ 𝑋: ⃒⃒⟨︀
𝑅ℎ,2(ūℎ),v

⟩︀⃒⃒
≤ 𝐶

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︃1/2

‖v‖𝑋 . (31)

Proof. We proceed in two steps, one for each estimate.

(1) We derive the result from formula (25) with vℎ = 𝒞𝑛ℎv, by using the continuous Cauchy–Schwarz inequality,
the properties of 𝒞𝑛ℎ given by (10) and the discrete Cauchy–Schwarz inequality.

(2) From (26), using the continuous and discrete Cauchy–Schwarz inequalities, we derive (31).

�

4.2. Upper bounds of the error

In this section, we establish in Corollary 4.16 the upper bound corresponding to the difference in the solutions
of Problems (FV) and (FV𝑛,ℎ) with a condition on 𝜏𝑛 and ℎ𝑛. The main idea is to decompose the error through
the introduction of the solution u𝜏 of Problem (𝑃aux), which leads to the intermediary Theorems 4.10 and 4.12,
in which we apply the continuous and discrete Gronwall lemmas.

Theorem 4.10. Let u ∈ 𝐿∞(0, 𝑇, 𝐿3(Ω)2). The following a posteriori error estimate holds between the velocity
u of Problem (FV) and the velocity u𝜏 associated with the solutions (u𝑛)0≤𝑛≤𝑁 of Problem (𝑃aux): For 1 ≤
𝑚 ≤ 𝑁 ,

‖u(𝑡𝑚)− u𝜏 (𝑡𝑚)‖2𝐿2(Ω)2 + 𝜈

∫︁ 𝑡𝑚

0

‖u(𝑠)− u𝜏 (𝑠)‖2𝑋 d𝑠

≤ 𝐶

(︃
‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡𝑚)×Ω)]2 +

𝑚∑︁
𝑛=1

𝜏𝑛‖u𝑛 − ū𝑛
ℎ‖

2
𝑋 +

𝑚∑︁
𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︀
𝜂𝜏

𝑛,𝜅

)︀2)︃
. (32)
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Proof. By taking v = u− u𝜏 and 𝑞 = 𝑝− 𝑝𝜏 in (17), we obtain:

1
2

d
d𝑡
‖v(𝑡)‖2𝐿2(Ω)2 + 𝜈‖v(𝑡)‖2𝑋 = (f(𝑡)− f𝑛(𝑡),v(𝑡)) + ⟨𝑅𝜏 (u𝜏 )(𝑡),v(𝑡)⟩ −

∫︁
Ω

(v(𝑡) · ∇u(𝑡)) · v(𝑡)). (33)

Let us bound the right-hand side of equation (33). The first and last terms can be bounded by using (1) and
(2), respectively, as well as Lemma 2.11, as follows:

|(f(𝑡)− f𝑛,v(𝑡))| ≤ 𝐶‖f(𝑡)− 𝜋𝜏 f‖2𝐿2(Ω)2 +
𝜈

6
‖v(𝑡)‖2𝑋 , (34)⃒⃒⃒⃒∫︁

Ω

(v(𝑡) · ∇u(𝑡)) · v(𝑡))
⃒⃒⃒⃒
≤ ‖u(𝑡)‖𝑋‖v(𝑡)‖2𝐿4(Ω)2 ≤

√
2‖u(𝑡)‖𝑋‖v(𝑡)‖𝐿2(Ω)2‖v(𝑡)‖𝑋

≤ 𝐶‖u(𝑡)‖2𝑋‖v(𝑡)‖2𝐿2(Ω)2 +
𝜈

6
‖v(𝑡)‖2𝑋 . (35)

Furthermore, the residual term in the right hand side of equation (33) can be decomposed as:

⟨𝑅𝜏 (u𝜏 )(𝑡),v⟩ = 𝑇1 + 𝑇2 + 𝑇3, (36)

where 𝑇1|[𝑡𝑛−1,𝑡𝑛] = 𝑡𝑛−𝑡
𝜏𝑛

∑︀
𝜅∈𝒯𝑛ℎ

𝜈
∫︀

𝜅
∇(u𝑛 − u𝑛−1)(x) : ∇v(𝑡,x) dx, 𝑇2|[𝑡𝑛−1,𝑡𝑛] = 𝑡𝑛−𝑡

𝜏𝑛

∑︀
𝜅∈𝒯𝑛ℎ

∫︀
𝜅
(u𝑛−1 ·

∇v(𝑡,x)) · (u𝑛 − u𝑛−1) dx and 𝑇3|[𝑡𝑛−1,𝑡𝑛] = − 𝑡−𝑡𝑛−1
𝜏𝑛

∑︀
𝜅∈𝒯𝑛ℎ

∫︀
𝜅
[(u𝑛 − u𝑛−1) · ∇v(𝑡,x)] · u𝜏 (𝑡,x) dx.

Using the continuous and then discrete Cauchy–Schwarz inequalities, the fact that | 𝑡−𝑡𝑛

𝜏𝑛
| ≤ 1 for all 𝑡 ∈

[𝑡𝑛−1, 𝑡𝑛] and using Lemma 2.11, we bound 𝑇1 in the following way:

|𝑇1| ≤ 𝜈
∑︁

𝜅∈𝒯𝑛ℎ

⃒⃒
u𝑛 − u𝑛−1

⃒⃒
𝐻1(𝜅)2

|v|𝐻1(𝜅)2 ≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

⃒⃒
u𝑛 − u𝑛−1

⃒⃒2
𝐻1(𝜅)2

+
𝜈

36
‖v‖2𝑋 . (37)

In order to bound 𝑇2, we insert u(𝑡,x) and u𝜏 :

|𝑇2| ≤

⃒⃒⃒⃒
⃒ ∑︁
𝜅∈𝒯𝑛ℎ

∫︁
𝜅

[︀(︀
u𝑛−1 − u𝜏 (𝑡,x)

)︀
· ∇v(𝑡,x)

]︀
·
(︀
u𝑛 − u𝑛−1

)︀
dx

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒ ∑︁
𝜅∈𝒯𝑛ℎ

∫︁
𝜅

[(u𝜏 (𝑡,x)− u(𝑡,x)) · ∇v(𝑡,x)] ·
(︀
u𝑛 − u𝑛−1

)︀
dx

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒ ∑︁
𝜅∈𝒯𝑛ℎ

∫︁
𝜅

(u(𝑡,x) · ∇v(𝑡,x)) ·
(︀
u𝑛 − u𝑛−1

)︀
dx

⃒⃒⃒⃒
⃒

= 𝑇2,1 + 𝑇2,2 + 𝑇2,3. (38)

Using that u𝜏 = 𝑡−𝑡𝑛−1
𝜏𝑛

(u𝑛 − u𝑛−1) + u𝑛−1, the fact that | 𝑡−𝑡𝑛−1
𝜏𝑛

| ≤ 1 and Lemma 2.11, we obtain:

𝑇2,1 ≤
∑︁

𝜅∈𝒯𝑛ℎ

⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝐿4(𝜅)2

|v|𝐻1(𝜅)2
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝐿4(𝜅)2

≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

⃦⃦
u𝑛 − u𝑛−1

⃦⃦4

𝐿4(𝜅)2
+

𝜈

36
‖v‖2𝑋 .

Using (2) as well as the fact that (15) and the triangular inequality imply that
⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝐿2(Ω)2
is bounded

by a constant, we obtain

𝑇2,1 ≤ 𝐶
⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝐿2(Ω)2

⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝑋
+

𝜈

36
‖v‖2𝑋 ≤ 𝐶

∑︁
𝜅∈𝒯𝑛ℎ

|u𝑛 − u𝑛−1|2𝐻1(𝜅)2 +
𝜈

36
‖v‖2𝑋 . (39)
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On the other hand, using Lemma 2.11, it holds that

𝑇2,2 ≤
∑︁

𝜅∈𝒯𝑛ℎ

‖u𝜏 (𝑡)− u(𝑡)‖𝐿4(𝜅)2 |v|𝐻1(𝜅)2
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝐿4(𝜅)2

≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

‖u𝜏 (𝑡)− u(𝑡)‖2𝐿4(𝜅)2

⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝐿4(𝜅)2
+

𝜈

36
‖v‖2𝑋 .

Using the discrete Cauchy–Schwarz inequality, then (2), (3) and Lemma 4.4, we obtain:

𝑇2,2 ≤ 𝐶‖u𝜏 (𝑡)− u(𝑡)‖2𝐿4(Ω)2

⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝐿4(Ω)2
+

𝜈

36
‖v‖2𝑋

≤ 𝐶‖u𝜏 (𝑡)− u(𝑡)‖𝑋

⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑋

+
𝜈

36
‖v‖2𝑋 .

Since v = u− u𝜏 and using Lemma 2.11 once again, we obtain

𝑇2,2 ≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

⃒⃒
u𝑛 − u𝑛−1

⃒⃒2
𝐻1(𝜅)2

+
2𝜈
36
‖v‖2𝑋 . (40)

Now, we bound 𝑇2,3 by taking into consideration that u is supposed to be in 𝐿∞(0, 𝑇, 𝐿3(Ω)); then we use the
discrete Cauchy–Schwarz inequality, Lemmas 2.11 and 2.1 and we obtain

𝑇2,3 ≤
∑︁

𝜅∈𝒯𝑛ℎ

‖u(𝑡)‖𝐿3(𝜅)2 |v|𝐻1(𝜅)2
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝐿6(𝜅)

≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

|u𝑛 − u𝑛−1|2𝐻1(𝜅)2 +
𝜈

36
‖v‖2𝑋 . (41)

In order to bound |𝑇3|, we use the fact that | 𝑡−𝑡𝑛−1
𝜏𝑛

| ≤ 1 for all 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛] and we insert u:

|𝑇3| ≤

⃒⃒⃒⃒
⃒ ∑︁
𝜅∈𝒯𝑛ℎ

∫︁
𝜅

[︀(︀
u𝑛 − u𝑛−1

)︀
· ∇v(𝑡,x)

]︀
· (u𝜏 − u)(𝑡,x) dx

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒ ∑︁
𝜅∈𝒯𝑛ℎ

∫︁
𝜅

[︀(︀
u𝑛 − u𝑛−1

)︀
· ∇v(𝑡,x)

]︀
· u(𝑡,x) dx

⃒⃒⃒⃒
⃒.

By using that v = u𝜏 − u and that 𝑐(u,v,v) = 0 the first term in the right-hand side vanishes. The second
term is treated exactly like 𝑇2,3 and we obtain

𝑇3 ≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

⃒⃒
u𝑛 − u𝑛−1

⃒⃒2
𝐻1(𝜅)2

+
𝜈

36
‖v‖2𝑋 . (42)

Finally, gathering (33)–(42), we obtain on each [𝑡𝑛−1, 𝑡𝑛]

1
2

d
d𝑡
‖v(𝑡)‖2𝐿2(Ω)2 + 𝜈‖v(𝑡)‖2𝑋 ≤ 𝜈

2
‖v(𝑡)‖2𝑋 + 𝐶‖f(𝑡)− 𝜋𝜏 f‖2𝐿2(Ω)2 + 𝐶

∑︁
𝜅∈𝒯𝑛ℎ

⃒⃒
u𝑛 − u𝑛−1

⃒⃒2
𝐻1(𝜅)2

+𝐶‖u(𝑡)‖2𝑋‖v(𝑡)‖2𝐿2(Ω)2 . (43)

Then, we simplify (43), take into account the definitions of 𝜋𝜏u and 𝜋𝑙,𝜏u, and integrate equation between 0
and 𝑡; we obtain

‖v(𝑡)‖2𝐿2(Ω)2 + 𝜈

∫︁ 𝑡

0

‖v(𝑠)‖2𝑋 d𝑠 ≤ 𝐶
(︁
‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡)×Ω)]2 + ‖𝜋𝜏u− 𝜋𝑙,𝜏u‖2𝐿2(0,𝑡,𝑋)

)︁
+𝐶

∫︁ 𝑡

0

‖u(𝜏)‖2𝑋‖v(𝜏)‖2𝐿2(Ω)2 d𝜏.
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We apply the Gronwall Lemma 2.9 with functions given by the following form:

𝑧(𝑡) = ‖v(𝑡)‖2𝐿2(Ω)2 + 𝜈

∫︁ 𝑡

0

‖v(𝑠)‖2𝑋 d𝑠, 𝑓(𝑡) = 𝐶
(︁
‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡)×Ω)]2 + ‖𝜋𝜏u− 𝜋𝑙,𝜏u‖2𝐿2(0,𝑡,𝑋)

)︁
,

𝑔(𝑡) = 𝐶 and 𝑘(𝜏) = ‖u(𝜏)‖2𝑋 .

We obtain the following bound:

‖u(𝑡)− u𝜏 (𝑡)‖2𝐿2(Ω)2 + 𝜈

∫︁ 𝑡

0

‖u(𝜏)− u𝜏 (𝜏)‖2𝑋 d𝜏 ≤ 𝐶
(︁
‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡)×Ω)]2 + ‖𝜋𝜏u− 𝜋𝑙,𝜏u‖2𝐿2(0,𝑡,𝑋)

)︁
+ 𝐶

∫︁ 𝑡

0

𝑓(𝜏)‖u(𝜏)‖2𝑋 exp
(︂
𝐶

∫︁ 𝑡

𝜏

‖u(𝑠)‖2𝑋 d𝑠
)︂

d𝜏.

Since 𝑓 is an increasing function of time, we bound it by 𝑓(𝑡𝑚); we use (3) to bound the integrals of ‖u‖2𝑋 .
Applying the resulting inequality at 𝑡 = 𝑡𝑚, we get:

‖u(𝑡𝑚)− u𝜏 (𝑡𝑚)‖2𝐿2(Ω)2 + 𝜈

∫︁ 𝑡𝑚

0

‖u(𝜏)− u𝜏 (𝜏)‖2𝑋 d𝜏 ≤ 𝐶

(︃
‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡𝑚)×Ω)]2 +

𝑚∑︁
𝑛=1

𝜏𝑛
⃦⃦
u𝑛 − u𝑛−1

⃦⃦2

𝑋

)︃
.

(44)
To obtain (32), we use the triangle inequality below in the last term in the right-hand side of (44), then use
hypothesis (7) and definition (27)⃦⃦

u𝑛 − u𝑛−1
⃦⃦

𝑋
≤ ‖u𝑛 − ū𝑛

ℎ‖𝑋 +
⃦⃦
ū𝑛

ℎ − ū𝑛−1
ℎ

⃦⃦
𝑋

+
⃦⃦
u𝑛−1 − ū𝑛−1

ℎ

⃦⃦
𝑋
.

�

To derive an a posteriori estimate between the solution u of problem (FV) and the solution ūℎ corresponding
to the solutions ū𝑛

ℎ of (FV𝑛,ℎ), it suffices to get an a posteriori estimate between the solution u𝜏 of Problem
(𝑃aux) and ūℎ and to apply the triangle inequality using the previous theorem. In order to get an a posteriori
error estimate between the solutions u𝜏 and ūℎ, we introduce the operator Π (see [8]) defined from 𝑋 into itself
as follows: For each v in 𝑋, Πv denotes the velocity w of the unique weak solution (w, 𝑟) in 𝑋 ×𝑀 of the
Stokes problem: {︃

∀t ∈ 𝑋, (∇w,∇t)− (div t, 𝑟) = 0,
∀𝑞 ∈𝑀, (div w, 𝑞) = (div v, 𝑞).

(45)

The next lemma states some properties of the operator Π. We refer to Lemma 4.2 of [8] or Lemma 4.2.4 of [24]

Lemma 4.11. The operator Π has the following properties:

(1) For all v in 𝑉 , Πv is zero,
(2) The following estimates hold for all v in 𝑋,

‖v −Πv‖𝑋 ≤ ‖v‖𝑋 and ‖Πv‖𝑋 ≤ 1
𝛽*
‖div v‖𝐿2(Ω).

(3) ∀vℎ ∈ 𝑉𝑛ℎ and 1 ≤ 𝑛 ≤ 𝑁 :
‖Πvℎ‖𝐿2(Ω)2 ≤ 𝑐ℎ1/2

𝑛 ‖div vℎ‖𝐿2(Ω).

We are now in a position to prove a posteriori estimates between the solution u𝜏 of Problem (𝑃aux) and the
solution ūℎ of (FV𝑛,ℎ).
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Theorem 4.12. Suppose there exists a positive constant 𝐶𝑠 such that for all 1 ≤ 𝑛 ≤ 𝑁 we have ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛.
The following a posteriori error estimate holds between the solutions u𝑚 and ū𝑚

ℎ of Problems (𝑃aux) and (FV𝑛,ℎ).

‖u𝑚 − ū𝑚
ℎ ‖

2
𝐿2(Ω)2 + 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖u𝑛 − ū𝑛
ℎ‖

2
𝑋

≤ 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2
+
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+
(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︁ )︃
. (46)

Proof. For abbreviation we set e𝑛 = u𝑛 − ū𝑛
ℎ and 𝜀𝑛 = 𝑝𝑛 − 𝑝𝑛

ℎ, 0 ≤ 𝑛 ≤ 𝑁 . For any 1 ≤ 𝑛 ≤ 𝑁 , we have

1
2
‖e𝑛‖2𝐿2(Ω)2 −

1
2

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
+

1
2

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)
+ 𝜈𝜏𝑛‖e𝑛‖2𝑋 = (e𝑛 − e𝑛−1, e𝑛) + 𝜈𝜏𝑛(∇e𝑛,∇e𝑛). (47)

Adding and subtracting Πe𝑛 in both terms in the right-hand side of (47) and since div(e𝑛 − Πe𝑛) = 0, we
obtain: (︀

e𝑛 − e𝑛−1, e𝑛
)︀

+ 𝜈𝜏𝑛(∇e𝑛,∇e𝑛) =
(︀
e𝑛 − e𝑛−1,Πe𝑛

)︀
+ 𝜈𝜏𝑛(∇e𝑛,∇Πe𝑛)

+
(︀
e𝑛 − e𝑛−1, e𝑛 −Πe𝑛

)︀
+ 𝜈𝜏𝑛(∇e𝑛,∇(e𝑛 −Πe𝑛))

− 𝜏𝑛(div(e𝑛 −Πe𝑛), 𝜀𝑛). (48)

By taking v = e𝑛 −Πe𝑛 in (19), we have for every vℎ ∈ 𝑋𝑛ℎ(︀
e𝑛 − e𝑛−1, e𝑛

)︀
+ 𝜈𝜏𝑛(∇e𝑛,∇e𝑛) =

(︀
e𝑛 − e𝑛−1,Πe𝑛

)︀
+ 𝜈𝜏𝑛(∇e𝑛,∇Πe𝑛) + 𝜏𝑛

(︀
f̄𝑛 − f̄𝑛

ℎ ,v − vℎ

)︀
+ 𝜏𝑛

(︀
f𝑛 − f̄𝑛,v

)︀
+ 𝜏𝑛

⟨︀
𝑅ℎ,1(ūℎ),v − vℎ

⟩︀
+ 𝜏𝑛

⟨︀
𝑅ℎ,2(ūℎ),v

⟩︀
− 𝜏𝑛

(︀
u𝑛−1 · ∇u𝑛 − ū𝑛−1

ℎ · ∇ū𝑛
ℎ,v

)︀
+

1
2
𝜏𝑛
(︀
div ū𝑛−1

ℎ ū𝑛
ℎ,v

)︀
. (49)

Next, we evaluate all terms in the right-hand side of (49) separately by repeatedly using both inequalities in
Lemma 2.11 for various values of (𝛽, 𝛾, 𝛿). Taking into account that Πe𝑛 = −Πū𝑛

ℎ and using Lemma 4.11, the
first and second terms can be bounded as:

(e𝑛 − e𝑛−1,Πe𝑛) ≤ 1
4

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝐶𝜏𝑛‖div ū𝑛

ℎ‖
2
𝐿2(Ω) (50)

and
𝜈𝜏𝑛(∇e𝑛,∇Πe𝑛) ≤ 𝜈𝜏𝑛

28
‖e𝑛‖2𝑋 + 𝐶𝜏𝑛‖div ū𝑛

ℎ‖
2
𝐿2(Ω). (51)

To estimate the third and fourth terms of (49), we take vℎ = 𝒞𝑛ℎv, use estimation (10) and Lemma 4.11 to
derive:

𝜏𝑛
(︀
f̄𝑛 − f̄𝑛

ℎ ,v − 𝒞𝑛ℎv
)︀

+ 𝜏𝑛
(︀
f𝑛 − f̄𝑛,v

)︀
≤ 𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

𝑐ℎ𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(𝜅)2

|v|𝐻1(Δ𝜅)2 + 𝑆2

⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(Ω)2

‖v‖𝑋

)︃

≤ 𝐶𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁)︃1/2

|v|𝐻1(Ω)2

≤ 𝐶𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁)︃
+
𝜈𝜏𝑛
28
‖e𝑛‖2𝑋 . (52)
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The fifth and sixth terms of (49) can be bounded as (cf. Lemma 4.9)

𝜏𝑛
⟨︀
𝑅ℎ,1(ūℎ)(𝑡),v − vℎ

⟩︀
≤ 𝐶𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︀
𝜂ℎ,1

𝑛,𝜅

)︀2)︃1/2

‖v‖𝑋 ≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+
𝜈𝜏𝑛
28
‖e𝑛‖2𝑋 . (53)

𝜏𝑛
⟨︀
𝑅ℎ,2(ūℎ)(𝑡),v

⟩︀
≤ 𝐶𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︃1/2

‖v‖𝑋 ≤ 𝐶
∑︁

𝜅∈𝒯𝑛ℎ

𝜏𝑛
(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
+
𝜈𝜏𝑛
28
‖e𝑛‖2𝑋 . (54)

Finally, we bound the last two terms of (49). We have the relation:

𝜏𝑛
(︀
u𝑛−1 · ∇u𝑛 − ū𝑛−1

ℎ · ∇ū𝑛
ℎ,v

)︀
+
𝜏𝑛
2
(︀
div ū𝑛−1

ℎ ū𝑛
ℎ,v

)︀
= −𝜏𝑛

(︀
e𝑛−1 · ∇u𝑛,v

)︀
− 𝜏𝑛

2
(︀
div e𝑛−1u𝑛,v

)︀
− 𝜏𝑛

(︀
ū𝑛−1

ℎ · ∇e𝑛,v
)︀
− 𝜏𝑛

2
(︀
div ū𝑛−1

ℎ e𝑛,v
)︀
.

We set 𝐴 = 𝐴1+𝐴2 where 𝐴1 = −𝜏𝑛(e𝑛−1·∇u𝑛,v) and 𝐴2 = − 𝜏𝑛

2 (div e𝑛−1u𝑛,v), and 𝐵 = −𝜏𝑛(ū𝑛−1
ℎ ·∇e𝑛,v)−

𝜏𝑛

2 (div ū𝑛−1
ℎ e𝑛,v). We first bound 𝐴1 by using the 𝐿4 − 𝐿2 − 𝐿4 inequality, the fact that v = e𝑛 − Πe𝑛 and

Πe𝑛 = −Πū𝑛
ℎ, then (2) and Lemma 4.11; we obtain

|𝐴1| ≤ 𝐶𝜏𝑛
⃦⃦
e𝑛−1

⃦⃦
𝐿4(Ω)2

‖u𝑛‖𝑋

(︁
‖e𝑛‖𝐿4(Ω)2 + ‖Πe𝑛‖𝐿4(Ω)2

)︁
≤ 𝐶𝜏𝑛

⃦⃦
e𝑛−1

⃦⃦1/2

𝐿2(Ω)2

⃦⃦
e𝑛−1

⃦⃦1/2

𝑋
‖u𝑛‖𝑋

(︂
‖e𝑛‖1/2

𝐿2(Ω)2‖e
𝑛‖1/2

𝑋 +
(︁
ℎ1/2

𝑛 ‖div ū𝑛
ℎ‖𝐿2(Ω)

)︁1/2

‖e𝑛‖1/2
𝑋

)︂
. (55)

We bound separately the two terms that result from the expansion of the product in the right-hand side of (55),
that we denote by 𝐴1,1 and 𝐴1,2. First, using Lemma 2.11 we have

𝐴1,1 ≤ 𝜏𝑛

(︂
𝐶
⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
‖u𝑛‖2𝑋 +

𝜈

28𝜎𝜏

⃦⃦
e𝑛−1

⃦⃦2

𝑋
+

𝜈

28
‖e𝑛‖2𝑋

)︂
+ 𝛿𝜏𝑛‖e𝑛‖2𝐿2(Ω)2‖u

𝑛‖2𝑋 .

Inserting e𝑛−1 in the last term and using that 𝜏𝑛‖u𝑛‖2𝑋 is bounded by (15), we can choose 𝛿 such that

𝐴1,1 ≤ 𝜏𝑛

(︂
𝐶
⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
‖u𝑛‖2𝑋 +

𝜈

28𝜎𝜏

⃦⃦
e𝑛−1

⃦⃦2

𝑋
+

𝜈

28
‖e𝑛‖2𝑋

)︂
+

1
16

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
. (56)

Secondly, using Lemma 2.11, we have:

𝐴1,2 ≤ 𝐶𝜏𝑛

(︁
‖div ū𝑛

ℎ‖𝐿2(Ω)‖e
𝑛‖𝑋 + ℎ1/2

𝑛 ‖u𝑛‖2𝑋
⃦⃦
e𝑛−1

⃦⃦
𝐿2(Ω)2

⃦⃦
e𝑛−1

⃦⃦
𝑋

)︁
.

Using the relation ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛 and the fact that (15) allows to bound 𝜏
1/2
𝑛 ‖u𝑛‖𝑋 by a constant, we have, using

Lemma 2.11 twice

𝐴1,2 ≤ 𝐶𝜏𝑛‖div ū𝑛
ℎ‖𝐿2(Ω)‖e

𝑛‖𝑋 + 𝐶𝜏𝑛‖u𝑛‖𝑋

⃦⃦
e𝑛−1

⃦⃦
𝐿2(Ω)2

⃦⃦
e𝑛−1

⃦⃦
𝑋

≤ 𝜏𝑛

(︁
𝐶‖div ū𝑛

ℎ‖
2
𝐿2(Ω) +

𝜈

28
‖e𝑛‖2𝑋

)︁
+ 𝜏𝑛

(︂
𝐶‖u𝑛‖2𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
+

𝜈

28𝜎𝜏

⃦⃦
e𝑛−1

⃦⃦2

𝑋

)︂
. (57)

Finally, summing (56) and (57), we get

|𝐴1| ≤ 𝜏𝑛

(︂
𝐶
⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
‖u𝑛‖2𝑋 +

2𝜈
28𝜎𝜏

⃦⃦
e𝑛−1

⃦⃦2

𝑋
+

2𝜈
28
‖e𝑛‖2𝑋 + 𝐶‖div ū𝑛

ℎ‖
2
𝐿2(Ω)

)︂
+

1
16

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
.

(58)
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As far as 𝐴2 is concerned, we first use that div e𝑛−1 = −div ū𝑛−1
ℎ , then use (2), Lemma 2.11 and a triangular

inequality. We get, for any 𝛽 > 0

|𝐴2| ≤ 𝐶𝜏𝑛
⃦⃦

div u𝑛−1
ℎ

⃦⃦
𝐿2(Ω)

‖u𝑛‖𝐿4(Ω)2‖v‖𝐿4(Ω)2

≤ 𝐶𝜏𝑛
⃦⃦

div u𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝛽𝜏𝑛‖u𝑛‖𝐿2(Ω)2‖u

𝑛‖𝑋

(︁
‖e𝑛‖𝐿2(Ω)2‖e

𝑛‖𝑋 + ‖Πe𝑛‖𝐿2(Ω)2‖Πe𝑛‖𝑋

)︁
≤ 𝐶𝜏𝑛

⃦⃦
div u𝑛−1

ℎ

⃦⃦2

𝐿2(Ω)
+ 𝛽(𝐴2,1 +𝐴2,2 +𝐴2,3). (59)

Using that 𝜏𝑛‖u𝑛‖2𝑋 and ‖u𝑛‖2𝐿2(Ω)2 are bounded we get

𝐴2,1 = 𝜏𝑛‖u𝑛‖𝐿2(Ω)2‖u
𝑛‖𝑋

⃦⃦
e𝑛 − e𝑛−1

⃦⃦
𝐿2(Ω)2

‖e𝑛‖𝑋

≤ 1
2
𝜏𝑛

(︁⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
‖u𝑛‖2𝑋 + ‖u𝑛‖2𝐿2(Ω)2‖e

𝑛‖2𝑋
)︁

≤ 𝐶
⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝐶𝜏𝑛‖e𝑛‖2𝑋 ,

𝐴2,2 = 𝜏𝑛‖u𝑛‖𝐿2(Ω)2‖u
𝑛‖𝑋

⃦⃦
e𝑛−1

⃦⃦
𝐿2(Ω)2

‖e𝑛‖𝑋 ≤ 𝜏𝑛

(︁
‖u𝑛‖2𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝐶‖e𝑛‖2𝑋

)︁
,

𝐴2,3 = 𝜏𝑛‖u𝑛‖𝐿2(Ω)2‖u
𝑛‖𝑋‖Πe𝑛‖𝐿2(Ω)2‖Πe𝑛‖𝑋 ≤ 𝐶𝜏𝑛‖u𝑛‖𝐿2(Ω)2‖u

𝑛‖𝑋

(︁
ℎ1/2

𝑛 ‖div ū𝑛
ℎ‖𝐿2(Ω)

)︁
‖e𝑛‖𝑋

≤ 𝐶𝜏𝑛

(︁
‖div ū𝑛

ℎ‖
2
𝐿2(Ω) + ‖u𝑛‖2𝐿2(Ω)2𝜏𝑛‖u

𝑛‖2𝑋‖e
𝑛‖2𝑋

)︁
≤ 𝐶𝜏𝑛

(︁
‖div ū𝑛

ℎ‖
2
𝐿2(Ω) + ‖e𝑛‖2𝑋

)︁
.

Since 𝛽 in (59) can be freely chosen, this yields the following bound for 𝐴2

|𝐴2| ≤ 𝐶𝜏𝑛
⃦⃦
div u𝑛−1

ℎ

⃦⃦2

𝐿2(Ω)
+

1
16

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝜏𝑛

3𝜈
28
‖e𝑛‖2𝑋 + 𝐶𝜏𝑛‖u𝑛‖2𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
. (60)

Let us now bound the term 𝐵. It can be written as follows:

𝐵 = −𝜏𝑛
(︀
ū𝑛−1

ℎ · ∇(e𝑛 −Πe𝑛 + Πe𝑛), e𝑛 −Πe𝑛
)︀
− 𝜏𝑛

2
(︀
div ū𝑛−1

ℎ (e𝑛 −Πe𝑛 + Πe𝑛), e𝑛 −Πe𝑛
)︀

= −𝜏𝑛
(︀
ū𝑛−1

ℎ · ∇Πe𝑛, e𝑛 −Πe𝑛
)︀
− 𝜏𝑛

2
(︀
div ū𝑛−1

ℎ Πe𝑛, e𝑛 −Πe𝑛
)︀

= −𝜏𝑛
(︀
ū𝑛−1

ℎ · ∇Πe𝑛, e𝑛
)︀
− 𝜏𝑛

2
(︀
div ū𝑛−1

ℎ Πe𝑛, e𝑛
)︀

= 𝐵1 +𝐵2.

Using the fact that Πe𝑛 = −Πū𝑛
ℎ, Lemma 4.11, then (2) and Lemma 2.11, we get, for any 𝛽 > 0

|𝐵1| ≤ 𝐶𝜏𝑛
⃦⃦
ū𝑛−1

ℎ

⃦⃦
𝐿4(Ω)

‖div ū𝑛
ℎ‖𝐿2(Ω)‖e

𝑛‖𝐿4(Ω)

≤ 𝐶𝜏𝑛‖div ū𝑛
ℎ‖

2
𝐿2(Ω) + 𝛽𝜏𝑛

⃦⃦
ū𝑛−1

ℎ

⃦⃦
𝐿2(Ω)2

⃦⃦
ū𝑛−1

ℎ

⃦⃦
𝑋
‖e𝑛‖𝐿2(Ω)‖e

𝑛‖𝑋 . (61)

A term very similar to the second one in the right-hand side of (61) was already bounded in (59), replacing u𝑛

by ū𝑛−1
ℎ ; since (9) yields similar bounds as (15), choosing 𝛽 small enough leads to

|𝐵1| ≤ 𝐶𝜏𝑛‖div ū𝑛
ℎ‖

2
𝐿2(Ω) +

1
16

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝜏𝑛

2𝜈
28
‖e𝑛‖2𝑋 + 𝐶𝜏𝑛

⃦⃦
ū𝑛−1

ℎ

⃦⃦2

𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
. (62)

Moreover, using once more the fact that Πe𝑛 = −Πū𝑛
ℎ, Lemma 2.11, then (2) and Lemma 4.11 we get

|𝐵2| ≤ 𝐶𝜏𝑛
⃦⃦

div ū𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝛽𝜏𝑛‖Πū𝑛

ℎ‖
2
𝐿4(Ω)2‖e

𝑛‖2𝐿4(Ω)2

≤ 𝐶𝜏𝑛
⃦⃦

div ū𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝛽𝜏𝑛‖Πū𝑛

ℎ‖𝐿2(Ω)2‖Πū𝑛
ℎ‖𝑋‖e

𝑛‖𝐿2(Ω)2‖e
𝑛‖𝑋
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≤ 𝐶𝜏𝑛
⃦⃦

div ū𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝐶𝛽𝜏𝑛ℎ

1/2
𝑛 ‖div ū𝑛

ℎ‖𝐿2(Ω)2‖ū
𝑛
ℎ‖𝑋‖e

𝑛‖𝐿2(Ω)2‖e
𝑛‖𝑋 .

Using the fact that ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛, the fact that 𝜏1/2
𝑛 ‖ū𝑛

ℎ‖𝑋 is bounded thanks to (9), Lemma 2.11 and inserting
e𝑛−1, we obtain

|𝐵2| ≤ 𝐶𝜏𝑛
⃦⃦

div ū𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝐶𝛽𝜏𝑛

(︁
‖e𝑛‖2𝑋 + ‖ū𝑛

ℎ‖
2
𝑋

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ ‖ū𝑛

ℎ‖
2
𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2

)︁
.

Using once more that 𝜏𝑛‖ū𝑛
ℎ‖

2
𝑋 is bounded, we may choose 𝛽 such that

|𝐵2| ≤ 𝐶𝜏𝑛
⃦⃦

div ū𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+ 𝜏𝑛

𝜈

28
‖e𝑛‖2𝑋 +

1
16

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝐶𝜏𝑛

(︁
‖ū𝑛

ℎ‖
2
𝑋

⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2

)︁
. (63)

Thus, by summing (50)–(54), (58), (60), (62) and (63), using equations (47), (49), the fact that e0 = 0, and
summing over 𝑛 from 1 to 𝑚, we obtain:

1
2
‖e𝑚‖2𝐿2(Ω)2 +

1
2

𝑚∑︁
𝑛=1

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
+ 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖e𝑛‖2𝑋

≤ 12𝜈
28

𝑚∑︁
𝑛=1

𝜏𝑛‖e𝑛‖2𝑋 +
2𝜈

28𝜎𝜏

𝑚∑︁
𝑛=1

𝜏𝑛
⃦⃦
e𝑛−1

⃦⃦2

𝑋
+

1
2

𝑚∑︁
𝑛=1

⃦⃦
e𝑛 − e𝑛−1

⃦⃦2

𝐿2(Ω)2
(64)

+ 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁)︃
+ 𝐶

𝑚∑︁
𝑛=1

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︁)︃

+ 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︁
‖div ū𝑛

ℎ‖
2
𝐿2(Ω) +

⃦⃦
div ū𝑛−1

ℎ

⃦⃦2

𝐿2(Ω)

)︁
+ 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︁
‖u𝑛‖2𝑋 + ‖ū𝑛

ℎ‖
2
𝑋 +

⃦⃦
ū𝑛−1

ℎ

⃦⃦2

𝑋

)︁⃦⃦
e𝑛−1

⃦⃦2

𝐿2(Ω)2
.

Moreover, we perform a change of indices, we use (7) to bound 𝜏𝑛+1 by 𝜎𝜏𝜏𝑛; we also use the fact that e0 = 0
and ū0

ℎ = 0 and the fact that ‖div ū𝑛
ℎ‖

2
𝐿2(𝜅) ≤ (𝜂ℎ,1

𝑛,𝜅)2. Simplifying, we obtain

1
2
‖e𝑚‖2𝐿2(Ω)2 +

𝜈

2

𝑚∑︁
𝑛=1

𝜏𝑛‖e𝑛‖2𝑋 ≤ 𝐶

𝑚−1∑︁
𝑛=0

𝜏𝑛+1

(︁⃦⃦
u𝑛+1

⃦⃦2

𝑋
+
⃦⃦
ū𝑛+1

ℎ

⃦⃦2

𝑋
+ ‖ū𝑛

ℎ‖
2
𝑋

)︁
‖e𝑛‖2𝐿2(Ω)2

+ 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁)︃
+ 𝐶

𝑚∑︁
𝑛=1

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︁)︃
.

We apply the Gronwall Lemma 2.10 with the following functions:

𝑦𝑚 = ‖e𝑚‖2𝐿2(Ω)2 + 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖e𝑛‖2𝑋 ,

𝑓𝑚 = 𝐶

𝑚∑︁
𝑛=1

𝜏𝑛

(︃ ∑︁
𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2
+
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+
(︀
𝜂ℎ,2

𝑛,𝜅

)︀2)︁)︃
and
𝑔𝑛 = 𝐶𝜏𝑛+1

(︁⃦⃦
u𝑛+1

⃦⃦2

𝑋
+
⃦⃦
ū𝑛+1

ℎ

⃦⃦2

𝑋
+ ‖ū𝑛

ℎ‖
2
𝑋

)︁
.

We obtain:

‖e𝑚‖2𝐿2(Ω)2 + 𝜈

𝑚∑︁
𝑛=1

𝜏𝑛‖e𝑛‖2𝑋 ≤ 𝑓𝑚 + 𝐶

𝑚−1∑︁
𝑛=0

𝑓𝑛𝜏𝑛+1

(︁⃦⃦
u𝑛+1

⃦⃦2

𝑋
+
⃦⃦
ū𝑛+1

ℎ

⃦⃦2

𝑋
+ ‖ū𝑛

ℎ‖
2
𝑋

)︁
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× exp

⎛⎝𝐶 𝑚−1∑︁
𝑗=𝑛

𝜏𝑗+1

(︂⃦⃦
u𝑗+1

⃦⃦2

𝑋
+
⃦⃦⃦
ū𝑗+1

ℎ

⃦⃦⃦2

𝑋

)︂
+
⃦⃦⃦
ū𝑗

ℎ

⃦⃦⃦2

𝑋

⎞⎠. (65)

By remarking that for every 𝑛 ≤ 𝑚 it holds that 𝑓𝑛 ≤ 𝑓𝑚, and using the bounds provided by (9) and (15), the
whole right-hand side in (65) can be bounded by 𝐶𝑓𝑚, and we finally obtain (46). This concludes the proof of
Theorem 4.12 where we proved a posteriori error estimate between the velocity u𝜏 of Problem (𝑃aux) and the
velocity ūℎ of Problem (FV𝑛,ℎ). �

The following lemma relates the integral of ‖(u𝜏 − ūℎ)‖2𝑋 with its values at the different time steps

Lemma 4.13. It holds that

1
4

𝑚∑︁
𝑛=1

𝜏𝑛‖u𝑛 − ū𝑛
ℎ‖

2
𝑋 ≤

𝑚∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖u𝜏 (𝑠)− ūℎ(𝑠)‖2𝑋 d𝑠 ≤ 1 + 𝜎𝜏

2

𝑚∑︁
𝑛=1

𝜏𝑛‖u𝑛 − ū𝑛
ℎ‖

2
𝑋 . (66)

Proof. For the proof of this lemma, we refer to [5] page 15. �

Corollary 4.14. We suppose ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛,∀𝑛 = 1 . . .𝑚 with 𝑚 ∈ {1, · · · , 𝑁}. The following a posteriori error
estimate holds between the velocity u solution of problem (FV) and the solution ūℎ associated to the solutions
ū𝑛

ℎ of problem (FV𝑛,ℎ):

‖u(𝑡𝑚)− ū𝑚
ℎ ‖

2
𝐿2(Ω)2 + 𝜈

∫︁ 𝑡𝑚

0

‖u(𝑠)− ūℎ(𝑠)‖2𝑋 ≤ 𝐶

(︃
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
+
(︀
𝜂𝜏

𝑛,𝜅

)︀2)︁
+

𝑚∑︁
𝑛=1

𝜏𝑛
∑︁

𝜅∈𝒯𝑛ℎ

(︁
ℎ2

𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+
⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁
+ ‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡𝑚)×Ω)]2

)︃
. (67)

Proof. We use the triangle inequality in the left-hand side of (67) by inserting u𝜏 (𝑡𝑚) = u𝑚 in its first term
and the function u𝜏 in its second term. Then, the proof is a direct consequence of Theorems 4.10 on the one
hand and of the second inequality in (66) and Theorem 4.12 on the other hand. �

Next, the following theorem can be found in Theorem 4.10 in [6] as far as the first inequality is concerned
and follows the same steps as Theorem 4.10 in [5] as far as the second inequality is concerned.

Theorem 4.15. The following a posteriori error estimate holds between the solution (u,p) of Problem (FV)
and (ūℎ, 𝜋𝜏𝑝𝜏 ) associated with the solutions of Problem (FV𝑛,ℎ): For 1 ≤ 𝑛 ≤ 𝑁,

𝑚∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖u(𝑠)− 𝜋𝜏 ūℎ(𝑠)‖2𝑋 d𝑠 ≤ 𝑐

(︃∫︁ 𝑡𝑚

0

‖u(𝑠)− ūℎ(𝑠)‖2𝑋 d𝑠+
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(𝜂𝜏
𝑛,𝜅)2

)︃
(68)

and ⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) + u · ∇u− 𝜋𝑙,𝜏 ūℎ · ∇𝜋𝜏 ūℎ −

1
2

div(𝜋𝑙,𝜏 ūℎ)𝜋𝜏 ūℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦

𝐿2(0,𝑡𝑚,𝑋′)

≤ 𝐶

(︃
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
+
(︀
𝜂𝜏

𝑛,𝜅

)︀2)︁+ ‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡𝑚)×Ω)]2

+
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛ℎ

2
𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)2
+ 𝜏𝑛

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)2

)︁)︃ 1
2

. (69)
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Finally, Definition (14) of the [[·]] norm, inequalities (68), (67) and (69) lead to the following result:

Corollary 4.16. We suppose that ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛,∀𝑛 = 1, · · · ,𝑚 with 𝑚 ∈ {1, · · · , 𝑁}. The pressure and the
velocity verify the following a posteriori error bound:

[[u− ūℎ]]2(𝑡𝑚) +
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) + u∇u− 𝜋𝑙,𝜏 ūℎ∇𝜋𝜏 ūℎ −

1
2

div 𝜋𝑙,𝜏 ūℎ𝜋𝜏 ūℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦2

𝐿2(0,𝑡𝑚,𝑋′)

≤ 𝐶

(︃
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
+
(︀
𝜂𝜏

𝑛,𝜅

)︀2)︁+ ‖f − 𝜋𝜏 f‖2[𝐿2((0,𝑡𝑚)×Ω)]2

+
𝑚∑︁

𝑛=1

∑︁
𝜅∈𝒯𝑛ℎ

(︁
𝜏𝑛ℎ

2
𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)
+ 𝜏𝑛

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)

)︁)︃
. (70)

Remark 4.17. Due to the use of the Gronwall lemma and of Lemma 2.11, the dependence of the constant 𝐶
in (70) with respect to 𝜈 involves an exponential of 1

𝜈 . This may look very unfavorable as 𝜈 is small in turbulent
flows. However, from a practical point of view, numerical experiments presented in Section 6.2 show that this
dependence is not that dramatic.

5. Upper bounds of the indicators

In this section, we prove three theorems regarding upper bounds for the error indicators proposed in Section 4.
We follow exactly the same steps like in Theorems 4.11 and 4.12 of [5] by simply changing the form of the non-
linear terms. Taken together, these theorems will establish the following general estimate

𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
+
(︀
𝜂𝜏

𝑛,𝜅

)︀2 ≤ 𝐿𝑤𝜅
, (71)

where 𝐿𝑤𝜅
is an expression depending on the errors, on the data approximations, and on terms related to the

LES viscosity, evaluated on the union of the elements of 𝒯𝑛ℎ sharing a face with 𝜅. The discussion is presented
in terms of three theorems, each of which providing an upper bound of one term in the left-hand side of (71).
In all, suitable regularity assumptions on the exact solution are performed.

Theorem 5.1. Let D(u) ∈ 𝐿∞(0, 𝑇,Ω) and suppose that ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛. The following estimate holds:

𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2 ≤ 𝐶𝐿(𝑤𝜅), (72)

where 𝑤𝜅 denotes the union of the elements of 𝒯𝑛ℎ that share at least a face with 𝜅 and

𝐿(𝑊 ) = |u− ū𝑛
ℎ|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝑊 )2) + |u− ū𝑛−1

ℎ |2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝑊 )2)

+ ℎ2
𝜅‖f − f𝑛‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝑊 ))2 + 𝜏𝑛

∑︁
𝜅′⊂𝑊

ℎ2
𝜅′

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅′)2
+ 𝜏𝑛

∑︁
𝜅′⊂𝑊

ℎ2
𝜅′

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅′)2

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) + u · ∇u− 𝜋𝑙,𝜏 ūℎ · ∇𝜋𝜏 ūℎ −

1
2

div 𝜋𝑙,𝜏 ūℎ𝜋𝜏 ūℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(𝑊 )2)

+ ‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝑊 )) + ‖𝜈𝑡(u)D(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝑊 )). (73)

Proof. We proceed in 4 steps:

(1) We consider 𝑡 ∈]𝑡𝑛−1, 𝑡𝑛[ and we insert 𝜈𝑡(ū𝑛−1
ℎ )D(u(𝑡)), then 𝜈𝑡ℎ(ū𝑛−1

ℎ )D(u(𝑡)), then 𝜈𝑡(u(𝑡))D(u(𝑡)) and
𝜈𝑡ℎ(u(𝑡))D(u(𝑡)) in the fourth term of (𝜂ℎ,1

𝑛,𝜅)2 defined in (28) and we obtain:⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
≤ 𝐶

(︁⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ − u(𝑡))
⃦⃦2

𝐿2(𝜅)
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+
⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡(u(𝑡))

)︀
D(u(𝑡))

⃦⃦2

𝐿2(𝜅)
+
⃦⃦(︀
𝜈𝑡ℎ(u(𝑡))− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(u(𝑡))

⃦⃦2

𝐿2(𝜅)

+ ‖(𝜈𝑡(u(𝑡))− 𝜈𝑡ℎ(u(𝑡)))D(u(𝑡))‖2𝐿2(𝜅)

)︁
. (74)

We integrate from 𝑡𝑛−1 to 𝑡𝑛, we bound the first term in the right-hand side of (74) by:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ − u(𝑡))
⃦⃦2

𝐿2(𝜅)
d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

(︃∫︁
𝜅

[︂(︂
𝑐𝑠ℎ

2
𝜅

⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦
𝐹
− 1
|𝜅|

∫︁
𝜅

𝑐𝑠ℎ
2
𝜅

⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦
𝐹

dx
)︂

D(ū𝑛
ℎ − u(𝑡))

]︂2
dx

)︃
d𝑡

≤ 𝑐2𝑠ℎ
4
𝜅

⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦2

𝐿∞(𝜅)

∫︁ 𝑡𝑛

𝑡𝑛−1

‖D(ū𝑛
ℎ − u)‖2𝐿2(𝜅) d𝑡.

By using the inverse inequality (13), the fact that ℎ𝜅 ≤ 𝑐𝜏𝑛 and equation (9), we have:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ − u(𝑡))
⃦⃦2

𝐿2(𝜅)
d𝑡

≤ 𝐶ℎ𝜅𝜏𝑛
⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦2

𝐿2(𝜅)

∫︁ 𝑡𝑛

𝑡𝑛−1

‖D(ū𝑛
ℎ − u(𝑡))‖2𝐿2(𝜅) d𝑡

≤ 𝐶ℎ𝜅|ū𝑛
ℎ − u|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2).

By using that ‖D(u)‖𝐿∞(0,𝑇,Ω) is bounded, we bound the second term in the right-hand side of (74) by:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡(u(𝑡))

)︀
D(u)

⃦⃦2

𝐿2(𝜅)
d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

[︀
𝑐𝑠ℎ

2
𝜅

(︀⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦
𝐹
− ‖D(u(𝑡))‖𝐹

)︀
D(u(𝑡))

]︀2
dx
)︂

d𝑡

≤ 𝑐2𝑠ℎ
4
𝜅‖D(u)‖𝐿∞(0,𝑇,Ω)

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦
D
(︀
u− ū𝑛−1

ℎ

)︀⃦⃦2

𝐿2(𝜅)
d𝑡

≤ 𝐶ℎ4
𝜅

⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

.

The operator defined in (22) verifies the following property: For every v̄1 and v̄2 ∈ 𝑍, we have:

‖𝜈𝑡ℎ(v̄1)− 𝜈𝑡ℎ(v̄2)‖𝐿2(𝜅) ≤ 𝑐𝑠ℎ
2
𝜅‖D(v̄1 − v̄2)‖𝐿2(𝜅). (75)

Indeed we have

|𝜈𝑡ℎ(v̄1)− 𝜈𝑡ℎ(v̄2)| ≤ 1
|𝜅|

∫︁
𝜅

|𝜈𝑡(v̄1(x))− 𝜈𝑡(v̄2(x))|dx ≤ 1
|𝜅|

∫︁
𝜅

𝑐𝑠ℎ
2
𝜅‖D(v̄1 − v̄2)(x)‖𝐹 dx.

By using the Hölder inequality, we obtain (75). This leads to the following bound of the third term in the
right-hand side of (74):∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡ℎ(u(𝑡))− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(u(𝑡))

⃦⃦2

𝐿2(𝜅)
d𝑡 ≤ ‖D(u)‖2𝐿∞(0,𝑇,Ω)

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦
𝜈𝑡ℎ(u(𝑡))− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀⃦⃦2

𝐿2(𝜅)
d𝑡

≤ 𝐶ℎ4
𝜅

⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

.
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Finally, ∫︁ 𝑡𝑛

𝑡𝑛−1

‖(𝜈𝑡(u(𝑡))− 𝜈𝑡ℎ(u(𝑡)))D(u(𝑡))‖2𝐿2(𝜅) d𝑡 ≤ 𝐶‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)).

By regrouping the previous inequalities, we obtain:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
d𝑡 ≤ 𝐶

(︁
ℎ𝜅|ū𝑛

ℎ − u|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

+ ℎ4
𝜅

⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

+ ‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︁
, (76)

which provides a bound for the fourth term of (𝜂ℎ,1
𝑛,𝜅)2.

Next, the solution (u, 𝑝) of problem (FV) and the solution (ūℎ, 𝑝ℎ) associated with the solution
(ū𝑛

ℎ, 𝑝
𝑛
ℎ)0≤𝑛≤𝑚 of Problem (FV𝑛,ℎ) verify: ∀v ∈ 𝑍 and 𝑡 ∈]𝑡𝑛−1, 𝑡𝑛], 1 ≤ 𝑛 ≤ 𝑚,(︂
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
,v
)︂

+ (div v, 𝑝𝑛
ℎ)−

(︀
ū𝑛−1

ℎ · ∇ū𝑛
ℎ,v

)︀
− 1

2
(︀
div ū𝑛−1

ℎ ū𝑛
ℎ,v

)︀
− 𝜈(∇ū𝑛

ℎ,∇v)−
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ),D(v)
)︀

=
⟨
𝜕

𝜕𝑡
(u− ūℎ)(𝑡),v

⟩
+ 𝜈(∇(u(𝑡)− ū𝑛

ℎ),∇v) +
∫︁

Ω

[︀
u(𝑡) · ∇u(𝑡)− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

]︀
· v(𝑡) dx

− 1
2
(︀
div ū𝑛−1

ℎ ū𝑛
ℎ,v

)︀
− (div v, 𝑝(𝑡)− 𝑝ℎ(𝑡))− (f(𝑡)− f𝑛,v)−

(︀
f𝑛 − f̄𝑛,v

)︀
−
(︀
f̄𝑛 − f̄𝑛

ℎ ,v
)︀

+
∫︁

Ω

(︀
𝜈𝑡(u(𝑡))D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀

: D(v) dx−
∫︁

Ω

𝜈𝑡(u(𝑡))D(u)(𝑡) : D(v) dx. (77)

This equality will help us bound successively the first and second terms of (𝜂ℎ,1
𝑛,𝜅)2 for a given 𝜅.

(2) Regarding the first term in (𝜂ℎ,1
𝑛,𝜅)2, we set

𝛼𝑛
ℎ =

(︂
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
−∇𝑝𝑛

ℎ + 𝜈∆ū𝑛
ℎ +∇ ·

(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ

)︂
and choose in (77):

v = v𝜅 =
{︂
𝛼𝑛

ℎ𝜓𝜅 on 𝜅,
0 on Ω∖𝜅,

where 𝜓𝜅 is the bubble function which is equal to the product of the barycentric coordinates associated
with the vertices of 𝜅. Integrating between 𝑡𝑛−1 and 𝑡𝑛 and using the Cauchy–Schwarz inequality yields

𝜏𝑛

⃦⃦⃦
𝛼𝑛

ℎ𝜓
1/2
𝜅

⃦⃦⃦2

𝐿2(𝜅)2

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
𝜈|u− ū𝑛

ℎ|𝐻1(𝜅)2 |v𝜅|𝐻1(𝜅)2 +
(︁
‖f − f𝑛‖𝐿2(𝜅) +

⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(𝜅)

+
⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(𝜅)

)︁
‖v𝜅‖𝐿2(𝜅)

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦

𝑋′(𝜅)

(𝑡)|v𝜅|𝐻1(𝜅)2

)︃
d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

(︀
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀

: D(v𝜅) dx
)︂

d𝑡

−
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

𝜈𝑡(u)(𝑡)D(u)(𝑡) : D(v𝜅) dx
)︂

d𝑡.
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The Cauchy–Schwarz inequality allows to write:

𝜏𝑛

⃦⃦⃦
𝛼𝑛

ℎ𝜓
1/2
𝜅

⃦⃦⃦2

𝐿2(𝜅)2
≤ 𝜈𝜏

1
2

𝑛 |u− ū𝑛
ℎ|𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅))|v𝜅|𝐻1(𝜅)

+
(︁
𝜏

1
2

𝑛 ‖f − f𝑛‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) + 𝜏𝑛
⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(𝜅)

+ 𝜏𝑛
⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(𝜅)

)︁
‖v𝜅‖𝐿2(𝜅)2

+ 𝜏
1
2

𝑛

⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(𝜅))

|v𝜅|𝐻1(𝜅)

+ 𝜏
1
2

𝑛

(︁⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

+ ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︁
|v𝜅|𝐻1(𝜅).

Multiplying the above inequality with ℎ2
𝜅 and using Property 4.1, we obtain:

𝜏𝑛ℎ
2
𝜅

⃦⃦⃦
𝛼𝑛

ℎ𝜓
1/2
𝜅

⃦⃦⃦2

𝐿2(𝜅)2
≤ 𝐶𝜏

1
2

𝑛 ℎ𝜅‖v𝜅‖𝐿2(𝜅)

(︂
𝜈|u− ū𝑛

ℎ|𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅))

+ ℎ𝜅‖f − f𝑛‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) + 𝜏
1
2

𝑛 ℎ𝜅

⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(𝜅)

+ 𝜏
1
2

𝑛 ℎ𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(𝜅)

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ)(𝑡) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(𝜅))

+
⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))
+ ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︂
.

Now, we replace v𝜅 by 𝛼𝑛
ℎ𝜓𝑘 and use Property 4.1 to get rid of 𝜓1/2

𝑘 in the norm in the left-hand side and
to get rid of 𝜓𝑘 in the norm of v𝜅 in the right-hand side. Moreover, we use Lemma 2.11 and we obtain

𝜏𝑛ℎ
2
𝜅‖𝛼𝑛

ℎ‖
2
𝐿2(𝜅)2 ≤

1
2
𝜏𝑛ℎ

2
𝜅‖𝛼𝑛

ℎ‖
2
𝐿2(𝜅)2 + 𝐶

(︂
|u− ū𝑛

ℎ|
2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)) + ℎ2

𝜅‖f − f𝑛‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

+ 𝜏𝑛ℎ
2
𝜅

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)
+ 𝜏𝑛ℎ

2
𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)
+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ)(𝑡) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2

div ū𝑛−1
ℎ ū𝑛

ℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(𝜅))

+
⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

+ ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︂
. (78)

We insert 𝜈𝑡(ū𝑛−1
ℎ )D(ū𝑛

ℎ) and 𝜈𝑡(u(𝑡))D(ū𝑛
ℎ) into

⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ(ū𝑛−1

ℎ )D(ū𝑛
ℎ)
⃦⃦2

𝐿2(𝜅)
:⃦⃦

𝜈𝑡(u(𝑡))D(u(𝑡))− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
≤ 𝐶

(︁⃦⃦(︀
𝜈𝑡(u(𝑡))− 𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)

+ ‖𝜈𝑡(u(𝑡))(D(u(𝑡))− D(ū𝑛
ℎ))‖2𝐿2(𝜅) +

⃦⃦(︀
𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀
− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)

)︁
. (79)

By integrating between 𝑡𝑛−1 and 𝑡𝑛, and using the inverse inequality (13), the fact ℎ𝜅 ≤ 𝑐𝜏𝑛 and the bound
(9), we bound the first term in the right-hand side of (79) by:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦(︀
𝜈𝑡(u(𝑡))− 𝜈𝑡

(︀
ū𝑛−1

ℎ

)︀)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
d𝑡 =

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

[︀
𝑐𝑠ℎ

2
𝜅

(︀
‖D(u(𝑡))‖𝐹 −

⃦⃦
D
(︀
ū𝑛−1

ℎ

)︀⃦⃦
𝐹

)︀
D(ū𝑛

ℎ)
]︀2

dx
)︂

d𝑡

≤ 𝑐2𝑠ℎ
4
𝜅

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

[︀⃦⃦
D
(︀
u(𝑡)− ū𝑛−1

ℎ

)︀⃦⃦
𝐹
|D(ū𝑛

ℎ)|
]︀2

dx
)︂

d𝑡
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≤ 𝑐2𝑠ℎ
4
𝜅‖D(ū𝑛

ℎ)‖2𝐿∞(𝜅)

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦
D
(︀
u(𝑡)− ū𝑛−1

ℎ

)︀⃦⃦2

𝐿2(𝜅)
d𝑡

≤ 𝐶ℎ𝜅

⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

. (80)

By using that D(u) ∈ 𝐿∞(0, 𝑇,Ω), the second term in the right-hand side of (79) can be bounded by:∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜈𝑡(u(𝑡))(D(u(𝑡))− D(ū𝑛
ℎ))‖2𝐿2(𝜅) d𝑡 =

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂∫︁
𝜅

[︀
𝑐𝑠ℎ

2
𝜅‖D(u(𝑡))‖𝐹 D(u(𝑡)− ū𝑛

ℎ)
]︀2

dx
)︂

d𝑡

≤ 𝑐2𝑠ℎ
4
𝜅‖D(u)‖2𝐿∞(0,𝑇,Ω)

∫︁ 𝑡𝑛

𝑡𝑛−1

‖D(u(𝑡)− ū𝑛
ℎ)‖2𝐿2(𝜅) d𝑡

≤ 𝐶ℎ4
𝜅|u− ū𝑛

ℎ|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2). (81)

Integrating (79) between 𝑡𝑛−1 and 𝑡𝑛, using the above two inequalities and (76), we obtain:∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦
𝜈𝑡(u(𝑡))D(u(𝑡))− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦2

𝐿2(𝜅)
d𝑡

≤ 𝐶
(︁
|ū𝑛

ℎ − u|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2) +
⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

+ ‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︁
. (82)

We replace (82) into (78) and simplify, we obtain:

𝜏𝑛ℎ
2
𝜅‖𝛼𝑛

ℎ‖
2
𝐿2(𝜅)2 ≤ 𝐶

(︂
|u− ū𝑛

ℎ|
2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2) +

⃒⃒
u− ū𝑛−1

ℎ

⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

+ ℎ2
𝜅‖f − f𝑛‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) + 𝜏𝑛ℎ

2
𝜅

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(𝜅)
+ 𝜏𝑛ℎ

2
𝜅

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(𝜅)

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ)(𝑡) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ +∇(𝑝− 𝑝ℎ)
⃦⃦⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(𝜅)2)

+ ‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) + ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︂
.

We replace 𝛼𝑛
ℎ by its value and we obtain:

𝜏𝑛ℎ
2
𝜅

⃦⃦⃦⃦(︂
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
−∇𝑝𝑛

ℎ + 𝜈∆ū𝑛
ℎ +∇ ·

(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀

− ū𝑛−1
ℎ · ∇ū𝑛

ℎ −
1
2

div ū𝑛−1
ℎ ū𝑛

ℎ

)︂⃦⃦⃦⃦2

𝐿2(𝜅)2
≤ 𝐶𝐿(𝜅), (83)

where we recall that 𝐿(·) is defined in (73).
(3) Regarding the second term in (𝜂ℎ,1

𝑛,𝜅)2, for every 𝑒 ∈ 𝜀𝜅, we note by 𝜅′ the other element containing 𝑒. We
introduce the function:

𝑅ℎ,1
𝑛,𝑒 =

[︀(︀
𝜈∇ū𝑛

ℎ + 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
n− 𝑝𝑛

ℎn
]︀
𝑒

and, recalling that ℒ𝑒 is defined at the beginning of Section 4, we choose in (77) v = v𝑒 = ℒ𝑒(𝑅ℎ,1
𝑛,𝑒𝜓𝑒)

extended by 0 outside of �̃� := 𝜅 ∪ 𝜅′. Integrating by parts the diffusion and pressure terms, we notice that
the resulting trace terms on 𝑒 sum up to

∫︀
𝑒
𝑅ℎ,1

𝑛,𝑒(𝑅ℎ,1
𝑛,𝑒𝜓𝑒); moving all other terms in the right-hand side of

the equality, integrating between 𝑡𝑛−1 and 𝑡𝑛 and applying the Cauchy–Schwarz inequality we obtain:

𝜏𝑛

⃦⃦⃦
𝑅ℎ,1

𝑛,𝑒(𝜓𝑒)
1
2

⃦⃦⃦2

𝐿2(𝑒)
≤ 𝜏

1
2

𝑛

(︂
𝜈|u− ū𝑛

ℎ|𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(�̃�)2)|v𝑒|𝐻1(�̃�)2
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+
(︁
‖f − f𝑛‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�)2) + 𝜏

1
2

𝑛

⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(�̃�)2

+ 𝜏
1
2

𝑛

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(�̃�)2

)︁
‖v𝑒‖𝐿2(�̃�)2

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) +∇(𝑝− 𝑝ℎ) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ

⃦⃦⃦⃦
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(�̃�)2)

|v𝑒|𝐻1(�̃�)2

+ 𝜏
1
2

𝑛 ‖v𝑒‖𝐿2(�̃�)2

⃦⃦⃦⃦
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ 𝜈∆ū𝑛

ℎ +∇ ·
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2

div ū𝑛−1
ℎ ū𝑛

ℎ −∇𝑝𝑛
ℎ

⃦⃦⃦⃦
𝐿2(�̃�)2

+
(︁⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�))

+ ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�))

)︁
|v𝑒|𝐻1(�̃�)2

)︂
.

Multiplying by ℎ𝑒, and using Property 4.2 for v𝑒 = ℒ𝑒(𝑅ℎ,1
𝑛,𝑒𝜓𝑒), we obtain:

𝜏𝑛ℎ𝑒

⃦⃦⃦
𝑅ℎ,1

𝑛,𝑒(𝜓𝑒)
1
2

⃦⃦⃦2

𝐿2(𝑒)
≤ 𝐶𝜏

1
2

𝑛 ℎ
1
2
𝑒

⃦⃦
𝑅ℎ,1

𝑛,𝑒(𝜓𝑒)
⃦⃦

𝐿2(�̃�)2

(︂
|u− ū𝑛

ℎ|𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(�̃�)2)

+ ℎ𝑒

(︁
‖f − f𝑛‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�)2) + 𝜏

1
2

𝑛

⃦⃦
f𝑛 − f̄𝑛

⃦⃦
𝐿2(�̃�)2

+ 𝜏
1
2

𝑛

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦
𝐿2(�̃�)2

)︁
+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) +∇(𝑝− 𝑝ℎ) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ

⃦⃦⃦⃦
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(�̃�)2)

+ ℎ𝑒𝜏
1
2

𝑛

⃦⃦⃦⃦
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ 𝜈∆ū𝑛

ℎ +∇ ·
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2

div ū𝑛−1
ℎ ū𝑛

ℎ −∇𝑝𝑛
ℎ

⃦⃦⃦⃦
𝐿2(�̃�)2

+
⃦⃦
𝜈𝑡(u)(𝑡)D(u)(𝑡)− 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
⃦⃦

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�))

+ ‖𝜈𝑡(u)(𝑡)D(u)(𝑡)‖𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�))

)︂
.

Using (82), the fact 𝜓𝑒 ≤ 1 implies 𝜓𝑒 ≤ 𝜓
1
2
𝑒 and using Lemma 2.11, we obtain:

𝜏𝑛ℎ𝑒

⃦⃦⃦
𝑅ℎ,1

𝑛,𝑒(𝜓𝑒)
1
2

⃦⃦⃦2

𝐿2(𝑒)
≤ 𝐶

(︃
𝜈|u− ū𝑛

ℎ|
2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(�̃�)2) + |u− ū𝑛−1

ℎ |2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(�̃�)2)

+ ℎ2
𝑒‖f − f𝑛‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�)2) + 𝜏𝑛ℎ

2
𝑒

⃦⃦
f𝑛 − f̄𝑛

⃦⃦2

𝐿2(�̃�)2
+ 𝜏𝑛ℎ

2
𝑒

⃦⃦
f̄𝑛 − f̄𝑛

ℎ

⃦⃦2

𝐿2(�̃�)2

+
⃦⃦⃦⃦
𝜕

𝜕𝑡
(u− ūℎ) +∇(𝑝− 𝑝ℎ) + u · ∇u− ū𝑛−1

ℎ · ∇ū𝑛
ℎ −

1
2

div ū𝑛−1
ℎ ū𝑛

ℎ

⃦⃦⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻−1(�̃�)2)

+ 𝜏𝑛ℎ
2
𝑒

⃦⃦⃦⃦
f̄𝑛
ℎ −

1
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
+ 𝜈∆ū𝑛

ℎ +∇ ·
(︀
𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
− ū𝑛−1

ℎ · ∇ū𝑛
ℎ

− 1
2

div ū𝑛−1
ℎ ū𝑛

ℎ −∇𝑝𝑛
ℎ

⃦⃦⃦⃦2

𝐿2(�̃�)2
+ ‖𝜈𝑡(u)− 𝜈𝑡ℎ(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�)) + ‖𝜈𝑡(u)D(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(�̃�))

)︃

+
1
2
𝜏𝑛ℎ𝑒

⃦⃦⃦
𝑅ℎ,1

𝑛,𝑒(𝜓𝑒)
1
2

⃦⃦⃦2

𝐿2(𝑒)2
.

Then we simplify, use the first property of Proposition 4.2, replace 𝑅ℎ,1
𝑛,𝑒 by its value, sum over 𝑒 ⊂ 𝜕𝜅 using

that ℎ𝑒 ≤ ℎ𝜅 and then use (83); we obtain:

𝜏𝑛

(︃∑︁
𝑒∈𝜀𝜅

ℎ𝑒

⃦⃦ [︀(︀
𝜈∇ū𝑛

ℎ + 𝜈𝑡ℎ

(︀
ū𝑛−1

ℎ

)︀
D(ū𝑛

ℎ)
)︀
n− 𝑝𝑛

ℎn
]︀
𝑒

⃦⃦2

𝐿2(𝑒)

)︃
≤ 𝐶𝐿(𝑤𝜅). (84)
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(4) Regarding the third term in (𝜂ℎ,1
𝑛,𝜅)2, since 𝑡 ↦→ ūℎ(𝑡,x) is an affine function with value ū𝑛

ℎ(x) in 𝑡 = 𝑡𝑛 and
using div u(𝑡,x) = 0, we have

𝜏𝑛
4
‖div ū𝑛

ℎ(x)‖2𝐿2(𝜅) ≤ ‖div ūℎ(𝑡,x)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) = ‖div(u(𝑡,x)− ūℎ(𝑡,x)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

≤ |u(𝑡,x)− ūℎ(𝑡,x)|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2). (85)

Combining (76), (83), (84) and (85), we obtain the desired result.

�

Secondly, we estimate the indicator 𝜂ℎ,2
𝑛,𝜅.

Theorem 5.2. Let D(u) ∈ 𝐿∞(0, 𝑇,Ω) and suppose that ℎ𝑛 ≤ 𝐶𝑠𝜏𝑛. We have the following estimate:

𝜏𝑛
(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
≤ 𝐶

(︁
ℎ𝜅

⃒⃒
ū𝑛−1

ℎ − u
⃒⃒2
𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

+ ℎ4
𝜅|ū𝑛

ℎ − u|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2) + ‖𝜈𝑡(u)D(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅))

)︁
. (86)

Proof. We write that 𝜏𝑛(𝜂ℎ,2
𝑛,𝜅)2 =

∫︀ 𝑡𝑛

𝑡𝑛−1
(𝜂ℎ,2

𝑛,𝜅)2 d𝑡 and we insert 𝜈𝑡(u)(𝑡)D(u)(𝑡) and 𝜈𝑡(u)(𝑡)D(ū𝑛
ℎ) into (𝜂ℎ,2

𝑛,𝜅)2

and then use triangular inequalities. Using (80) and (81) we obtain the result. �

Remark 5.3. In Theorems 5.1 and 5.2, the term ‖𝜈𝑡(u)D(u)‖2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐿2(𝜅)) comes from the fact that the LES
solves a system that differs from the original Navier–Stokes equations. It is of order ℎ4

𝜅 because 𝜈𝑡 scales like ℎ2
𝜅

and we remark that it is a higher order term as compared to other error terms.

To conclude, we estimate 𝜂𝜏
𝑛,𝜅.

Theorem 5.4. We have the following estimate:

(𝜂𝜏
𝑛,𝜅)2 ≤ 𝐶

(︁
|u− ūℎ|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2) + |u− 𝜋𝜏 ūℎ|2𝐿2(𝑡𝑛−1,𝑡𝑛,𝐻1(𝜅)2)

)︁
. (87)

Proof. Using the definition of ūℎ(𝑡), we obtain ∀𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛]:

𝑡− 𝑡𝑛
𝜏𝑛

(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
= ūℎ(𝑡)− 𝜋𝜏 ūℎ(𝑡).

Inserting u(𝑡) in the right-hand side of this equality and taking the gradient of both sides, integrating on 𝜅 and
using the triangular inequality, we obtain⃒⃒⃒⃒

𝑡− 𝑡𝑛
𝜏𝑛

⃒⃒⃒⃒2 ⃦⃦
∇
(︀
ū𝑛

ℎ − ū𝑛−1
ℎ

)︀
(x)
⃦⃦2

𝐿2(𝜅)
≤ 2
(︁
‖∇(u− ūℎ)(𝑡,x)‖2𝐿2(𝜅) + ‖∇(u− 𝜋𝜏 ūℎ)(𝑡,x)‖2𝐿2(𝜅)

)︁
.

Integrating between 𝑡𝑛−1 and 𝑡𝑛 we obtain the result with 𝐶 = 6. �

As a final conclusion of Sections 4 and 5, we have obtained the equivalence of the error indicators of Def-
inition 4.7 with the error between the exact solution of the Navier–Stokes equations and the discrete filtered
solution, up to terms representing the data oscillation (with respect to time) for f , the change of source term
due to the filtering process (f̄𝑛 instead of f𝑛), the approximation of f̄𝑛 by f̄𝑛

ℎ , that of 𝜈𝑡 by 𝜈𝑡ℎ and finally a
term related to the additional turbulent diffusion operator.
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Figure 1. The domain.

6. Numerical results

In this section, we present numerical simulations using the FreeFem++ code (see [20]) and the finite element
spaces and time marching scheme discussed in Section 3. They show that LES provides lower error indicators
and lower deviations from a reference solution than pure Navier–Stokes simulations; they also show that the
efficiency index does not vary much with increasing Reynolds number and, finally, that, compared to uniform
refinement, adaptive LES offers a substantial reduction in the number of degrees of freedom needed in the
simulations to reach a given error indicator value.

We consider the domain Ω given by Figure 1 with the following properties: 𝐴𝐵 = 1.5, 𝐵𝐶 = 𝐷𝐸 = 1,
𝐶𝐷 = 0.25, 𝐸𝐹 = 2.45, 𝐹𝐺 = 𝐴𝐿 = 1.5, 𝐺𝐻 = 𝐿𝐾 = 0.4, 𝐻𝐼 = 𝐾𝐽 = 1.1, 𝐿𝐺 = 𝐾𝐻 = 𝐽𝐼 = 4.2.
Concerning uniform meshes, we divide the edges of 𝜕Ω into segments of equal lengths, and we define 𝑀 to be
the number of such mesh segments per unit length. For 𝑀 = 8 this leads to a mesh with around 900 vertices
and 1800 triangles, for a total of around 6500 degrees of freedom.

We consider 𝜈 = 1
Re where Re is the Reynolds number and we choose the density of body forces f equal to

(−2, 0) in the rectangle 𝐿𝐺𝐻𝐾 and to (0, 0) elsewhere. This implies, as shown on Figure 2, that the flow will
move from the right to the left at the center of the domain; when the flow hits the left boundary, it splits into
an upper flow and a lower flow; the 𝐵𝐶𝐷𝐸 obstacle will cause recirculations in the upper flow. This will in
turn generate turbulent interactions with the main flow at the center of the domain. In all the calculations, we
chose the Smagorinsky constant to be 𝑐𝑠 = 0.1.

From the calculation of (ū𝑛
ℎ, 𝑝

𝑛
ℎ) solution of (FV𝑛,ℎ) at each time step, we compute the error estimators of

Definition 4.7; in the actual calculation we replace 𝜈𝑡ℎ by 𝜈𝑡 for the sake of simplicity; this has almost no effect
on the results.

6.1. Comparison of error indicators for calculations with or without LES

The indicator is defined by:

(︀
𝜂ℎ

𝑛

)︀2
=
∑︁

𝜅∈𝒯𝑛ℎ

𝜏𝑛
(︀
𝜂ℎ,1

𝑛,𝜅

)︀2
+ 𝜏𝑛

(︀
𝜂ℎ,2

𝑛,𝜅

)︀2
, (𝜂𝜏

𝑛)2 =
∑︁

𝜅∈𝒯𝑛ℎ

(︀
𝜂𝜏

𝑛,𝜅

)︀2 and 𝜂𝑛 =
(︁(︀
𝜂ℎ

𝑛

)︀2
+ (𝜂𝜏

𝑛)2
)︁ 1

2
. (88)

To study the effect of the addition of the turbulent diffusion term in the LES method, we compare error
indicators in time and space for simulations with or without LES for various values of Re ∈ {200, 5000} and
𝑀 ∈ {8, 16, 32, 64}. In all simulations the final time is set to 𝑇 = 3. We choose the time step to be ∆𝑡 = 1

4𝑀 .
We define:

𝜂ℎ,1 =

⎯⎸⎸⎸⎷∑︀𝑛

∑︀
𝜅∈𝒯𝑛ℎ

𝜏𝑛

(︁
𝜂ℎ,1

𝑛,𝜅

)︁2

∑︀
𝑛 𝜏𝑛|ū𝑛

ℎ|
2
𝐻1(Ω)

, 𝜂ℎ,2 =

⎯⎸⎸⎸⎷∑︀𝑛

∑︀
𝜅∈𝒯𝑛ℎ

𝜏𝑛

(︁
𝜂ℎ,2

𝑛,𝜅

)︁2

∑︀
𝑛 𝜏𝑛|ū𝑛

ℎ|
2
𝐻1(Ω)

,
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Figure 2. Velocity modulus for Re = 1000 and 𝑡 = 1 (upper row) and 𝑡 = 3 (lower row, with
a different color scale).

Table 1. Comparison between estimators with and without LES for Re = 200 and 𝑇 = 3.

NS without LES NS with LES
Estimators Time (s) Estimators Time (s)

𝑀 # dof 𝜂ℎ,1 𝜂ℎ,2 𝜂𝜏 𝜂 CPU 𝜂ℎ,1 𝜂ℎ,2 𝜂𝜏 𝜂 CPU

8 604𝐾 0.324 0 0.028 0.325 28.5 0.260 7.5× 10−4 0.026 0.262 42.2
16 4.75𝑀 0.149 0 0.014 0.150 211 0.139 2.6× 10−4 0.014 0.138 312
32 38.2𝑀 0.0630 0 0.008 0.0639 1702 0.0618 8.1× 10−5 0.008 0.0623 2333
64 308𝑀 0.0296 0 0.004 0.0299 14 858 0.0295 2.1× 10−5 0.004 0.0298 19 350

𝜂𝜏 =

⎯⎸⎸⎷∑︀𝑛

∑︀
𝜅∈𝒯𝑛ℎ

(︀
𝜂𝜏

𝑛,𝜅

)︀2∑︀
𝑛 𝜏𝑛|ū𝑛

ℎ|
2
𝐻1(Ω)

and 𝜂 =

⎯⎸⎸⎷ ∑︀
𝑛(𝜂𝑛)2∑︀

𝑛 𝜏𝑛|ū𝑛
ℎ|

2
𝐻1(Ω)

·

The results are in Table 1 for Re = 200 and in Table 2 for Re = 5000. The total number of degrees of freedom
in each simulation is indicated under the column # dof. It is clear that the space and time estimators using
the LES method are smaller than those of the Navier–Stokes problem without LES. In addition, improvement
is more important for high Reynolds numbers and coarse meshes, which is an indication that the LES method
exactly plays the role expected from it. However, these conclusions are based only on observation of indicators;
to confirm this trend, we will directly measure the difference between numerical solutions on different meshes
and reference solutions obtained on the finest mesh that we could use given the resources at our disposal. This
is the subject of the next sub-section.

6.2. Comparisons of errors and estimators

In this section, we compare the relative norms of differences between a reference solution u𝐹 obtained by a
simulation without LES on a fine mesh (𝑀 = 256 and ∆𝑡 = 0.25/𝑀) and solutions u𝐶 of simulations on coarse
meshes without LES on the one hand and with LES on the other hand for different Reynolds numbers. This
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Table 2. Comparison between estimators with and without LES for Re = 5000 and 𝑇 = 3.

NS without LES NS with LES
Estimators Time (s) Estimators Time (s)

𝑀 𝜂ℎ,1 𝜂ℎ,2 𝜂𝜏 𝜂 CPU 𝜂ℎ,1 𝜂ℎ,2 𝜂𝜏 𝜂 CPU

8 0.552 0 0.060 0.555 26.5 0.396 8.2× 10−4 0.039 0.398 39.4
16 0.496 0 0.047 0.498 217 0.357 3.6× 10−4 0.044 0.359 307
32 0.444 0 0.036 0.445 1703 0.306 1.6× 10−4 0.035 0.308 2410
64 0.292 0 0.024 0.293 14 688 0.226 6.4× 10−5 0.023 0.228 18 880

Table 3. Relative norm of the difference between the solution of the NS problem on a reference
fine mesh and solution of the NS problem with and without LES on coarse meshes for Re = 200
and 𝑇 = 3.

𝑒𝐹𝐶 without LES 𝑒𝐹𝐶 with LES

𝑀𝐹 = 256 and 𝑀𝐶 = 8 0.743 0.628
𝑀𝐹 = 256 and 𝑀𝐶 = 16 0.359 0.349
𝑀𝐹 = 256 and 𝑀𝐶 = 32 0.164 0.166
𝑀𝐹 = 256 and 𝑀𝐶 = 64 0.078 0.079
𝑀𝐹 = 256 and 𝑀𝐶 = 256 − 5.19× 10−4

serves us as a measure of the errors between the numerical solutions obtained on coarse meshes and the exact,
unknown solution. We also compare the error estimators and these measures of the errors in order to estimate
the unknown constants appearing in the upper bounds of Section 4, see Remark 4.17. The relative difference
norm is defined by:

𝑒𝐹𝐶 =

⎯⎸⎸⎷ |u𝐶 − u𝐹 |2𝐻1(Ω)

|u𝐹 |2𝐻1(Ω)

·

The relative norms of the differences are in Tables 3 and 4 for Re ∈ {200, 5000} and 𝑇 = 3. We note 𝑀𝐹 = 256
the number of segments per unit length used to cut the edges of 𝜕Ω in the fine mesh and 𝑀𝐶 ∈ {8, 16, 32, 64}
in the different coarse meshes. In addition, the difference between the solutions with and without LES is also
calculated on the fine mesh (this is noted 𝑀𝐹 = 256 and 𝑀𝐶 = 256 in the tables below).

The tables show a general trend indicating that the differences between the LES solutions and the reference
solution are smaller than those observed without LES. This trend is particularly notable for high Reynolds
numbers and coarse meshes, on which solutions without LES are particularly inaccurate. This broadly confirms
the observations made from the error estimators in the previous section.

Figure 3 shows the ratio of 𝑒𝐹𝐶 in Tables 3 and 4 with estimator 𝜂 in Tables 1 and 2 (the same vertical scale
was chosen on both figures). This figure shows that this ratio, and thus the constant 𝐶 appearing in (70), seem
to increase with the Reynolds number, but not dramatically. On coarse meshes and without LES this constant
seems to be larger, but remains moderate with LES.

6.3. Comparison between uniform and adapted LES problems

In the previous sections, we proved that solutions obtained with LES are more accurate than those obtained
without LES. Therefore, we only use LES in this sub-section. We are now seeking to obtain more accurate
simulations by using an algorithm for adapting the mesh and the time step using the associated estimators,
seeking to balance the time estimator and the space estimator. We propose an adaptation algorithm described
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Table 4. Relative norm of the difference between the solution of the NS problem on a reference
fine mesh and solution of the NS problem with and without LES on coarse meshes for Re = 5000
and 𝑇 = 3.

𝑒𝐹𝐶 without LES 𝑒𝐹𝐶 with LES

𝑀𝐹 = 256 and 𝑀𝐶 = 8 3.052 0.983
𝑀𝐹 = 256 and 𝑀𝐶 = 16 2.617 0.963
𝑀𝐹 = 256 and 𝑀𝐶 = 32 1.612 0.840
𝑀𝐹 = 256 and 𝑀𝐶 = 64 0.975 0.694
𝑀𝐹 = 256 and 𝑀𝐶 = 256 − 0.246

Figure 3. Estimation of ratio of errors over estimators with (left) and without (right) LES.

below. We measure its efficiency by comparing the estimators calculated on the one hand on uniform meshes and
with constant time steps and on the other hand on meshes and with time steps adapted using our algorithm,
which is driven by a tolerance denoted 𝜀 set by the user, chosen all the smaller as the desired precision is high.
At each time step, knowing ū𝑛

ℎ, the following operations are performed:

(1) We calculate (ū𝑛+1
ℎ , 𝑝𝑛+1

ℎ ).
(2) We calculate 𝜂ℎ

𝑛 and 𝜂𝜏
𝑛 defined in (88).

(3) If 𝜂ℎ
𝑛 + 𝜂𝜏

𝑛 > 𝜀, we adapt in time or in space:
(a) If 𝜂ℎ

𝑛 < 𝜂𝜏
𝑛 and if the time step 𝜏𝑛 is greater than a minimum time step (∆𝑡)min, we adapt in time so

that the next estimator in time is slightly less than the estimator in space.
(b) If 𝜂ℎ

𝑛 < 𝜂𝜏
𝑛 and 𝜏𝑛 = (∆𝑡)min, then:

(i) If 𝜂ℎ
𝑛 >

𝜀
2 , we adapt in space.

(ii) Otherwise, adaptation in time is impossible and adaptation in space useless.
(c) If 𝜂ℎ

𝑛 > 𝜂𝜏
𝑛:

(i) If the maximum number of mesh refinements is not reached, we adapt in space.
(ii) Otherwise we keep the calculation.

(4) If 𝜂ℎ
𝑛 +𝜂𝜏

𝑛 < 0.9𝜀 we can increase the time step; in doing so we try to balance the space and time estimators.
(5) Otherwise we ensure that the estimators are balanced

(a) If 𝜂𝜏
𝑛 ≪ 𝜂ℎ

𝑛, the time step is increased to balance the estimators, even if this means having to refine in
space at the following iteration.

(b) If the estimators are balanced, nothing is done.

Figure 4 shows the resulting meshes at different values of 𝑡, for the particular value 𝜀 = 0.08. Since we
start from a vanishing velocity at 𝑡 = 0 and since the momentum source term is piecewise constant in the
computational domain, large variations of the velocity and its gradient occur near the discontinuity line of
the source term; this is well captured by the mesh which concentrates cells around this line at 𝑡 = 1. Then,
as complex interactions with boundaries occur, the mesh at 𝑡 = 3 is refined in the vicinity of some parts of
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Figure 4. Adapted meshes for Re = 1000 and 𝑡 = 1 (upper row) and 𝑡 = 3 (lower row).

the boundary, including, as expected, that of the upper obstacle, since geometric singularities usually affect
negatively the regularity of the solution. It is important to note that mesh density is not necessarily driven by
velocity modulus, since the estimators rather depend on variations of the velocity gradients. Additionally, many
cells are avoided in a wide part of the domain, in particular in the vicinity of a large part of the boundary. This
results in huge savings in terms of computational resources: the smallest cell length is around 2.1× 10−3, while
the largest is around 5.7× 10−1.

For Re = 1000, Figure 5 shows a comparison, in logarithmic scale, of the error indicators for the uniform
LES problems and adapted LES problem with respect to the number of degrees of freedom. The uniform curve
was obtained by simulations on several uniform meshes with constant time steps. For each of these meshes the
number of degrees of freedom is the product of the number of time steps by the number of unknowns discretizing
the problem on the considered mesh. The adaptive curve was obtained by choosing several different values of
𝜀 (see algorithm above) and for each of these values, we added the number of degrees of freedom at each time
step, which may vary during the calculation when the algorithm decides that a mesh adaptation is necessary.
This figure shows the effectiveness of the adapted algorithm versus the uniform one.

7. Conclusions and perspectives

We have obtained reliable and efficient a posteriori error estimators between the numerical solution of LES
equations and the exact solution of the Navier–Stokes problem in two space dimensions. The error indicators
are of three types: one related to the time discretization, one to the space discretization and finally one to the
additional diffusion term introduced by the Smagorinsky model for large eddies. Numerical simulations have
shown the usefulness of such indicators to perform adaptive LES.

A first possible extension of this work is to investigate the case of three space dimensions; even under
idealized existence and uniqueness assumptions, we have noticed in Remark 2.3 that one of our main tools in
two dimensions does not carry over to three dimensions, so that other techniques are to be found. Furthermore,
in practice, using homogeneous Dirichlet boundary conditions for the discrete filtered velocity is not the method
of choice because this implies resolving the viscous boundary layers, which may be particularly thin for high
Reynolds numbers; practitioners often resort to “laws of the wall”, which would then need to be included in the
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Figure 5. Comparison between uniform and adaptive LES estimators with respect to the total
numbers of degrees of freedom in logarithmic scale.

analysis in order to account for the additional error that these boundary conditions generate. Another possible
additional research path is to consider other types of finite elements, be they conforming like the Taylor-Hood
pairs [28] or non-conforming like the Crouzeix–Raviart [14] or the Matthies–Tobiska [23] families. Finally, other,
more sophisticated, LES models are routinely used in Computational Fluid Dynamics, like for example that of
Germano et al. [17]; it would be worth extending the present work to these alternative LES models.
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