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Behavioral/Cognitive

Neurocomputational Underpinnings of Expected Surprise

Françoise Lecaignard,1,2 Olivier Bertrand,1,2 Anne Caclin,1,2 and Jérémie Mattout1,2
1Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; F-69000, France, and 2University Lyon 1, Lyon, F-69000, France

Predictive coding accounts of brain functions profoundly influence current approaches to perceptual synthesis. However, a fundamen-
tal paradox has emerged, that may be very relevant for understanding hallucinations, psychosis, or cognitive inflexibility: in some sit-
uations, surprise or prediction error-related responses can decrease when predicted, and yet, they can increase when we know they
are predictable. This paradox is resolved by recognizing that brain responses reflect precision-weighted prediction error. This presses
us to disambiguate the contributions of precision and prediction error in electrophysiology. To meet this challenge for the first time,
we appeal to a methodology that couples an original experimental paradigm with fine dynamic modeling. We examined brain
responses in healthy human participants (N=20; 10 female) to unexpected and expected surprising sounds, assuming that the latter
yield a smaller prediction error but much more amplified by a larger precision weight. Importantly, addressing this modulation
requires the modeling of trial-by-trial variations of brain responses, that we reconstructed within a fronto-temporal network by com-
bining EEG and MEG. Our results reveal an adaptive learning of surprise with larger integration of past (relevant) information in the
context of expected surprises. Within the auditory hierarchy, this adaptation was found tied down to specific connections and reveals
in particular precision encoding through neuronal excitability. Strikingly, these fine processes are automated as sound sequences were
unattended. These findings directly speak to applications in psychiatry, where specifically impaired precision weighting has been sug-
gested to be at the heart of several conditions such as schizophrenia and autism.

Key words: Bayesian learning; dynamic causal modeling; EEG-MEG fusion; mismatch negativity; predictive coding; trial-
by-trial modeling

Significance Statement

In perception as Bayesian inference and learning, context sensitivity expresses as the precision weighting of prediction errors. A
subtle mechanism that is thought to lie at the heart of several psychiatric conditions. It is thus critical to identify its neurophysiolog-
ical and computational underpinnings. We revisit the passive auditory oddball paradigm by manipulating sound predictability and
use a twofold modeling approach to simultaneous EEG-MEG recordings: (1) trial-by-trial modeling of cortical responses reveals a
context-sensitive perceptual learning process; (2) the dynamic causal modeling (DCM) of evoked responses uncovers the associated
changes in synaptic efficacy. Predictability discloses a link between precision weighting and self-inhibition of superficial pyramidal
(SP) cells, a result that paves the way to a fine description of healthy and pathologic perception.

Introduction
Brain responses to surprise are essential to understand how the
brain adapts to changing or uncertain environment. In perception

research, the abundant literature dedicated to surprise-related
electrophysiological components has largely contributed to frame
perception processes into regularity learning, independently of
attention engagement. This important turn leverages on influential
computational predictive brain theories (Dayan et al., 1995;
Friston, 2012), with predictive coding algorithm in particular
(Friston, 2005; Spratling, 2017). Under this view, evoked responses
are treated as surprise or prediction errors indexing the discrep-
ancy between predictions established through regularity learning
and current sensations (Schröger et al., 2015; Auksztulewicz and
Friston, 2016; Heilbron and Chait, 2018; Lumaca et al., 2019).
These dynamic errors drive belief updating to ensure an on-going
adaptation to changes. However, recent work points to a funda-
mental paradox that clearly deserves attention to further refine
perceptual models (Auksztulewicz et al., 2017; Southwell et al.,
2017; Heilbron and Chait, 2018; Fitzgerald and Todd, 2020;
Meyniel, 2020; Walsh et al., 2020). Namely, prediction error
related brain responses were found to decrease with reduced (or
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predicted) surprise but also to increase in some contexts where
surprise becomes predictable.

Predictive brain theories resolve this paradox by considering
the precision (or confidence) the brain assigns to predictions and
sensory inputs so that evoked responses to surprise would reflect
precision-weighted prediction errors. In short, these computa-
tional views of brain functions posit that the brain processes ev-
ery information (internal predictions and incoming sensations)
in a probabilistic way, meaning that the brain would not only
estimate the most likely value of information but also its associ-
ated precision (the mean and inverse variance of the correspond-
ing probability distribution, respectively). Precision provides a
formal way to control the gain of prediction errors according to
their contextual relevance for an efficient and flexible perceptual
processing (Friston, 2008, 2009; Clark, 2013; Mathys et al., 2014).
Precision-weighted prediction errors correspond to the “preci-
sion weight � prediction error” product. The resulting filtering
of prediction errors directly speaks to the fact that the same sur-
prising event may convey an important message in some con-
texts but not in others. This points to the difference between
expected and unexpected surprise induced by rare events deliv-
ered within a predictable (structured) or random (uncertain)
environment, respectively. Precisions hence make perception
context-sensitive and are expected to be larger in a more
predictable context (PC). This is assumed to result from a
hierarchical learning process whereby higher-order belief
updating adjusts the precision of first-order (sensory) predic-
tion errors. This implies two opposite effects at the sensory
level: (1) a higher precision afforded by predictability, yield-
ing efficient belief updating, hence (2) lower prediction errors.
The initial paradox thus turns into a challenge, namely, to isolate
the physiological representations of precision and prediction error,
respectively.

We here address this timely question by proposing an audi-
tory oddball experimental paradigm with a predictability manip-
ulation to generate expected and unexpected surprises. These
could be indexed by the mismatch negativity (MMN; Friston,
2005; Winkler, 2007). We conducted simultaneous EEG and
MEG recordings (Lopes da Silva, 2013) to measure subtle
changes of brain activity during passive listening. Passive listen-
ing has been used here primarily to study implicit, automatic
learning processes and to avoid the presumably confounding
effect of voluntary attention on the adjustment of precision
weights (Feldman and Friston, 2010; Parr and Friston, 2019). We
could indeed measure a smaller MMN under predictability based
on these EEG data (Lecaignard et al., 2015). However, evoked
response analysis (average-based) prevents from testing Bayesian
learning directly, nor to seek separate evidence for precision and
prediction errors in brain responses (the MMN as a precision-
weighted prediction error combines both quantities indistinctly).
Here, we pursue our investigation using a neurocomputational
dynamic modeling scheme. In short, at the cognitive (computa-
tional) level, trial-by-trial modeling of reconstructed cortical
responses could evidence Bayesian learning and its automatic ad-
aptation to predictability, an effect which translates into a larger
account of past (relevant) information. We then addressed the
issue of disentangling learning quantities at the physiological
level, using dynamic causal models (DCMs). Predictability effect
was measured as changes in the synaptic strength within a
fronto-temporal network, revealing distinct mechanisms for the
encoding of precision weights and prediction errors.

Materials and Methods
A general view of the present neurocomputational approach is provided
in Figure 2. Before testing the predictability effect onto perceptual learn-
ing and associated synaptic connectivity, we first conducted a control
analysis aiming at characterizing such learning at play for the processing
of unexpected sounds (in both contexts) at the cognitive level (using
trial-by-trial computational modeling) and the physiological level (using
DCM).

Participants
Twenty healthy volunteers (10 female, mean age 256 5 years, ranging
from 18 to 35) participated in the study. The previous EEG report
(Lecaignard et al., 2015) involved two participants that were excluded
here because of noisy MEG signals. All participants had no history of
neurologic or psychiatric disorder and reported normal hearing. All
participants gave written informed consent and were paid for their
participation. Ethical approval was obtained from the appropriate re-
gional ethics committee on Human Research (CPP Sud-Est IV-2010-
A00301-38).

Experimental design
Predictable and unpredictable sound sequences embedding a typical fre-
quency oddball rule [conditions PC and unpredictable context (UC)]
were used in the present study. Control sequences using an intensity
deviance were also delivered to the participants; the corresponding data-
sets have been analyzed previously (Lecaignard et al., 2015, 2021).
Participants were instructed to ignore the sounds and watch a silent
movie of their choice with subtitles. Predictable sound sequences com-
prised 16 cycles that were each made of a repeating 42-tone pattern fol-
lowing the deterministic incrementing rule depicted in Figure 1A.
Unpredictable sequences corresponded to pseudo-random oddball
sequences typically used in oddball paradigms, with specific controls for
the number of standards in between two deviants to mirror the predict-
able sequences. Despite their differing statistical structure, both sequence
types had the same deviant probability (p = 0.17) and the same distribu-
tion of deviants among standards (there were exactly the same number
of chunks of repeating standards before a deviant in both conditions,
with chunk size varying from 2 to 8 standards). Each condition (UC,
PC) was delivered twice, in separated runs (made of 674 stimuli each) to
enable reversing the role of the two sounds (500/550Hz; standard/devi-
ant). Further details about stimuli and sequence can be found in
(Lecaignard et al., 2015). All stimuli were delivered using Presentation
software (Neurobehavioral Systems).

Data acquisition and preprocessing
Simultaneous MEG and EEG recordings were conducted in a magneti-
cally shielded room with a whole-head 275-channel gradiometer (CTF-
275 by VSMMedtech Inc.) and the CTF-supplied EEG recording system
(63 electrodes), respectively. Signal was amplified, bandpass filtered
(0.016–150Hz), digitized (sampling frequency 600Hz), and stored for
off-line analysis. First-order spatial gradient noise cancellation was
applied to MEG signal. EEG reference and ground electrodes were
placed on the tip of the nose and left shoulder, respectively. Digitization
of electrode locations (Fastrak, Polhemus) and acquisition of individual
T1-weighted magnetic resonance imaging images (MRIs; Magnetom
Sonata 1.5 T, Siemens) were conducted for coregistration purposes in
distributed source reconstruction (see below).

Preprocessing of data using the ELAN package (Aguera et al., 2011)
and MATLAB routines included the following: rejection of data seg-
ments affected by head movements (larger than 15 mm relative to the
average position over sessions) or SQUID jumps, power-line filtering
(stop-band filters centered on 50, 100, and 150Hz with bandwidth
of62Hz), indpendent component analysis (ICA) correction for ocular
artifacts (EEGlab routines; http://sccn.ucsd.edu/eeglab/index.html),
rejection of trial epochs (from �200 to 410ms after stimulus onset)
with signal amplitude range (over entire epoch) exceeding 2000 fT for
MEG data and 150mV for EEG data, and 2- to 45-Hz bandpass digital
filtering (bidirectional Butterworth, fourth order). Importantly, we
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only used time epochs that survived the procedures applied for artifact
rejection for both modalities. Finally, trial epochs were imported in
SPM (Wellcome Department of Imaging Neuroscience; http://www.fil.
ion.ucl.ac.uk/spm) and were down-sampled (200Hz) for data reduc-
tion and low-pass filtered (20Hz low-pass digital filter, bidirectional
Butterworth, fifth order) to get rid of high-frequency noise. EEG data
were re-referenced to the averaged mastoid electrodes for compatibility
with the forward model used in both cognitive modeling and DCM.
Group-average deviance responses obtained in EEG and MEG in both
UC and PC conditions are shown in Figure 1B. The difference between
conditions was tested over a temporal window spanning the MMN
(from 100 to 210ms) using permutation tests with correction for multi-
ple comparisons (we replicated the statistical analysis applied to the
2- to 45-Hz nose-referenced EEG data in Lecaignard et al., 2015). A sig-
nificant reduction of the mismatch response under predictability was
found in EEG over fronto-central electrodes (21 sensors), from 138 to
188ms, and to a lesser extent in MEG over a right anterior gradiometer
cluster (11 sensors) from 100 to 120ms, and a left posterior one (nine
sensors) from 195 to 210ms.

Computational modeling (cognitive level)
Trial-wise reconstructed cortical data
For a given peri-stimulus time, learning and non-learning models were
each fitted to the time series made by the changes in cortical activity
over trials. Precisely, single-trial cortical data were obtained in a prepara-
tory step involving the distributed source reconstruction of fused EEG-
MEG data. Advanced methods were employed for source inversion with
realistic forward models for both modalities [boundary element model
(BEM); Gramfort et al., 2010], Bayesian framework enabling multiple
sparse priors (Mattout et al., 2006; Friston et al., 2008), EEG-MEG fusion
(Henson et al., 2009), and group-level inference (Litvak and Friston,

2008). Source inversions were all performed with the SPM software
(SPM8 release). Source inversions were all performed with the SPM soft-
ware (SPM8 release). First, six cortical clusters could be identified from
the inversion of the MMN peak (from 150 to 200ms) in condition UC
(Lecaignard et al., 2021). These sources (whose spatial extent is shown
on in Fig. 3A) were located in the left and right Heschl’s gyrus (HG), pla-
num polare (PP), and inferior frontal gyrus (IFG), respectively.
Critically, they subsequently served as spatial priors to constrain the
inversion of entire single-trial epochs (from �200 to 1410ms). This
constraint addresses the lack of reliable spatial information when dealing
with (noisy) single-trial data. We resolved this issue by assuming the sta-
tionarity of the spatial locations of the cortical sources underlying audi-
tory evoked responses, which we indeed validated with that same
datasets and over the entire epoch (Lecaignard et al., 2021). In total, 674
trials per run, per condition and per participant were reconstructed.
Within each cluster and for each trial, reconstructed cluster-node activ-
ities were averaged to derive a cluster-level and single-trial trace being
informed by both EEG and MEG data. These single trial responses
could be averaged using exactly the same scheme as employed at the
sensor level to derive group-average deviance responses in each condi-
tion. The above-mentioned statistical analysis over the 100- to 210-ms
window here disclosed a significant mismatch reduction under predict-
ability (p, 0.05, uncorrected) in right HG (from 160 to 185ms), right
PP (from 110 to 140ms) and left IFG (from 150 to 165ms). This gives
confidence in our overall procedure for inferring cortical single-trial
activities.

Learning model
We considered a learning model which assumes that the brain learns
from each stimulus exposure the probability m to have a deviant, to pre-
dict the next sound category U (with U ¼ 1 in the case of a deviant and
U ¼ 0in the case of a standard). We define U;BernðmÞwith Bern the

Figure 1. A, Experimental design. Schematic view of the predictability manipulation applying to typical oddball sound sequences. PC (left, green) involves cycles of ordered transitions
between segments of repeating standards (chunks), which become shuffled in the UC (right, red). Deviant probability remains the same in both context (p= 1/6). Gray rectangles delineate an
exemplary cycle for both sequences. S: Standard, D: Deviant. B, Group-average difference responses. For each modality (EEG, left; MEG, right), scalp maps of grand-average difference (deviant
– standard) responses at latency showing a significant predictability effect for both contexts (PC: green; UC: red). Middle plots: traces at sensors showing a significant MMN reduction under pre-
dictability (EEG: FCz; MEG: MLT16; location on related scalp map is represented by a black circle); gray areas indicate the significant time intervals for these sensors (permutation tests with mul-
tiple comparison correction, p, 0.05).
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Bernoulli distribution, and m;Betaða; b Þwith a and b the parameters
of the distribution Beta, corresponding in the current case to deviant
and standard counts, respectively. At trial k, we have:

p Ukjmk�1ð Þ ¼ mk�1
Uk 1�mk�1ð Þ1�Uk

p mkjUkð Þ ¼ p Ukjmk�1ð Þp mk�1ð Þ
p Ukð Þ

:

8><
>: (1)

Where the first expression reflects the prediction about Uk before
new observation, while the second one pertains to the updating of the
belief on m, after having observed Uk. The posterior distribution of m is
in the form of a Beta distribution (Beta distribution is conjugate to the
Bern distribution), leading to the following updated expression of m at
trial k:

mk ¼
C akð ÞC b kð Þ
C ak1b kð Þ : (2)

WithC the gamma Euler function, and a and b following update
equations:

ak ¼ Uk 1ak�1

b k ¼ 1� Uk 1 b k�1
:

�
(3)

We defined precision-weighted prediction error as the Kullback–
Leibler (KL) divergence between the prior and the posterior Beta distri-
butions of m, also referred to as a Bayesian surprise (Ostwald et al.,
2012). At trial k, it expresses as:

BS Ukð Þ
¼ log

C ak�1 1 b k�1ð Þ
C ak 1 b kð Þ

� �
1 log

C akð Þ
C ak�1ð Þ

 !

1log
C b kð Þ
C b k�1ð Þ
� �

1 ak�1 � akð Þ c ak�1ð Þ � c ak�1 1 b k�1ð Þ� �
1ðb k�1 � b kÞ c ðb k�1Þ � c ðak�11b k�1Þ½ �

(4)

With c the digamma Euler function. Importantly for our investiga-
tion, the size of the temporal integration window was parameterized by
t which enters standard and deviant count updates as follows:

ak ¼ U1 e
�
1
t ak�1

b k ¼ ð1� UÞ1 e
�
1
t b k�1

:

8>><
>>: (5)

From Equation 5, we see that the larger the t , the larger the weight
applying to past observations, leading to a more informed learning (an
illustration can be found in Fig. 7A). Variation of BS with the size of the
temporal integration window is shown in Figure 3B.

First-level analysis (Fig. 2, upper left panel)
We first tested the learning model against alternative cognitive processes
that did not involve perceptual learning. Models were all defined as a
two-level linear model of the form:

y ¼ Xu 1 1 u 21« 1

u 1 ¼ 01 « 2

u 2 ¼ 01 « 3

:

8<
: (6)

Where y indicates the reconstructed cortical activity informed by a
fused EEG-MEG source inversion in the form of a vector of trial-by-trial
activity at a particular sample of the peristimulus time; X is defined for
each model and represents the predicted trajectory of precision-weighted
prediction error over the sound sequence; u 1; u 2f gand « 1; « 2; « 3f g refer
to Gaussian observation parameters and Gaussian noise, respectively.

Vector ywas defined for each time sample of the [�501 350] ms epoch
and for each cluster of the MMN cortical network identified at the group
level (six clusters). We considered a model space of seven cognitive mod-
els partitioned into three families, largely inspired by models used in a
previous tactile oddball study (Ostwald et al., 2012):

� Family famnull is made of a single model, the null model (M0) assum-
ing that the brain response to every tone is the same, or equivalently
that fluctuations in reconstructed cortical signals only reflect random
noise (i.e., u 1 ¼ 0 in Eq. 6).

� Family famnoL contains two non-learning or static models, namely,
change detection (CD) and linear CD (LinCD). Both assume that the
brain simply compares each incoming sensation to the preceding one.
In model CD, Xkat trial k is assigned to 0 if the kth stimulus is equal to
the preceding one, and 1 otherwise. Model LinDC is similar to CD
but assigns a prediction error proportional to the number of preced-
ing sounds that differ from the one being currently observed
(Ostwald et al., 2012; Lieder et al., 2013).

� Family famL includes the learning model described above, assuming
that the brain estimates the probability m to hear a standard (under a
Bernoulli distribution). We considered four different values for t (2,
6, 10 and 100), leading to four models in famL. Precision-weighted
prediction error is here defined as the Bayesian surprise (mismatch
between the prior and the posterior distribution ofm).

These models were all fitted to the reconstructed cortical activity in
both PC and UC conditions. For each source and at each time sample of
the peristimulus interval, model inversions were performed using the
VBA toolbox (Daunizeau et al., 2014), individual UC and PC data (four
runs) were processed all at once (multisession model fitting), bad trials
(with regard to sensor-level artifact rejection) were processed such that
associated signals would not corrupt parameter optimization while their
related stimuli entered model dynamics (these sounds were observed by
the brain).

Second-level analysis (Fig. 2, lower left panel)
Inversion of the learning model (which was found outperforming others
in the first-level analysis) was here performed separately in each context,
and critically, time constant parameter t was no longer fixed but
inferred from data confrontation. Beyond the memory-based interpreta-
tion (the brain may arguably not be able to deal with long-gone, past in-
formation), this parameter endows the learning model with a flexible
way to integrate past information and formalizes brain adaptation to its
environment. From Figure 3B, it can be seen that the precision-weighted
prediction error, here defined as a Bayesian surprise, decreases with t ,
reflecting the better predictions induced from a larger account of past in-
formation. In order to test whether sound transition alone, which differs
across UC and PC contexts, is sufficient to explain the reduced MMN
observed under predictability, we simulated group-level MMN for differ-
ent values of t . For each subject, we computed individual trial-by-trial
precision-weighted prediction error trajectories induced by UC and PC
sequences for t in 6; 8; 10; 12; 14; 16; 18; 20; 25; 30; 40; 50; 75; 100f g,
using VBA. We then selected the values obtained for each standard pre-
ceding a deviant and for each deviant (in keeping with sensor-level trial
rejection). Using exactly the same procedure that had been used to com-
pute the event-related difference response at the sensor level, we could
simulate the group-average MMN amplitude in conditions UC and PC
(arbitrary units).

Model inversion was performed in each of the six clusters, and at ev-
ery time sample spanning the MMN (precisely we considered the sam-
ples that exhibited this model as winning in the first-level). Bad trials
were treated as in the first-level analysis. The number of samples conse-
quently varied across clusters, leading to a total of 33 samples. Overall,
66 inversions were conducted per subject (1 model, 2 conditions, 33
samples). Each inversion provided a posterior estimate for parameter t
informed by EEG and MEG data. To evaluate the quality of fit, the per-
centage of explained variance was computed based on the observed and
predicted MMN within each cluster and for each condition (using averaged
t estimates across samples). Therefore, the predicted MMN was obtained
following the procedure described above to compute the simulatedMMN.
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Statistical analysis
In the first-level analysis, the three model families were compared with
each other using an RFX family-level inference (Penny et al., 2010). In
subsequent second-level analysis, we assumed a constant value of t
within the time interval used for model inversion (spanning the MMN).
We therefore averaged t estimates across samples for each cluster.
Predictability effect could thus be analyzed by conducting a repeated-
measures ANOVA on these posterior estimates with factors condition
(UC, PC), hemisphere (left, right), and sources (HG, PP, IFG).

DCM (physiological level)
DCM analysis was performed with SPM12 (Wellcome Department of
ImagingNeuroscience; https://www.fil.ion.ucl.ac.uk/spm/). DCMarchitecture
includes interconnected sources, each with four neuronal subpopulations
(Auksztulewicz et al., 2018); corresponding extrinsic and intrinsic dynamics
induced by sensory inputs are specified by the canonical microcircuit (CMC)
neural massmodel, which we here consider to exploit its relevance to test pre-
dictive coding predictions (Bastos et al., 2012; Brown and Friston, 2013;
Moran et al., 2013). Forward connections originate in superficial pyramidal
(SP) subpopulation and target the spiny stellate cells of the higher-level
source, and could reflect precision-weighted prediction errors. Backward con-
nections link deep pyramidal subpopulation to spiny stellate cells, and are
assigned to predictions. Intrinsic connections here appeal to the gain of SP
cells (self-inhibition connection) and are associated to the precision weight.

EEG and MEG evoked responses
Averaged responses evoked by standards just preceding a deviant and by
deviants were considered for all DCM analyses. Time interval of 0 to
220ms after sound onset was used for model inversion. It was defined
from sensor-level (EEG and MEG) statistical analysis on deviance
responses to ensure it encompasses the MMN (and no later compo-
nents). A Hanning window was applied to time-series to ensure that sys-
tem’s dynamics was set to zero before being excited. Data reduction was
achieved using the default SPM procedure adjusted for the current
Openmeeg forward models (BEM). On average across subjects, it
selected 8 (62.7) and 13 spatial modes with EEG and MEG data, respec-
tively (intersubject variability is because of the individual anatomic in-
formation that was used to refine the inversion scheme; here, it here
appears to exert a larger effect in EEG thanMEG).

First-level analysis (Fig. 2, upper right panel)
Inspired by previous DCMs of the MMN (Garrido et al., 2009a;
Auksztulewicz and Friston, 2016), and guided by current learning model
predictions, we addressed the two following questions: what is the struc-
ture of the network engaged in typical oddball sequence processing (at
play in both UC and PC contexts)? Within this auditory network, what
modulation of effective connectivity supports deviant compared with
standard tone processing? Contrary to the above-cited studies, these
questions were treated one after the other (we used two model spaces

Figure 2. Neurocomputational framework. Representation of the current approach deployed at both the cognitive and physiological levels to address the automatic adaptive learning at play
during auditory processing, and to disambiguate the mapping of precision weights and prediction errors onto physiological responses. First-level analysis (upper panel): the expected perceptual
learning of the oddball rule is first tested at the computational level (left) as well as its physiological implementation within a fronto-temporal hierarchy (right). Second-level analysis (lower
panel): adaptation of this learning to the manipulation of predictability is then tested through the examination of model parameters for each condition (UC, PC), both at the computational
(left) and physiological (right) levels. Gray boxes highlight the specific differences that were tested. Different learning time constants t (left) would support hierarchical learning with opposite
effects on precision weighting and prediction errors, that are testable (hence separable) using DCM. First-level and second-level rules are described in Figure 1A. Dynamic models: pl (perceptual
learning), dcm (dynamic causal model); cortical sources: HG (Heschl’s gyrus), PP (planum polare), IFG (inferior frontal gyrus), SF (superior frontal); experimental contexts: PC/pc (predictable con-
text), UC/uc (unpredictable context). D: deviant. Forward/self: DCM forward/self-inhibition connection strength parameters.
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depicted in Fig. 4C). The reason for this was to highlight the fact that the
modulation of the effective connectivity by predictability (an effect that
was examined next in the second-level analysis, see below) could be
found at both levels (as we shall see, we expected an effect at the network
level).

Most reports of the DCM of the MMN entailed a three-level hierar-
chy (Garrido et al., 2009b; Auksztulewicz and Friston, 2015; Phillips et
al., 2015; Chennu et al., 2016). We considered the six above-mentioned
sources of the MMN. However, the complementary EEG and MEG to-
pographical information regarding the predictability modulation of the
MMN peak led us to test an additional level in the superior frontal area
(SF), with more details below. Each of the eight resulting clusters led to
an equivalent current dipole (ECD) located at the averaged position of
local maxima over the different time intervals. MNI coordinates are pro-
vided in Figure 4A. The resulting four-level DCM structure was com-
posed of eight sources distributed bilaterally over (from the lowest to the
highest level) HG, PP, IFG, and SF. We connected these sources with ex-
trinsic (forward and backward) connections. Alternative hypotheses
entailed two-level and three-level networks allowing to test the hierarchi-
cal depth as well as the contribution of PP and SF sources, leading to five
model families (A1, A2, A3, A4, and A5). Regarding DCM inputs, all
models included a direct input to bilateral HG. In addition, inputs tar-
geting IFG sources (known to receive direct thalamic afferents) were
tested as the source-reconstructed EEG and MEG evoked responses sug-
gested that frontal regions were activated prior to temporal ones
(Deouell, 2007). The input factor thereby included two levels (HG and
HG-IFG). Importantly, we did not address the presence or absence of
trial-specific modulations (standard-to-deviant changes in connection
strength) applying to extrinsic and intrinsic connections; this aspect is
treated in the following. We therefore assumed forward and backward
trial-specific modulations, as already reported in several MMN DCM
studies (Garrido et al., 2009b), and we integrated over the two possible
hypotheses (presence or absence) for the intrinsic modulation. DCM

with CMC also includes extrinsic modulatory
connections to enable the top-down indexa-
tion of subpopulation SP excitability on the
output activity of higher-level feedbacking
sources. These connections and self-inhibition
ones constitute two different ways to modu-
late SP excitability, in an activity-dependent
and activity-independent manner following
the terminology proposed in recent studies
(Auksztulewicz et al., 2018; Rosch et al.,
2019). We integrate over the two alternative
hypotheses (presence or absence of modula-
tory connections). The resulting model space
to investigate DCM architecture thus com-
prised a total of 36 DCMs (Fig. 4C, left).

Next, we addressed the trial-specific gain
(standard-to-deviant modulation) applying
on forward, backward, and intrinsic connec-
tions within the winning DCM structure
(architecture A5 and double-input HG-IFG).
For forward and intrinsic gains, two model
families were considered each (present or
absent at all or none connections). Regarding
backward gains, when considering modula-
tory connections, they apply to activity-de-
pendent intrinsic connections (activity-
dependent gain; Auksztulewicz et al., 2018;
see their Fig. 4); otherwise they modulate ex-
trinsic backward strength. This led us to con-
sider three model families with respect to
backward gains and their possible modulatory
effects (1) disabled, (2) enabled as an extrinsic
modulation, and (3) enabled as an intrinsic
modulation. A total of 14 models composed
this model space (Fig. 4C, right).

Each model inversion was performed in
condition UC and PC and for EEG and MEG

data separately (leading to four inversions per subject and per model,
with 361 14 models per subject). We used default values of SPM12 as
prior expectations and prior variance for each DCM parameter to be
estimated. Each DCM inversion involved standard response (as the ini-
tial state of the system) and deviant response (resulting from the experi-
mental perturbation). Regarding DCM sources, we maintained dipole
locations fixed (but not their orientation) to inform spatially DCM
inversion with the group-level MEG-EEG information. For each modal-
ity (EEG, MEG), the forward model used for DCM inversion was the
above-mentioned realistic BEM computed with Openmeeg software
(Gramfort et al., 2010).

Second-level analysis (Fig. 2, lower right panel)
Here, we test for a predictability effect on the synaptic connectivity
established for typical oddball processing (first-level analysis winning
DCM: architecture A5 with HG-IFG inputs). In particular, we compare
the forward and self-inhibition connection strengths obtained in each
context in the first-level DCM analysis. A significant reduction in both
parameters in condition PC would confirm the expected separate physi-
ological accounts for prediction error and precision weighting (more
details are provided in Results). The corresponding statistical analysis is
described below.

Fusion of EEG and MEG DCMs
We integrated EEG and MEG data into a single DCM analysis, assuming
that their complementarity would improve the inference on brain activ-
ity, as it was empirically evidenced for classical source reconstruc-
tion (Lecaignard et al., 2021) . Fusion of EEG and fMRI data for
DCM was also demonstrated to outperform unimodal (fMRI)
scheme, in the context of simulated auditory mismatch responses
(Wei et al., 2020). This fusion operates sequentially, by inverting
EEG data first based on uninformative priors over parameters, to

Figure 3. Perceptual learning models. A, Each cluster of interest is represented (orange) over the inflated cortical surface of
the SPM template brain (Mattout et al., 2007). These six clusters are left, right HG (lHG, rHG), left, right PP (lPP, rPP) and left,
right IFG (lIFG, rIFG). Total number of nodes in each cluster is indicated in parenthesis. B, Bayesian surprise as a function of s
(arbitrary units, a.u.). Illustration of different BS trajectories obtained with varying t , for the first 100 stimuli of a typical UC
oddball sequence. Two comments should be made: (1) BS decreases as t increases and (2) whatever t , BS is larger for devi-
ants (D, black squares) than for standards (S, gray squares). C, Learning model predictions of the MMN amplitude as a function
of s (group average) for UC (red) and PC (green) sound sequences (see Materials and Methods). Note that in both contexts,
MMN amplitude decreases similarly as t increases.
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then guide with EEG-informed priors the subsequent fMRI data
inversion. This way, unplausible hypotheses (given EEG) are thus
ruled out. Here, we adopt a slightly different approach, which con-
sists in modeling EEG and MEG data independently (based on
uninformative priors) and then derive a posterior estimate of
model parameters based on both inferences using the Bayesian ma-
chinery. These estimates informed by both modalities are referred
to as p-MEEG. Each modality thus selects plausible hypotheses
which are then combined based on their respective evidence to
derive multimodal posterior estimates. Both approaches illustrate
the great potential of the Bayesian framework to flexibly integrate
multimodal information in a principled fashion.

Precisely, the proposed procedure rests on the assumption of
conditional independence of EEG and MEG data under the quasi-

static approximation of Maxwell equations, which is largely admit-
ted for signals below 1 kHz (as is the case here). Denoting EEG and
MEG data byyEEGand yMEG, respectively, we have:

p yEEG; yMEGð Þ ¼ p yEEGð Þp yMEGð Þ: (7)

And posterior model evidence of model m can be approximated
using unimodal EEG and MEG model evidences:

p yEEG; yMEGjm
� � ¼ p yEEGjm

� �
p yMEGjm
� �

: (8)

Consequently, F p�MEEG the variational free energy approximation to
p-MEEGmodel log-evidence could be obtained by:

Figure 4. DCM. A, Cortical sources for DCM analysis. Each source is indicated schematically with orange dots on the inflated cortex, with corresponding MNI coordinates
(mm) in parenthesis. B, Model families. Upper row, Schematic view of the five model families designed to test DCM architecture in deviance processing. Bottom row, The
two model families of DCM input, HG and HG-IFG. Color codes of extrinsic connections (conn.) and DCM source (or node) are provided in the legend. C, Model spaces.
Network structure analysis (left): DCM specifications for each of the 36 models (in columns). Frontal, backward and intrinsic trial-specific gains, as well as modulatory con-
nections correspond to binary options (enabled = 1, disabled= 0) applying to the entire network. Standard-to-deviant modulation analysis (right), following the same logic
of display. Backward trial-specific gains were disabled or applied onto either extrinsic or intrinsic connections depending on modulatory connections (as detailed in the main
text).
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F p�MEEG mð Þ � F EEG mð Þ1FMEG mð Þ: (9)

With F EEG and FMEG the free energy values for EEG and MEG,
respectively. Besides, the posterior distribution of some DCM parame-
teru under modelm writes given:

p u jyEEG; yMEG

� � ¼ p yEEG; yMEGju
� �

pðu Þ
p yEEG; yMEGð Þ : (10)

Which can be re-formulated as follows to reveal the posterior distri-
butions of u deriving from unimodal inversion of EEG and MEG data:

p u jyEEG; yMEG

� � ¼ p u jyEEG
� �

p u jyMEG

� �
pðu Þ : (11)

DCM approach assumes every parameter u to have of the form
of a Gaussian distribution. Hence prior distribution expresses as
qðu Þ;Nðmo;s oÞ: We also denote q u ; yEEGð Þ;N me;s eð Þ, q u ; yMEGð Þ;
N mm;smð Þ and q u ; yEEG; yMEGð Þ;N mp;s pð Þ the posterior distribution
of u given EEG data, MEG data and EEG-and-MEG data, respectively. We
havemem and s em the mean and variance of the distribution resulting from
the multiplication of q u ; yEEGð Þ and q u ; yMEGð Þ. From Equation 11 and the
analytical expressions of mem and s em (detailed in most statistic books), we
derive:

s p ¼ s os em

s o � s em

mp ¼ mem1
mem �moð Þs p

s o

:

8>><
>>: (12)

Statistical analysis
In the first-level analysis, we combined p-MEEG DCMs obtained
across conditions (UC, PC) using similar Bayesian reasoning as for
the EEG and MEG fusion (log-posterior model evidences in UC
and PC were summed across conditions). We first quantitatively
evaluated the architecture and the input families using family-level
inference (Penny et al., 2010) with an RFX model, based on the p-
MEEG approximations of model evidence (F p�MEEGÞ. Next,
regarding the standard-to-deviant modulation of synaptic connec-
tivity, family level inference (RFX model) was conducted over the
forward, backward and intrinsic trial-specific gain parameters. As
each of these three family comparisons indicated significant mod-
ulations, we subsequently examined their corresponding direction
of change (a gain value larger than one would indicate larger con-
nection strength in deviants than in standards, and vice versa). For
each connection type (forward, backward, intrinsic), we used
Bayesian model averaging (BMA; Penny et al., 2006) to derive
group-level posterior estimates averaged across model space (with
model-evidence weighting) and across subjects, and we average
these estimates (per connection type) over the entire network.

In the second-level analysis, for each context, we computed
individual p-MEEG BMA estimates of forward and self-inhibition
connection strengths, and their respective trial-specific gain
(standard-to-deviant modulation). For the forward related param-
eters, we conducted a repeated-measures ANOVA over individual
BMA estimates with factors condition (UC, PC), hemisphere (left,
right), and level (temporal, fronto-temporal, frontal); in the self-
inhibition related parameter, this latter factor was replaced by fac-
tor source (HG, PP, IFG, SF).

Throughout the paper, ANOVAs were performed using R software
(The R Foundation; https://www.r-project.org/).

About the contribution of SF sources
In the first-level DCM analysis, we tested the relevance of an additional
frontal level in oddball processing dynamics. This hypothesis emerged
from the following observation: the predictability effect was larger at
fronto-central sites in EEG (Lecaignard et al., 2015) and at temporal

gradiometers in MEG (Fig. 1B), in a way that suggests generators
expressing poorly on frontal gradiometers. We could indeed identify
bilateral clusters of activity in this region over the significant time inter-
vals reported in Lecaignard et al. (2015), with however limited precision.
In short, left and right frontal clusters (36 and 29 nodes, respectively,
p, 0.05 with family wise error (FWE) whole-brain correction) were
found for the early deviance effect, and a left contribution of 34 nodes
for the MMN interval (with p, 0.001 not corrected). Despite the poor
spatial precision, SF sources could still contribute to better fit the data (if
frontal generators are truly involved) as they impose a strong temporal
constraint on DCM dynamics (Attal et al., 2012). However, we decided
not to include the SF clusters in the above-mentioned computational
modeling to avoid the issue of fitting single trial cortical responses recon-
structed from uncertain spatial information.

Results
We address the automatic context sensitivity of auditory process-
ing, at both the cognitive and physiological levels. Following the
scheme presented in Figure 2, we first examine the processing of
deviant sounds (in both contexts) at the cognitive and the physi-
ological levels, in the aim to evidence Bayesian learning at play in
a fronto-temporal hierarchy, as reported in pioneering work in
the field (Garrido et al., 2009a; Ostwald et al., 2012). Second,
using trial-by-trial computational modeling we test whether the
brain adapts its learning style to the contextual manipulation
during unattentional listening. Results provide clear predictions
regarding the mapping of precision and prediction error onto
physiology, which we next test using DCM (Kiebel et al., 2009;
Bastos et al., 2012) .

Perceptual learning in oddball processing (Fig. 2, upper left
panel)
As shown in Figure 5, the Null hypothesis (famnull) was found to
outperform the other families, at every time sample and every
cortical source, except for the time interval of the MMN.
Precisely, posterior exceedance probability of family famL was
found to be significantly greater than the ones of the other fami-
lies between 150 and 200ms (six samples), in the left and right
HG, between 130 and 180ms (six samples) and at 150ms (one
sample) in the left and right PP, respectively, and between 130
and 200ms (eight samples) and between 140 and 190ms (six
samples) in the left and right IFG, respectively. Noticeably, in the
latency range of the P3a described in Lecaignard et al. (2015), the
Null hypothesis could also be challenged by learning models, as
suggested by the increase of famL posterior exceedance probabil-
ity, an effect most visible in left IFG.

Effective connectivity in oddball processing (Fig. 2, upper
right panel)
Regarding DCM architecture, explained variance averaged across
models (n=36) and subjects was equal 92.5% (SD 610.5) and
78.1% (611.6) in EEG and MEG, respectively (condition UC),
and to 91.9% (612.1) and 78.1% (611.6) in EEG and MEG,
respectively (condition PC). In the p-MEEG modality, family
level inference revealed that family A5 outperformed other
model families with a posterior confidence probability (pcp) and
posterior exceedance probability (pep) of 0.68 and.0.99, respec-
tively (Fig. 6A). Regarding the DCM inputs (Fig. 6B), family level
inference was clearly in favor of models with inputs arriving in
both HG and IFG sources (pcp/pep: 0.82/.0.99).

Regarding deviance-related changes in connectivity, explained
variance averaged across models (n=14) was equal to (results for
condition UC/condition PC): 96.5% (65.1)/97.8% (62.7), for EEG,
and 87.1% (67.4)/87.5% (65.5) for MEG. We found evidence for
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forward, backward and intrinsic deviant modulation
(pcp/pep: 0.82/.0.99; 0.73/0.99; 0.73/0.99, respectively)
in line with pioneering DCMs of the MMN (Garrido et
al., 2009b; Auksztulewicz and Friston, 2016). Group-
level BMA posterior estimates of trial-specific gain
(gathering the entire network and both conditions) fit
well with predictive coding message-passing expecta-
tions. In particular, we found larger forward coupling
for deviants (Fig. 6C; average and standard error across
the network of group-level BMA estimates of forward
trial-specific gain. UC: 1.1456 0.057, present in five out
of six forward connections; PC: 1.0276 0.042, four out
of six connections). We also found the expected
increase of backward gain (UC: 1.1796 0.073, five out
of six connections; PC: 1.3076 0.112, five out of six
connections) and a decrease of the intrinsic gain (UC:
0.9476 0.064, five out of eight connections. PC:
0.9566 0.047, five out of eight connections).

Contextual adaptation of perceptual learning
(Fig. 2, lower left panel)
First, simulated MMNs for a given t value show a
similar amplitude across contexts (Fig. 3C). This sug-
gests that the reduced MMN measured in condition
PC does not emerge from the sound sequence struc-
ture alone but results from an adaptive hierarchical
learning. To put it another way, similar t values
between conditions would indicate the context insen-
sitivity of prediction errors (i.e., a fairly rigid percep-
tual learning process, as could be expected in some
psychiatric conditions such as schizophrenia or au-
tism; Adams et al., 2013; Friston et al., 2014). The
learning model with t values inferred for each cluster

Figure 5. Computational modeling of deviance processing. Family-wise Bayesian model comparison. For each cluster and at each time sample, family inference provides the estimated poste-
rior family exceedance probability of each model family (famnull: black, famnoL: orange, famL: pink).

Figure 6. DCM of deviance processing, using p-MEEG. A, Family inference for DCM architecture: family
exceedance probabilities (upper left) and corresponding network for the winning family A5 (lower left). B,
Family inference for DCM inputs. C, Family inference for standard-to-deviant trial-specific modulation for the
forward connectivity. Family exceedance probabilities of the model families with disabled (0) and enabled
modulation (1) is provided (left) and group-level BMA estimates of gain values (in condition UC) averaged
over the DCM network is represented (right). Prior value of gain (light purple) was set to 1 assuming no
standard-to-deviant modulation. Labels for the cortical sources and model families are provided in the main
text.
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and each condition separately yields MMN predictions (Fig. 7A,
right plot) with an explained variance at the group level equal to
88.8% (SD 68.0). As expected, larger t values were found with
condition PC compared with condition UC (F(1,19) = 10.13;
p=0.002). On average across sources, t is equal to 16.0 and to
21.3 with UC and PC, respectively (Fig. 7A, left plot). The
ANOVA showed no other significant effect (all p. 0.12). As can
be seen in Fig. 7A, middle plot, the different t values in UC and
PC generate different downweightings of past observations, with
a larger amount of information integrated during perceptual
learning in the PC.

Separate neural correlates of prediction error and precision
(Fig. 2, lower right panel)
We next examined how the adaptation of learning (larger t )
manifests at the physiological level, based on the computational
interpretation of specific DCM connections (see Materials and
Methods). Precisely, we expected predictability to have the fol-
lowing effects. (1) A reduction of forward connection strength.
Indeed, this extrinsic connection is thought represent the preci-
sion-weighted prediction error for which our results converge to-
ward a diminution under predictability (smaller MMN and

smaller Bayesian surprise; see Fig. 3B). (2) A reduction of self-in-
hibition connection strength. This intrinsic connection controls
the excitability of the SP cells, where the forward connection
originates from. As an inhibitory parameter, a low value trans-
lates into a large SP synaptic gain. Self-inhibition connection and
SP activity have been proposed to index the precision weighting
and the prediction error, respectively (Feldman and Friston,
2010; Bastos et al., 2012; Brown and Friston, 2013; Moran et al.,
2013; Fogelson et al., 2014; Auksztulewicz et al., 2017).
Observing a lower self-inhibition strength in condition PC would
establish a direct mapping of this parameter onto precision
weighting (which, as detailed in the introduction, is larger in pre-
dictable environment).

Regarding first prediction, as can be seen in Figure 7B, left,
predictability yielded a reduced forward connection strength on
average across the network (average with SE: 1.516 0.10 and
1.666 0.12, in PC and UC, respectively), an effect which is larg-
est at the lowest level of the network (PC/UC, level temporal:
1.526 0.10/2.056 0.24; level fronto-temporal: 1.416 0.16/
1.506 0.21; level frontal: 1.616 0.24/1.446 0.17). However,
these effects do not reach statistical significance (condition:
F(1,19) = 0.84; p= 0.36; condition � level: F(1,19) = 1.82; p= 0.17).

Figure 7. Effect of predictability on auditory processing. A, Cognitive modeling (perceptual learning). Left plot, Effect of predictability on learning parameter t . Posterior estimates of t aver-
aged at the group level and over the six clusters exhibited a significant difference between conditions. Middle plot, Downweighting of past observations obtained with the posterior estimates
of t for conditions UC (red) and PC (green), respectively. Right plot, Group-level observed (Obs.) and predicted (Pred.) MMN amplitude within each cluster, and for condition UC (red) and PC
(green). Each value gathers time samples that exhibited a significant learning effect in the first-level analysis and was computed following the scheme described for the pseudo-MMN computa-
tion (detailed in the main text). B, Physiologic counterpart (DCM). Effect of predictability onto effective connectivity obtained with the fusion of EEG and MEG DCMs. Left and middle plots,
Posterior estimates of forward and self-inhibition strengths measured in both conditions (UC: red, PC: green), averaged over the group and over the connections within the DCM. SP: superficial
pyramidal; a.u.: arbitrary units. Right plot, Source-based self-inhibition strengths showing a significant predictability effect. Values for each condition (UC: red, PC: green) are displayed over a
typical DCM graph representation. Labels of cortical sources as in Figure 4.
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Second prediction was fulfilled as self-inhibition connection
strength was measured significantly reduced in condition PC
compared with condition UC (801.46 18.9 and 901.96 26.3,
respectively; F(1,19) = 10.52; p= 0.001; as shown in Fig. 7B, mid-
dle, right). This result establishes a link between self-inhibition
and precision, as both adapt consistently to predictability (Fig. 2,
lower panel). No main effect of Hemisphere, nor Source, and no
interaction between factors (condition, hemisphere, source)
could be observed using ANOVA (p� 0.12 for all but the main
effect of condition). Finally, the ANOVA conducted on stand-
ard-to-deviant modulation applying on forward connection
strength and self-inhibition parameters did not disclose any sig-
nificant main effect of condition (forward: F(1,19) = 2.50; p= 0.12;
self-inhibition: F(1,19) = 0.01; p= 0.90). This suggests that the con-
textual effect of our predictability manipulation apply indistinc-
tively to standard and deviant stimuli processing.

Discussion
This work addressed the hierarchical processing of sensory infor-
mation during unattentional listening through its adaptation to
the statistical structure of the environment. Complementary cogni-
tive and neurophysiological modeling of oddball responses collected
during different contexts of predictability reveals the occurrence of
perceptual learning within a fronto-temporal hierarchy, as expected
in the predictive coding framework. Moreover, it formally demon-
strates that this predictive process is shaped by predictability in a
way that optimizes the integration of relevant sensory information
over time. Computationally speaking, this adaptation relies on the
tuning of the precision weighting of prediction errors, a process
which is known to be a cornerstone of Bayesian information proc-
essing (Mathys et al., 2014). We therefore show with a mechanistic
and dynamical approach that during passive oddball listening, the
more predictable the environment, the more efficient the sound
processing. Besides, for the first time the neural encoding of preci-
sion weight could be distinguished from the prediction error per se
and directly attributed to inhibitory mechanisms. Remarkably,
the hypothesis of evoked responses reflecting hidden precision-
weighted prediction errors (Friston, 2005) that was considered
along this work is substantiated empirically by the present findings
obtained with complementary neuro- and computational generative
models of evoked responses.

Rare but robust empirical supports for predictive coding at
play during oddball processing have been reported this past dec-
ade, obtained at the psychological level with trial-by-trial compu-
tational modeling (Ostwald et al., 2012; Lieder et al., 2013;
Stefanics et al., 2018; Weber et al., 2020) and at the physiological
level with DCM (Garrido et al., 2009a; Moran et al., 2013;
Fogelson et al., 2014; Chennu et al., 2016; Lumaca et al., 2021).
Novel evidence at both levels of analysis is provided here in the
controlled work using exactly the same brain data informed by
simultaneous EEG and MEG. The major contribution of this
work, in the perspective of testing predictive coding more finely,
lies in the fact that we could evidence the automatic tuning of the
precision weighting of sensory errors and relate it to inhibitory
mechanisms. This was made possible with the proposed model-
driven contextual manipulation, where a second-order rule
applies on the first-order oddball one.

At the cognitive level, our results demonstrate quantitatively
brain’s ability to grasp implicitly the larger informational content
of the PC to derive a more informed and more efficient learning
at the sensory level (by means of a larger temporal integration
window). The larger efficiency in sensory processing translates

into more accurate sensory predictions and more rapid adapta-
tion to unexpectedness (Mathys et al., 2014). Predictable deviants
remain surprising as a significant MMN in condition PC was
measured in EEG and MEG (see also Fig. 3B). Beyond the pas-
sive nature of the experiment yielding arguably inaccurate pre-
dictions, this result actually demonstrates a hierarchical process
that enables selecting low-level surprises (expected surprise still
remains a surprise). Beside, our findings could provide a mecha-
nistic explanation to the better task performances reported in
target detection when listening to regular compared with ran-
dom auditory streams (Southwell et al., 2017), and also during
the processing of words and music stimuli under contextual ex-
pectancy (Tillmann et al., 1998). Similar facilitation of sensory
processing in a structured environment was also suggested in a
visual discrimination study (Rohenkohl et al., 2012), where tem-
poral expectation was found to decrease reaction time, and could
be associated to an increase of the sensory gain using a diffusion
model. This result is comparable to the present precision adapta-
tion, that here occurs without attentional (active) processing.

At the neural level, the effect of predictability on forward con-
nection strength did not prove significant. Regarding self-inhibi-
tion connection, our findings establish empirically a direct link
between precision and self-inhibition within supragranular corti-
cal layers. Several DCM studies strongly supported this mapping,
as they reported consistent modulations of self-inhibition by
some experimental manipulations hypothesized to influence pre-
cision under predictive coding, namely, a cholinergic neuromo-
dulation (Moran et al., 2013), sensory precision (Brown and
Friston, 2012), selective attention (Brown and Friston, 2013),
and predictability (Auksztulewicz et al., 2017). Here, it is the
automatic contextual adaptation of sensory processing that we
reveal computationally and physiologically that fills the missing
link enabling to relate precision and self-inhibition directly.
From a methodological perspective, this findings add to recent
efforts to increase model plausibility to account for electrophysi-
ological data (Phillips et al., 2016; Pinotsis et al., 2017).

The present approach (contextual manipulation and neuro-
computational modeling) allowed us to test hierarchical learning
in auditory processing, although the perceptual model is not
hierarchically organized (it is based on a simple Bernoulli distri-
bution). This aspect prevents from addressing the computational
role of each DCM level, which is beyond the scope of this work.
Here, hierarchical process was evaluated using our experimental
manipulation, looking specifically at its effect on a single model
parameter (a time constant that shapes learning evolution over
trials). In hierarchical systems, higher levels process the most sta-
ble or slowly changing stimulus features, and associated predic-
tions constitute top-down constraints on lower levels (Friston
and Kiebel, 2009). In addition, increasing second-order statistic
reliability has been theoretically demonstrated to increase the
precision-weighting of sensory errors (Friston, 2008; Kanai et al.,
2015). The reduced t value under predictability fits very well with
the top-down influence of contextual learning on sensory process-
ing. Hierarchical learning models would be relevant to address the
mechanisms by which the brain adapts to the context (an important
direction discussed below). They should be employed with a slightly
different paradigm to include the necessary transitions between
contexts. Such models have already proven useful in characterizing
the dynamics of learning an oddball rule changing over stable and
volatile episodes (Meyniel, 2020;Weber et al., 2020).

Future research in testing predictive brain theories for percep-
tion has to address the mechanisms which subsume the adapta-
tion of learning, including the dynamics of precision tuning.
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From a psychological perspective we aim at investigating more
finely the present predictability adaptation in relation to atten-
tional processes, guided by the computational account of atten-
tion (Friston, 2005). Under this view, attention serves to collect
contextually-informative sensations to optimize perception and
learning (Auksztulewicz and Friston, 2016; Parr and Friston,
2019), through either the precision weighting of sensory chan-
nels (Feldman and Friston, 2010) or action. The view of attention
as the tuning of precision echoes our findings obtained without
participant’s awareness of the experimental manipulation.
Interestingly, predictive brain theories have led to consider under
the same framework the opposite effect of voluntary attention
(an increase) and predictability (a decrease) on evoked response
amplitudes reflecting precision-weighted prediction errors. In
Chennu et al. (2013) and in Auksztulewicz and Friston (2015),
both factors could be manipulated orthogonally using different
task instructions during perception of oddball-like sound
sequences. These two studies revealed different modulations of
mismatch responses at different latencies, and related attention
to self-inhibition using DCM, respectively. Chennu and col-
leagues reported a reduced MMN when attention was explicitly
engaged toward (local) tone transitions compared with (global)
multitone patterns. This fits with the present reduced MMN in
the predictable condition considering that a more informed
learning of the oddball rule (providing better predictions) could
be at play either through an explicit attentional engagement or,
in our case, through the implicit learning of the contextual infor-
mation. Therefore, we argue that likewise but without the volun-
tary orientation of attention, predictability acts as an implicit
attentional process, enhancing the efficiency of sensory process-
ing. Similar effect of voluntary attention and predictability on
precision (an increase) emphasizes the great potential of separat-
ing prediction error and precision accounts to predict (and test)
their respective effects on evoked responses, instead of address-
ing precision-weighted prediction errors as a whole (Heilbron
and Chait, 2018). Bridging passive predictability processing and
voluntary attention opens the way to mechanistically investigate
attentional capture. This would involve experimental manipula-
tions of precision and prediction error with appropriate hier-
archical dynamic models to assess underlying activity, and
feasibility was demonstrated here. We expect in particular novel
insights from the manipulation of precision (in addition to typi-
cal modulations of global precision-weighted prediction errors),
to assess whether voluntary attention can emerge from specific
precision evolution reflecting a form of evidence accumulation.

In conclusion, a contextual manipulation of oddball paradigm
combined with a neurocomputational dynamic modeling scheme
was used to disentangle prediction error and precision neural repre-
sentations. Contextual effect was found to increase the extent of
temporal integration of past information, which implies lower sen-
sory prediction errors amplified by a larger precision weighting.
Findings in this paper (1) demonstrate the conclusive power of
modeling approaches combining neuronal and cognitive levels and
(2) emphasize the importance of accounting for the encoding of
precision weighting when investigating perceptual learning and de-
cision-making. Unfolding the mechanisms of precision tuning and
encoding, especially at an implicit level, is a potentially critical step
for clinical applications as alterations of these processes have been
suggested to be at the core of several psychiatric disorders (Adams
et al., 2013; Lawson et al., 2017; Friston, 2020; Haarsma et al., 2020).
Applying such a simple oddball paradigm, only involving passive
listening, coupled with computational and neurophysiological mod-
eling could be of great value in this context.
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