

International Society for the Study of Fatty Acids and Lipids

Effect of various saturated fatty acids sources on oxidative stability and nutritional profile of DHA-enriched infant follow-on formulas

Mathilde CANCALON, Youna M. HEMERY, Nathalie BAROUH, Bruno BARÉA,

Claire BERTON-CARABIN, Lucie BIRAULT, Erwann DURAND,

Pierre VILLENEUVE and Claire BOURLIEU-LACANAL

INRAØ Øcirad **Ate**

CIRAD/INRAE Montpellier – mathilde.cancalon@cirad.fr

Carlson et al., J Nutr, 2021 ; Lepping et al., Dev. Psychobiol., 2019

CONTEXT

New European regulation - European regulation 2016/127/EC Entry into force in 2020

Revision of the limits for certain essential fatty acids:

- Increase of the lower limit in LA
- Increase of the upper limit for ALA
- Obligation to supplement formulas with 20 to 50 mg of DHA per 100 kcal (i.e. 0.5 to 1% of total fatty acids)

What about ARA ?

Still not mandatory *despite its proven importance for child development* A maximum limit 1% of the total fat content (*maximum of 60 mg per 100 kcal or 42 mg per 100 mL of formula*)

Cancalon et al., CND, 2022

Increase susceptibility to lipid oxidation

CONTEXT

How to limit lipid oxidation in infant formulas **playing on lipid parameters**?

Fatty acid regiodistribution and TAG structure

Carotenoids

Antioxidant composition, type and synergic effects

Vitamin C

Tocopherols

And their combination ...

TAG Fatty acid profile

Polar lipids profile

Bourlieu, C., Michalski, M. C., Curr. Opin. Clin. Nutr. Metab. Care 2015; Dubois et al., OCL, 2008; Bourlieu et al., CND, 2018; Viriato et al., Crit Rev Food Sci Nutr, 2020; Cancalon et al., CND, 2022

CONTEXT

Changhoon et al., Foos Sci Anim Resour, 2022

Fatty acids regiodistribution

Palmitic acid (C16:0) mainly internally esterified (*sn-2*)

Interest of dairy fat

- Biomimetic lipid structure of breast milk .
- Short and medium chain saturated fatty acids (C4:0 to C12:0)
- Very long chain SFA (>C20:0) both as TAG and polar lipids
- Biomimetic TAG organization of breast milk .
 - C16:0 mainly esterified at sn-2 position
 - Heterogeneous TAG

 \rightarrow Improves lipid digestion and metabolization \rightarrow Protection effect against lipid oxidation

AIM OF THE STUDY

Setting an overview of marketed infant flours formulas

Analysis of the nutritional values of **91 infant formulas** on the world market

Formulation of model systems representative of marketed IFF

Fatty acids profile: iso SFA, MUFA, PUFA, n-6, n-3 Vitamins: normalization of vitamins A & E contents

Comparison of oxidation stability through a storage test

40°C

20 days

2.

3.

Monitoring of indicators descriptive of oxidation rate

Identifying key lipid formulation parameters that improve the nutritional profile and the oxidative stability of DHA-enriched IFF

 $\langle | \rangle$

Cancalon et al. Food Chem, 2023 [Accepted]

1. OVERWIEW OF INFANT FORMULAS

Overview of follow-on formulas (N=91)

Selection criteria

- Type of products *follow-on formulas only*
- « Classic » formulas- no hypoallergenic, AR formulas, etc.
- Widely consumed products

91 follow-on formulas from 16 brands

Ingredient list analysis

¹Average values extracted from the follow-on formulas overview
²Mäkelä, Linderborg et al., Eur. J. Nutr, 2013
³Commission Delegated Regulation (EU) 2016/127, September 25, 2015

For 100 mL of preparation

	$\mathbf{O}_{\mathbf{V}}$ orvio \mathbf{v}^{1}	\mathbf{B} react mill ℓ^2	EU Regulation ³	
	Overview	Dredst milk -	Min	Max
Energy (kcal)	67.2 ± 1.3	67	60	70
Fat (g)	3.3 ± 0.2	3.5	2.64	4.2
SFA (g)	1.1 ± 0.4	1.65	-	-
MUFA (g)	1.5 ± 0.4	1.54	-	-
PUFA (g)	0.6 ± 0.1	0.35	-	-
LA (mg)	502.2 ± 0.1	310	300	840
ALA (mg)	53.7 ± 12.6	28	30	70
ARA (mg)	9.4 ± 5.6	18	-	42
DHA (mg)	14.8 ± 4.0	7 to 42	12	35
Carbohydrates (g)	7.8 ± 0.4	7.5	5 5.4 9.8 1.08 1.75	
Proteins (g)	1.4 ± 0.2	1		
Caseins (g)	0.8 ± 0.3	0.4	-	-
Vitamin A (µg)	61.5 ± 6.4	-	42	79.8
Vitamin D (µg)	1.4 ± 0.3	-	1.2	2.1
Vitamin E (mg)	1.4 ± 0.4	-	0.36	3.5
Vitamin C (mg)	9.7 ± 2.3	9.7 ± 2.3 - 2.4		21
Iron (mg)	0.976 ± 0.155	0.976 ± 0.155 0.05 0.36 1		1.4
Copper (mg)	0.052 ± 0.006	-	0.036	0.070

Dataset: Cancalon et al. Food Chem, 2023

2. FORMULATION OF MODEL IFF

	Objecti	ve		Norn	
SFA	A (g)	33.3		OF 1	alizar.
MUF	A (g)	45.5		anth	
PUF	A (g)	18.2		^{aci} d pi	"alty
LA	(g)	15.2			otile
ALA	4 (g)	1.6			
ARA	(mg)	284.8			
DHA	(mg)	448.5		\mathbf{N}	
Ó.		Ī,	Ī,		
5 7.8% alm oil	18.4% Rapeseed oil	9.1% Sunflower oil	3.1% High oleic sunflower oil	1.0% Algae oil rich in DHA	0.6% Fungal oil rich in ARA
		PO	Μ		
		Palm Oil	Mixture		

1

2. FORMULATION OF MODEL IFF

3. RESULTS – Physical state

Crystallization behavior

Depending on the used SFA source the thermogram profiles varied strongly

9

3. RESULTS - Indicators of oxidation rate among the monitored parameters

Statistical analysis of dataset Using Rstudio software

Low oxidation level in the presence of AOX despite the addition of DHA and ARA

No significant evolution of the fatty acid profile and secondary oxidation compounds

Vitamin A undergoes a strong degradation according to complex mechanisms No strong correlation with PV and tocopherols evolutions

30 to 75% degradation

Descriptive indicators

- **Peroxide value evolution** Primary oxidation compounds
- Tocopherols degradation

Jiang et al., LWT, 2021

Comparison of palm and coconut oils

Nutritional benefits

Provides medium chain fatty acids (C12:0)

Improves lipid digestion and metabolization

Comparison of palm and coconut oils

Peroxide value evolution

Tocopherols isomers distribution and degradation

- Coconut oil is more adapted to the infant's nutritional needs
- The substitution of palm oil by coconut oil increases the oxidative sensitivity
- Tocopherols act as sacrificial agents Isomer content impact the oxidation kinetics

Comparison of palm and red palm oils

RPOM

Water phase

Lecithin

RPOM

Nutritional benefits

High amount of provitamin A carotenoids (α -and β -carotenoids) and tocotrienols

Effective strategy to fight against vitamin A deficiency disease especially for infant and lactating women in developing countries

Comparison of palm and red palm oils

- The substitution of palm oil by red palm oil improve the oxidative resistance Due to its carotenoids and tocotrienols content
 - Segeneration of tocopherols

Comparison of palm oil and dairy fat with soy lecithin or DPL

Nutritional benefits

More diversified fatty acid profile *Provides short and medium saturated chains*

Particular organization of fatty acids on the TAG backbone

Better lipidic absorption by avoiding the formation of insoluble soaps

Provides different PL species like SM and very long saturated chains

Formation of rigid domains at the interface

Comparison of palm oil and dairy fat with soy lecithin or DPL

Peroxide value evolution

- Dairy fat is more adapted to the infant's nutritional needs
- The substitution of palm oil by dairy fat results in a similar oxidative stability resistance The combined use of dairy fat and dairy phospholipids improves the oxidative resistance

17

CONCLUSION

TAKE HOME MESSAGES

Higher Inclusion of carotenoids and dairy lipids in infant formulas would improve both nutritional profile and oxidative stability

Balanced with other formulation or technological solutions

Protein sources Addition of dairy proteins

Pro-oxidant
metalsPackaging
Inert atm
AOX packaging

Zou et al., Food Chem, 2015 Jia et al. Cyta-J Food, 2019 Wang et al., Food Sci Nutr, 2020 Jo et al., Food Packag, 2020

Balance between stability and nutritional profile to meet the infant nutritional needs

International Society for the Study of Fatty Acids and Lipids

Thank you for your attention

Any questions ?

mathilde.cancalon@cirad.fr