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Abstract— The accuracy of the Sea Surface Salinity (SSS) 

retrieved from L-Band radiometer measurements is strongly 

dependent on the reliability of the dielectric constant model.  Two 

new parametrizations were recently developed based on one hand 

on the Soil Moisture and Ocean Salinity (SMOS) satellite multi-

angular brightness temperature measurements by Boutin et al. 

(2021) (BV), and on the other hand on new George Washington 

University laboratory measurements by Zhou et al. (2021) 

(GW2020). These two approaches are fully independent. For most 

SSS and Sea Surface Temperature (SST) conditions commonly 

observed over the open ocean, the relative variations of brightness 

temperatures Tb simulated through the BV and GW2020 

parametrizations agree particularly well, and better than with 

earlier parametrizations previously used in the SMOS, Soil 

Moisture Active Passive (SMAP) and Aquarius SSS retrievals. 

Nevertheless, uncertainty remains, especially below 10°C where a 

~0.1K relative difference between the two models is observed. This 

motivates the development of a revised parameterization, BVZ, 

based on a methodology similar to that used to derive BV but using 

GW2020 instead of SMOS measurements. Compared to the 

GW2020 parameterization, BVZ is derived with a reduced 

number of degrees of freedom, it relies on TEOS10 PSS78 

conductivity-salinity relationship and on previously derived static 

permittivity of fresh water. One month per season of SMOS data 

have been reprocessed in 2018 using BV, GW2020 and BVZ. We 

find the best overall agreement between SMOS SSS and Argo SSS 

with BVZ parametrization, with noticeable improvement in the 

5°C-15°C SST range.  

 

 
Index Terms—Sea surface salinity, Dielectric constant, L-band 

microwave radiometry 
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I. INTRODUCTION 

Remote sensing of Sea Surface Salinity (SSS) is essential for 

monitoring and understanding the Earth's climate, the Earth's 

water cycle and the global ocean circulation (see reviews in [1-

3]). Salinity is a fingerprint of freshwater input to the ocean 

(runoff, precipitation, ice melt) and a tracer of water masses. 

Salinity, together with temperature and pressure, determines the 

density of seawater (in particular the vertical stratification of 

the ocean). As such, it governs the thermohaline circulation at 

high latitudes (in cold waters, density is mainly determined by 

salinity) and the penetration of freshwater, heat, carbon and 

biogeochemical tracers exchanged at air-sea, land-sea and ice-

sea interfaces into the ocean.  

L-band (1.4GHz) radiometry is the technique used since 2010 

to measure SSS from space. SSS retrieval is very challenging 

in terms of radiometric signal modelling due to low signal-to-

noise ratio. The radiative transfer models (RTM) are optimized 

to take into account, in addition to the salinity and temperature 

impact on the seawater dielectric constant, effects related to 

wind (sea surface roughness, foam emission), atmospheric 

emission and absorption, and scattering of galactic noise by the 

sea surface [2]. The various components of the RTM have in 

general a theoretical basis, however adjusting their 

parameterizations to match the radiometric measurements is 

often necessary. This matching procedure is tricky since 

isolating each effect from the others is difficult, e.g., most 

strong winds are observed in cold areas, or singling out any 

effect from measurement contaminations, such as ice 

contamination in very cold areas, is a challenge.  

Therefore, improving the accuracy of the dielectric constant 

parametrization using information independent from 

spaceborne radiometric measurements is crucial. In this sense, 

laboratory measurements of the seawater dielectric combined 
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with theoretical considerations are extremely valuable to 

improve the full RTMs and the retrieved SSS.  

 

The present study aims at understanding the origin of the 

remaining differences between BV and GW2020 

parametrizations, at proposing a new parametrization to 

reconcile both approaches, and at evaluating the performance 

of this revised parametrization based on SMOS measurements. 

Dielectric constant models are presented in section II, together 

with a critical analysis of the assumptions behind each 

parametrization, the information provided by laboratory 

measurements, and a revised parametrization. The SMOS 

salinity retrieval results are shown in section III. Discussion and 

conclusion are given in section IV. 

II. DIELECTRIC CONSTANT MODELS 

A. Dielectric constant models at L band: state of the art 

A complete historical review and intercomparison of dielectric 

constant parametrizations in use at L-Band is given in [4]. Until 

recently, satellite SSS were retrieved using dielectric constant 

parametrizations from either Klein and Swift (KS, [5]) or 

Meissner and Wentz (MW, [6, 7]). Recently, two new 

parametrizations have been derived from laboratory 

measurements made at the George Washington University 

(GW2020; [8]) and from SMOS measurements (BV; [9]). 

Remarkably, the brightness temperatures, Tb, simulated using 

these two new parameterizations (TbBV and TbGW2020) show 

similar patterns of differences when compared with Tb 

simulated using the KS (TbKS) or MW (TbMW) 

parameterizations under conditions of SSS and sea surface 

temperature (SST) commonly encountered in the open ocean. 

Figure 1a-e shows these differences at nadir. At other incidence 

angles, the patterns of the differences in the (SST, SSS) plane 

remain qualitatively similar, the magnitude of the differences 

generally increases in vertical polarization, V-pol, and 

decreases in horizontal polarization, H-pol. Statistics of the 

differences at nadir and at 40°, close to SMAP incidence angle 

are reported in Table 1. Compared with TbKS, TbBV and 

TbGW2020 are higher at high SST and lower at low SST. Between 

5 and 20°C, TbBV and TbGW2020 are lower than TbMW (Figure 1c-

d). However, TbBV is higher than TbGW2020 by ~0.1K on average 

over all SSS, SST (Table 1). This systematic difference is 

possibly related to uncertain absolute calibration of satellite 

radiometric measurements [4]. The STD of (TbBV-TbGW2020) is 

the smallest of the ones observed between the Tb simulated 

with the various relationships (last column of Table 1).  

The various sea water dielectric constant parametrizations 

considered in this paper can be expressed with a single Debye 

relaxation law [10]:   

 

𝜀(𝑇, 𝑆) = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏
 −

𝑗𝜎

𝜀0𝜔
    (1) 

 

where j is the imaginary unit, 𝜀∞ is the dielectric constant at 

very high frequency, 𝜀𝑠 is the static (zero frequency) dielectric 

constant, 𝜏 is the relaxation time in seconds,  𝜔 is the angular 

frequency (2𝜋∙1.4135∙109 Hz.rad in the case of SMOS), 𝜎 is the 

ionic conductivity of the dissolved salts in sea water in siemens 

per meter, 𝜀0 is the permittivity of free space. The differences 

between the considered parametrizations come from the 

varying dependencies of the above parameters on temperature 

and salinity (T,S). 

 

  

  

  

Figure 1: Differences in Tb at nadir (Kelvin) simulated using various 

dielectric constant models, plotted in the (SST, SSS) plane: a) (TbBV-

TbKS); b) (TbGW2020-TbKS); c) (TbBV-TbMW) ; d) (TbGW2020-TbMW), e) 

(TbBV-TbGW2020), and f) number of sample points. The differences are 

plotted for SSS and SST commonly observed in the open ocean (70°N-

70°S).  

TABLE 1 
MEAN AND STD DIFFERENCES OF TB (KELVIN) AT NADIR, 40°  V-

POL AND 40° H-POL, SIMULATED WITH VARIOUS DIELECTRIC 

CONSTANT MODELS OVER (SSS, SST) PAIRS PLOTTED ON FIGURE 
1 

 

 Mean 

(0°/40V/40H) 

Std  

(0°/40V/40H) 

TbBV-TbKS 0.04/0.05/0.03 0.10/0.12/0.08 

TbGW2020-TbKS -0.06/-0.08/-0.05 0.14/0.11/0.12 

TbBV-TbMW -0.06/-0.07/-0.05 0.07/0.08/0.06 

TbGW2020-TbMW  -0.16/0.20/0.14 0.07/0.08/0.06 

TbBV-TbGW2020  0.10/0.11/0.08 0.06/0.05/0.05 

 

    

 

1) BV parametrization 

 

BV parametrization was developed based on the model 

proposed by [11] (SoTr model in the following). It includes a 

description of the total polarization of sea water. At L-Band, the 

model tends to a formulation very close to a single Debye 

relaxation law, replacing 𝜀∞ by the intermediate frequency 
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dielectric constant considered in a double Debye relaxation law, 

ε1. The SoTr model is based on several main assumptions which 

are recalled below. In seawater, 𝜀𝑠 is assumed to decrease as all 

the water molecules that are in the vicinity of an ion orient 

themselves with respect to the ion. These water molecules are 

assumed not to contribute to the orientation polarization of 

seawater. The number of water molecules that orient 

themselves about the dissolved ions is assumed to be directly 

proportional to the number of ions so that s decreases linearly 

as S increases. The SoTr model also assumes that  is not 

affected by the addition of ions, so that  is independent on S. 

Hence, under these assumptions, equation (1) can be rewritten 

as: 

 

𝜀𝐵𝑉(𝑇, 𝑆) = 𝜖1(𝑇, 𝑆 = 0) + 

                   
𝜖𝑠(𝑇,𝑆=0).(1−𝜶(𝑻)∙𝑆)−𝜖1(𝑇,𝑆=0)

1+𝑗𝜔𝜏(𝑇,𝑆=0)
−

𝑗𝜎(𝑇,𝑆)

𝜀0𝜔
       (2) 

 

where α is independent of S. BV parametrization follows (2) 

where the bold font is used to indicate that α(T) is a fitted 

parameter. In (2), all the salinity dependencies are contained in 

σ and in the term (1− α(T)∙ S). The SMOS Tb measurements 

were not enough to fit several independent parameters. Hence, 

[9] chose to fit only α(T) with SMOS-derived pseudo dielectric 

constant, and to keep parametrizations derived earlier as in [6] 

for freshwater quantities (εs ; ε1; τ), and for σ. Parameter α was 

adjusted to SMOS data, using a degree-3 polynomial (4 fitted 

parameters) depending on T. However, [9]  noticed that, over 

T,S conditions commonly encountered over open ocean, very 

similar ε(T,S) fitted values could have been obtained with a fit 

of τ(T)  instead of α(T).  

 

2) GW2020 parametrization 

GW2020 parametrization [8] was derived from measurements 

performed in the laboratory of George Washington (GW) 

University. The laboratory facility was thoroughly designed, 

and very accurate measurements of the complex dielectric 

constant of seawater were carried out [12, 13]. Four quantities 

(εs; α; τ; σ) (in bold in equation (3)) involved in the single Debye 

relaxation law were adjusted to those measurements with the 

following T, S dependencies: 

𝜀𝐺𝑊2020(𝑇, 𝑆) = 𝜀∞ +
𝜺𝒔(𝑻) (1−𝜶(𝑻,𝑺)∙𝑆)−𝜀∞

(1+𝑗𝜔𝝉(𝑻))
 −

𝑗𝝈(𝑻,𝑺)

𝜀0𝜔
    (3) 

A total of 21 parameters were fitted, involving dependencies of 

the four quantities on T (up to the power of 2), S (up to the 

power of 3) and S∙T cross product. 

 

B. Critical analysis of BV and GW2020 parametrizations 

BV parametrization was derived from SMOS data. Real (ε’) and 

imaginary (ε’’) parts of the dielectric constant cannot be 

retrieved independently from Tb measurements. Only a pseudo 

dielectric constant, close to the dielectric constant modulus, can 

be retrieved from SMOS Tb [14]. Consequently, ε’ and ε’’ 

cannot be fully adjusted using SMOS data only, unlike the 

adjustment performed with laboratory measurements. 

Moreover, the SMOS adjustment is performed only over open 

ocean conditions, with most S values above 31pss (Figure 1f), 

and with relatively fewer and uncertain values in cold waters, 

due to possible ice contamination. When BV parametrization 

was applied to SSS retrieval from updated SMOS level 1 Tb 

and from Aquarius Tb, slight positive biases (≤0.2 pss) 

remained with respect to Argo SSS for SST lower than 7°C 

(Fig. 7 and 8 in [1]). Given uncertainties in the roughness 

correction in the Southern Ocean and uncertainties associated 

with ice-sea transition effects on the Tbs, it was not possible to 

draw firm conclusion. Lastly, part of SMOS and Aquarius Tb 

calibrations use some information coming from RTM entailing 

that the absolute value of Tb is subject to uncertainty.  

GW laboratory  measurements have been performed for 80 

pairs of temperatures and salinities. The measurements were 

conducted for salinities ranging between 0 and 38pss with a 

better sampling at high SSS, under temperatures ranging 

between -1.5°C and 35°C with a better sampling at low 

temperatures [8]. Comparisons between Tb simulated using BV 

(TbBV) and Tb derived from GW laboratory measurements 

(TbGWlab) (Figure 2a) reveal the following issues: 

- Above 30 pss, TbBV is mostly above TbGWlab. For S 

between 33pss and 36pss, corresponding to the most 

commonly observed SSS in the open ocean (Figure 1f), this 

bias amounts to 0.15K (Table 2). It is relatively independent 

of S. It is attributable to the uncertainty in SMOS absolute 

calibration over open ocean (T,S) conditions. In practice, it 

does not strongly affect SMOS retrieved SSS because 

SMOS Tb are first corrected for their mean difference with 

respect to the modelled Tb over the south east Pacific region 

(the so-called Ocean Target Transformation, OTT, 

procedure). 

- Below 20 pss, the difference between TbBV and TbGWlab 

appears to be independent of T whereas at higher S, it 

increases as T decreases. 

- As expected by construction, differences between Tb 

simulated with GW2020, TbGW2020, and TbGWlab (Figure 2b) 

are much smaller, with a mean difference near 0.00K 

instead of 0.09K with (TbBV -TbGWlab) and a STDD of 0.09K 

instead of 0.11K. 

Comparisons between ε estimated with BV (εBV), GW2020 

(εGW2020), or measured in laboratory (ε’’GWlab) (Figure 2) show 

that ε”BV - ε’’GWlab are almost as close as ε’’GW2020 - ε’’GWlab 

(Figure 2d,f). Meanwhile, differences between ε'BV and ε'GWlab 

(Figure 2c) become more negative with increasing S. They 

partly reflect, in the opposite sense, differences between TbBV-

TbGWlab (Figure 2a), which underlines that the main weakness 

of BV dielectric constant comes from its real part.  

GW2020 parametrization was derived from GW laboratory 

measurements. These were performed with T ranging from -

1.5°C to 35°C and S from 0 to 38pss. While these T,S 

conditions are more representative of the open ocean conditions 

than the laboratory measurements carried out previously (for 

instance KS parametrization was derived only from 

measurements taken at temperatures above 5°C), the number of 

different (T,S) conditions is limited to 80. This imposes a 

theoretical constraint on the number of degrees of freedom to 

be considered when deriving a new parametrization, but 

GW2020 did not consider this. The more free parameters a 

model has, the better the model fits to the data. Thus, when 

seeking to minimize the residuals to the measurements, one 

generally manages to reduce the residuals by increasing the 

number of coefficients. However, adding too many coefficients 
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may lead to overfitting and, thus, be less conducive to 

generalization. 

 

 

 

 
Figure 2: a, b) Difference in Tb at nadir (a) between TbBV and TbGWlab and (b) between TbGW2020 and TbGWlab. All plots are functions of T (x 

axis) and S (color scale). c, d) Difference between εBV and εGWlab: c) real part and d) imaginary part. e, f) Difference between εGW2020 and 

εGWlab: e) real part and f) imaginary part. For each plot, mean difference and standard deviation of difference are reported in Table 2. 

A second limitation of GW2020 parametrization comes from 

the conductivity fit. Seawater samples used in the GW 

laboratory experiments were purchased from Ocean Scientific 

International Limited (OSIL), Havant, U.K., and have a salinity 

calibrated using the PSS-78 conductivity-salinity relationship. 

Hence, to remain consistent with the reference salinity used in 

the GW laboratory experiments, one has to use the PSS-78 

conductivity salinity relationship. The PSS-78 conductivity 

[15] is almost the same as [16] conductivity salinity relationship  

used in MW, the difference remaining always less than 1.10-3 S 

m-1 (with a maximum observed at high S and high T), that is an 

order of magnitude less than the difference between GW2020 

conductivity and MW conductivity (Fig 9 in [8]). 

 

 

 

 

 

 

 

 

 

 

 
 

TABLE 2 

MEAN AND STD DIFFERENCES OF TB AT NADIR AND ε DERIVED 

FROM DIELECTRIC CONSTANT MODELS OR FROM GW 
LABORATORY MEASUREMENTS  

 

SSS range (pss) 0 to 38 33 to 36 

 STD Mean STD Mean 
GW2020 - GWlab 

ΔTb (K) 0.09  0.00 0.09  0.04 

Δε’ 0.10  0.00 0.10  0.04 

Δε” 0.28 -0.00 0.26 -0.13 
BV (α(T) adjustment) - GWlab 

ΔTb (K) 0.11  0.09 0.10  0.15 

Δε’ 0.50 -0.49 0.42 -0.65 

Δε” 0.28 -0.00 0.27 -0.08 
BVZ (α(T),(T) adjustments) - GWlab 

ΔTb (K) 0.10 -0.01 0.09  0.01 

Δε’ 0.18  0.02 0.11 -0.01 

Δε” 0.28  0.01 0.26 -0.05 
BVZ (α(T,S),(T) adjustments) - GWlab 
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ΔTb (K) 0.09 -0.01 0.09  0.00 

Δε’ 0.12  0.01 0.11  0.06 

Δε” 0.28  0.00 0.26 -0.05 

 

C. New parametrization 

Given the limitations described above, we investigate to which 

extent we can find an alternative parametrization that agrees 

with the new laboratory measurements and with the 

assumptions behind SoTr model.  

When exploring an alternative parametrization of ε, 𝜀𝐵𝑉𝑍 , we 

use the notations as in [6] (adjusted components are written in 

bold in the following equations): 

 

𝜀𝐵𝑉𝑍 = 𝜖1(𝑇, 𝑆 = 0) + 

                   
𝜖𝑠(𝑇,𝑆=0).(1−𝜶(𝑻,𝑺)∙𝑆)−𝜖1(𝑇,𝑆=0)

1+𝑗𝜈 𝝂𝟏⁄ (𝑻)
−

𝑗𝜎(𝑇,𝑆)

2𝜋𝜀0𝜈
                     (4) 

 

In this equation, ν is the radiation frequency, ν1 is the first 

Debye relaxation frequency (𝜔𝜏 = 𝜈 𝜈1⁄ ). We express 𝜈1 as a 

deviation from 𝜈1 fitted with laboratory freshwater 

measurements by [6], νMW, by introducing a function 𝑔(𝑇) as 

follows: 

𝜈1(𝑇) =  𝜈1𝑀𝑊(𝑇). (1 + 𝑔(𝑇))           (5) 

 

We express α as: 

𝛼(𝑇, 𝑆) =  𝑓(𝑇) . (1 + ℎ(𝑆))            (6) 

 

The functional form of 𝜀𝐵𝑉 is a particular case obtained with 

equations (4-6) in which 𝑔(𝑇) = ℎ(𝑆) = 0 

We explore a new parametrization, ‘BVZ’, based on laboratory 

measurements only, with the following constraints: 

-1-The T,S dependency of the conductivity is prescribed by the 

PSS-78 relationship [15]. 

-2- Both α and ν1 parametrizations can be adjusted because GW 

laboratory measurements provide real and imaginary parts of ε. 

-3- We consider that all S dependency is contained in  and εs, 

i.e. 𝜈1 is independent of S. A possible 𝜈1-S dependency will be 

discussed in section IV. We investigate two cases:  

 a) εs, varies linearly with S (hence fulfilling SoTr 

assumption): we adjust 𝑔(𝑇) and 𝑓(𝑇),  ℎ(𝑆) = 0   
 b) εs, does not vary linearly with S: α depends on T and S and 

we adjust 𝑔(𝑇), 𝑓(𝑇) and  ℎ(𝑆). 

-4-The number of fitted parameters has to respect the degrees 

of freedom of the system (the way we used to derive it is 

described in Annex 1). 

We adjusted α and ν1 values using a two-step procedure 

described in annex 1. In order to minimize arbitrary choices 

concerning the functional form of fitted parametrizations, we 

first derived nonparametric functions using nonlinear 

generalized least squares approach[17]. Then, the functions are 

fitted to the adjusted values using polynomial relationships. 

1) 𝜀𝐵𝑉𝑍 derived with 𝛼(T), ν1(T) adjustments 

The best adjustment to the GW laboratory measurements is 

found when 𝛼 varies linearly with T and adjusted 𝜈1 is close to 

the 𝜈1MW (g(T)<0.04 for T<31°C, Figure 3).  
 
𝑓(𝑇) =  (𝑓0  −  𝑓1  ∙  𝑇)              (7) 

𝑔(𝑇) = 𝑔0 + 𝑔1  ∙  𝑇 + 𝑔2  ∙  𝑇2          (8) 

 

with: 

[
𝑓0

𝑓1
] =  [

0.002975810548577
0.000010686101917

]  

and 

[

𝑔0

𝑔1

𝑔2

] =  [
0.012693072655708

−0.003428956751222
0.000132507806856

] 

 
Figure 3: New parametrization of 𝛼(T) and ν1(T). a) f(T) and b) g(T). 

Nonparametric functions are displayed in blue, blue stars indicate 

f(T) and g(T) values obtained for T conditions sampled in the 

laboratory. Polynomial fits of nonparametric functions are in dashed 

red. 

As expected by construction, the residuals with respect to GW 

laboratory measurements (Figure 4) are lower than the residuals 

of BV with respect to GW laboratory measurements (Figure 2 

c,d). STDD of 𝜀′ with respect to 𝜀𝐺𝑊𝑙𝑎𝑏 ′ decreases from 0.48 to 

0.18 and the mean difference between 𝜀′ and 𝜀𝐺𝑊𝑙𝑎𝑏′ decreases 

from -0.44 to 0.02 (Table 2). However, 𝜀′residuals appear to be 

systematically positive for SSS equal to 10 and 20 pss (Figure 

4a). This motivates the addition of a salinity dependency on 𝛼. 

 
 

 
Figure 4: Difference between εBVZ estimated with new parametrization 

of 𝛼(T) and τ(T), and εGWlab: a) real part and b) imaginary part. Plots 

are functions of S (x axis) and T (°C, color bar). For each plot, mean 

difference and standard deviation of difference are reported in Table 

2. 
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2) 𝜀𝐵𝑉𝑍 derived from 𝛼(T,S), ν1(T) adjustments: 

Following the formalism of equations (5) and (6), the 

corresponding parametrizations are: 

𝑓(𝑇) =  (𝑓00  −  𝑓11   ∙ 𝑇)             (9) 

ℎ(𝑆) = ℎ0 + ℎ1 ∙ 𝑆 + ℎ2 ∙ 𝑆2 +  ℎ3 ∙ 𝑆3 ,       (10) 

𝑔(𝑇) = 𝑔00 + 𝑔11  ∙  𝑇 +  𝑔22  ∙  𝑇2         (11) 

 

with 

[
𝑓00

𝑓11
] =  [

0.003100950226871
0.000010994028738

] , 

 

[

ℎ0

ℎ1

ℎ2

ℎ3

] =  [

  0.013179577518089 
 0.010461893723666

−0.000744492408123
0.000011254875895

] , and 

 

[

𝑔00

𝑔11

𝑔22

] =  [
0.012975352323248

 −0.003388740176732
0.000131313421124

] 

Adding the dependency of 𝛼 on S almost does not change the 

slope of f(T), nor the shape of g(T) (Figure 3 and Figure 5). The 

𝛼 dependency on S reaches 0.05 at 10°C and it is about -0.05 

above 30pss (h function on Figure 5). This 𝛼(T,S) 

parametrization allows for the reduction of the STDD of  𝜀𝐵𝑉𝑍′ 
with respect to 𝜀𝐺𝑊𝑙𝑎𝑏′ from 0.18 to 0.12 with little change on 

𝜀𝐵𝑉𝑍′′ (TABLE 2) as it removes the systematic difference of 𝜀𝐵𝑉𝑍′ 
at 10 and 20pss observed with 𝛼(T) parametrization.  

 

 
Figure 5: New parametrization of α(T,S) and τ(T). a) g(T), b) h(S). 

Nonparametric functions are displayed in blue, red stars indicate 

h(S) and g(T) values obtained for T and S conditions sampled in the 

laboratory. Polynomial fits to nonparametric functions are in dashed 

red,.  

Compared to Tb simulated with GW2020 parametrization, Tb 

simulated with BVZ parametrization is in closer agreement 

with Tb derived from GW laboratory measurements between 

33 and 36pss, as shown by the mean biases in Table 2. A better 

agreement appears especially in warm (>22°C) and fresh (<34) 

waters (blue background and blue dots on Figure 7).  
 

 
Figure 6: Difference between εBVZ estimated with new parametrization of 𝛼(T,S) and τ(T), and εGWlab: a,c) real part, as functions of T (x axis in 

a) and color scale in c)) and S (color scale in a ) and x axis in c)), b)imaginary part, d) Difference in Tb at nadir between TbBVZ and TbGWlab.  For 

each plot, mean difference and standard deviation of difference are given in Table 2. 
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Figure 7: Differences in Tb at nadir simulated using BVZ and 

GW2020 dielectric constant models in the (SST,SSS) plane. The 

differences are plotted for SSS and SST commonly observed in the 

open ocean (70°N-70°S) as in Figure 1. The colored dots depict the 

difference between Tb derived from GW laboratory measurements 

and Tb simulated with GW2020 parametrization. 

III. IMPACT OF THE NEW DIELECTRIC CONSTANT 

PARAMETRIZATION ON THE SMOS RETRIEVED SALINITY  

A. Methodology 

1) SMOS processing 

The principle of SMOS SSS retrieval is described in [9]. We 

carried out an ensemble of 3 experiments corresponding to the 

3 dielectric constant models BV, GW2020 and BVZ that we 

evaluate. Level-2 SSS is computed using SMOS Level-1 v724 

Tb as primary input, and the SMOS Level-2 v700 processor 

[18] in which the various dielectric constant models are 

implemented and alternatively selected for the experiments. 

The tests are conducted during 4 months in a year, March, May, 

August, and November 2018, solely over descending orbits to 

reduce the effect of the ice-sea contamination. Only SSS 

retrieved at least 1000 km off the coast are considered, to 

minimize land-sea contamination in the test results. Level-3 

SSS monthly fields are built from Level-2 SSS data retrieved 

through each dielectric constant model using the so-called 

validation protocol filtering (VPF). VPF consists of a set of 

constraints for rejecting Level-2 SSS data in accordance with 

control and science flags that are additional output of the Level-

2 SMOS processor and that correspond to specific data quality 

criteria. VPF is summarized in Annex 2. 

Processing SMOS data is quite computationally expensive, and 

hence, SSS retrievals from SMOS Level-1 v724 Tb were not 

performed using KS and MW dielectric constant models. 

Instead, we present in Annex 3 simplified estimates of the 

expected SSS differences when using those dielectric constant 

models.  

 
2) Comparison with in situ near surface salinity 

To evaluate the output from the 3 SMOS processing 

experiments introduced in the previous section, we use as in-

situ reference the upper ocean measurements collected from 

Argo floats over the global ocean. Argo salinity values at 5m 

depth are considered. We consider only measurements retained 

by the quality controlled procedure of the In Situ Analysis 

System (ISAS) in which delayed mode profiles are used as 

much as possible and extra visual check is carried out [19, 20]. 

The evaluation of the monthly SSS with respect to Argo data at 

each valid grid bin (or “pixel”) consists in comparing the 

statistics of SSS difference, computed spatially for each month, 

between the 3 SMOS experiments and Argo salinities. The 

statistics metrics that are used in the following are the median 

and the standard deviation (std), accompanied by their 

corresponding 95% confidence intervals calculated using 

bootstrapping [21]. 

B. Results 

1) Systematic differences between parametrizations 

The SSS differences between the different parametrization 

output products are the strongest in low SST regions below 10 

or 5°C, as seen in Figure 8 for May 2018, and in Figure 9 for 

the 4 months altogether.  

In tropical regions, GW2020 SSS is slightly larger than BV 

SSS, while BVZ SSS is slightly smaller. In high-latitudes, both 

GW2020 and BVZ SSS are smaller than BV, whereas in mid-

latitudes BVZ is slightly saltier than BV. BVZ induces much 

saltier water than GW2020 in mid- and high-latitude regions 

(ΔSSS ≥ 0.1 pss), while BVZ is less salty than GW2020 in the 

tropical areas (ΔSSS ≤ 0.08 pss). Near the ice (around 0°C), 

GW2020 and BVZ yield similar SSS values while BV is much 

saltier (ΔSSS ≥ 0.5 pss). 

 

 
Figure 8: Global monthly difference maps obtained using the L3 

SMOS SSS data during May 2018. (Top-Left) Difference between the 

GW2020 and BV parametrization, (Top-Right) Difference between the 

BVZ and BV parametrization, and (Bottom) Difference between the 

GW2020 and BVZ parametrization. Displayed value range is 

restricted between -0.2 pss and +0.2 pss to better highlight the 

differences. ECMWF SST isolines (black) are superimposed. 

When considering the KS or MW dielectric constant models 

instead of BVZ, the SSS differences relative to those retrieved 

with BVZ oscillate more with SST, than the differences 

calculated with the SSS retrieved with the BV or GW models. 

With MW, differences of 0.1 and -0.12pss appear at 25°C and 

10°C respectively. With KS, differences remain within +/-

0.03pss between 7 and 27°C, but exceed -0.7pss below 2°C 

(figure A3 in Appendix 3).  
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Figure 9: Comparison between the monthly L3 SMOS SSS yielded by 

the 3 dielectric constant parametrizations BV, GW2020 and BVZ. 

Comparison is shown for all 4 calculated months, March, May, 

August, and November 2018, and with respect to SST within the global 

ocean. (Top) Number of L3 pixels available for comparison within 

each 1°C bin. (Bottom) Median of pixelwise differences between the 

L3 SMOS SSS data within 1°C SST bins from -0.5°C to 30.5°C. 

2) Comparison with Argo 

Overall, the global L3 processing and the worldwide 

distribution of 5m-depth Argo data permits calculation of 

SMOS-Argo salinity differences for 23,663 pixels during the 4-

month period.  

Differences between the SMOS L2 SSS and Argo SSS are 

relatively noisy over the global domain (Figure 10). The 

positive differences in the equatorial Pacific observed with the 

three parametrizations likely comes from an imperfect 

correction of roughness in presence of strong currents. Since 

this effect is very unlikely related to a dielectric constant issue, 

in the following we remove comparisons in the equatorial 

Pacific region (5°N-5°S). Sampling mismatch of the 5m-depth 

Argo dataset with respect to the satellite products is another 

uncertainty source for the comparison [22], which is not 

considered here. However, clear trends can be found over the 

domain and as functions of SST for the 4 calculated months 

(Figure 11). In warm waters (SST≥28°C, warm-pool regions), 

median biases (MB) with respect to Argo are limited to within 

±0.05 pss for the 3 parametrizations. Between 27°C and 17°C, 

all 3 parametrizations yield a small positive MB (ΔSSS≤0.05 

pss). From 17°C to around 10°C, BV and BVZ maintain 

relatively low SSS deviation from Argo (|ΔSSS|≤0.05 pss), 

while GW2020 MB is increasingly negative (ΔSSS<-0.1 pss). 

In colder waters down to about 2°C (high latitudes), MB yielded 

by the 3 parametrizations strongly diverge from each other: BV 

MB increases to more than +0.3 pss, GW2020 MB remains 

negative (between -0.1 and -0.2 pss), while BVZ MB stays 

limited to within ±0.05 pss. For waters colder than 2°C (polar 

ocean), both GW2020 and BVZ induce negative MB (ΔSSS<-

0.15 pss), while BV MB is strongly positive (>0.35 pss).  

 

 
Figure 10: Global monthly difference maps for May 2018 between 

the three L3 SMOS experiment datasets and the 5m-depth Argo data. 

(Top) Salinity difference between BV parametrization output and 

Argo, (Bottom-Left) between GW2020 parametrization and Argo, 

(Bottom-Right) between BVZ parametrization and Argo. Displayed 

value range is restricted between -0.2 pss and +0.2 pss to better 

highlight the differences. 

Standard deviations of difference (STDD) for the three 

parametrizations (not shown) are very similar across the entire 

SST range. Lowest STDD is found for SST>15°C (0.2-0.35 

pss), while STDD becomes increasingly large when SST goes 

down to 0°C (0.4-0.65 pss). 

 

 

Figure 11: Comparison between the monthly L3 SMOS SSS (see text) 

for the 3 dielectric constant parametrizations BV, GW2020 and BVZ, 

and the 5m-depth Argo data. Comparison is shown for all 4 

calculated months, March, May, August, and November 2018, and as 

a function of SST within the global ocean. Only L3 pixels at least 

1000 km off the coastline are considered. (Top) Number of L3 pixels 

available for comparison within each 1°C bin. (Bottom) Median of 

pixelwise difference between L3 SMOS and mean Argo data within 

1°C SST bins from -0.5°C to 30.5°C. 95% confidence intervals are 

displayed (shaded color) and were calculated using bootstrapping. 

Equatorial (within 5° latitude from the equator) Pacific SSS are not 

included as they are possibly wrongly affected by strong equatorial 

currents.  

When considering the calculated months separately (see 

supplementary material), the MBs as functions of SST 

substantially vary from month to month and with respect to the 
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all-month set. Some of the 4 monthly periods show larger or 

smaller bias between the various parameterizations. The results 

for March and May 2018 are the closest to the all-month results. 

However, in August 2018 BV MB is the smallest on average 

among the 3 parametrizations, while in November 2018, 

GW2020 MB is the smallest for cold SST. 

IV. DISCUSSION AND CONCLUSION 

On the one hand, the advent of L-band radiometric satellite data, 

and on the other hand, new laboratory measurements of 

dielectric constant led to two separate revisions of the dielectric 

constant models used for the salinity retrieval from L-band 

radiometric measurements. Although the revised models, BV 

and GW2020, were derived using independent information, the 

relative variations of Tb estimated with both models are in 

remarkable agreement.  

Still, each model has flaws. For BV, only α(T) was fitted to a 

degree-3 polynomial (yielding a near-parabolic function in T), 

and this simple adjustment was found to be insufficient to 

characterize εGWlab real and imaginary parts. This is consistent 

with the fact that radiometric measurements do not allow the 

derivation of the real and imaginary parts of the dielectric 

constant. For GW2020, the adjustment of as many as 21 

coefficients using laboratory measurements that sample a 

limited range of oceanic temperature and salinity conditions can 

be questioned. In particular, in GW2020 the sea water 

conductivity was adjusted as a free parameter while the 

seawater samples used in the laboratory were calibrated with 

the PSS78 salinity-conductivity relationship. This led us to 

build a revised dielectric constant model, BVZ, by using the 

laboratory measurements and by limiting the number of 

adjusted parameters to 9. By adjusting these 9 parameters, we 

find residuals (0.12 and 0.28 for εBVZ’ and εBVZ” respectively,  
TABLE 2) on the same order of magnitude as those obtained with 

GW2020 model, and of comparable order of magnitude as the 

uncertainties of GW laboratory measurements[8].  
 

In order to model εGWlab dependency with respect to 

temperature, we find necessary to implement some linear 

temperature-dependency of α, and to increase ν1 from [6] both 

for cold temperatures (by ~2% at 0°C) and warm temperatures 

(by 3% at 30°C and 4 to 6% at 35°C; see the g(T) functions in 

Figure 3 and in Figure 5). This increase of the first Debye 

relaxation frequency of pure water renders it closer to [5] value 

as shown on Figure 4 of [6]. However, the linear variation of  ϵs 

with S as assumed by SoTr does not permit a proper fit of εGWlab 

at 10pss and 20pss. This is resolved by adding a S dependency 

in α(S,T). Ellison et al. [23] argue that both ϵs and  should vary 

linearly with S. We tested this hypothesis but adding a linear 

dependency of  with respect to S did not improve the matching 

with εGWlab. In particular, the residuals at 10pss and 20pss 

remained very similar to the ones obtained with the 𝛼(T) and 

ν1(T) adjustment. We also tested some non-linear dependency 

of  on S instead of a non-linear dependency of ϵs on S. 

However again, this did not yield a better ε fit while the non-

parametric function was fluctuating much more than h(S). 

Distinguishing the influence of S on ϵs and  could require the 

combination of measurements performed at various frequencies 

which was out of the scope of this study. On the other hand, 

more laboratory measurements at S less than 30pss (e.g. 

measurements at 5, 15 and 25pss), and at S larger than 38pss 

(e.g. at 40pss), would result in better constraints on the 

adjustment shape at extreme S values. This is all the more 

important as very fresh salinity is often observed in strong 

variability regions, such as river plumes where the validation of 

satellite measurements using in situ point(wise) measurements 

is challenging. This is also important for salinity 

characterization in semi-enclosed seas such as the Baltic and 

Black Seas where salinity is less than 10 and 20 pss respectively 

or the Mediterranean Sea where SSS could reach 40 pss, 

especially in the context of a warming climate. Theoretical 

developments to explain the observed (S, T) dependency would 

also be very helpful to improve the parametrization.  

SMOS SSS that is retrieved using the GW2020 and BVZ 

parametrizations is less biased in cold waters than SSS retrieved 

using BV (Figure 11). The different SMOS data versions, the 

different time periods used to derive BV parametrization, the 

low number of co-located points in cold water, and the large 

SMOS SSS noise, are all possible causes of this BV issue.  

In cold waters, SMOS SSS retrieved with BVZ parametrization 

is on average closer to Argo SSS than SMOS SSS retrieved with 

GW2020 parametrization. It would be interesting to conduct a 

similar study with Aquarius and SMAP data sets.  

This study highlights the value of deriving models 

independently of satellite measurements. Moreover, a dielectric 

constant parametrization derived independently of satellite 

measurements provides a new constraint to improve other RTM 

models (e.g. roughness model). 

ANNEX 1: STRATEGY TO DERIVE NEW PARAMETRIZATION 

 

Equation 4 depends on several functions (f(T),g(T),h(S)) that 

need to be estimated from GW laboratory data. The laboratory 

data are sampled regularly in (S,T) space and we assume that 

they have sufficient coverage to constrain the parameters. In 

other words, we consider that the functions do not exhibit 

fluctuations at scales smaller than the sampling. As described 

in [11], these functions are classically parameterized as 

polynomials of various degrees. Here, we choose to estimate 

these functions in two steps. 

A first non-parametric step allows to extract these functions 

without making any assumption on the type of associated 

function. In order to constrain the functions at any point of their 

support, we use a sufficiently large correlation distance (at least 

twice as large as the sampling) to obtain a sufficiently smoothed 

result. This smoothing allows the inversion to be more stable. It 

is partly controlled by the residuals.  

A second step consists in estimating a parametrization 

associated with these functions in order to simplify their 

representation. 

This two-step approach is effective because it allows to 

establish the variations of the various functions without making 

them fit into a too rigid parametric framework. It is only 

afterwards, in view of the non-parametric estimates, that the 

representation of these functions is simplified by using 

polynomials. Furthermore, the non-parametric approach allows 

us to calculate the expected number of degrees of freedom 

(DOFFS, see [24]), i.e. the number of independent constraints 
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that the data actually carry. In a non-parametric case, this 

number can be non-integer.  

In order to estimate the functions, we take a Bayesian formalism 

as described in [17] and [24]. This type of approach involves 

the minimization of a quadratic cost function that incorporates 

a maximum likelihood term and a regularization term. This last 

term constitutes the a priori knowledge that we have on each 

function and is translated into covariances that act as smoothing 

operators. 

The cost function is written: 

C(p)=<(d-𝜀𝐵𝑉𝑍(p))T.(d-𝜀𝐵𝑉𝑍(p))>+<((p-p0)T.Cp.(p-p0)>   (12) 

where d is the vector of GW observations, 𝑝 = (

𝑓
ℎ
𝑔

) and Cp is 

the covariance operator which combines the covariances of the 

functions (f,g,h) and p0 is the a priori function values.  

Cp is written : 

𝐶𝑝 = [

𝐶𝑓 0 0

0 𝐶ℎ 0
0 0 𝐶𝑔

] 

with : 

𝐶𝑓(𝑇, 𝑇′) = 𝜎𝑓
2 exp (−

(𝑇 − 𝑇′)2

𝜉𝑓
2 ) 

𝐶ℎ(𝑆, 𝑆′) = 𝜎ℎ
2 exp (−

(𝑆 − 𝑆′)2

𝜉ℎ
2 ) 

𝐶𝑔(𝑇, 𝑇′) = 𝜎𝑔
2 exp (−

(𝑇 − 𝑇′)2

𝜉𝑔
2

) 

 

Correlation distances 𝜉𝑓 , 𝜉ℎ and 𝜉𝑔 are set to 20°C, 20pss and 

20°C respectively. Different tests have been performed with 

different correlation lengths. With smaller correlation lengths, 

oscillations appear in the solution without improving the data 

fitting (the chi2 does not decrease significantly). 

The a priori function vector is written as: 

𝑝0 = (

𝑓0

ℎ0

𝑔0

) 

A priori values are taken as : 

-a constant value for f(T), equal to 0.00314 as suggested by 

[11]. 

- h(S)=g(T)=0 assuming that S does not depend on f and that 𝜈1 

derived by [6] is correct. The latter assumption is because [6] 

used more laboratory measurements performed at various 

frequency than [16] to derive 𝜈1. However, the general shape of 

the functions is the same whatever [6] or [16] formulation (as 

used by [11]) is used. The a priori standard 

deviations 𝜎𝑓 , 𝜎𝑔 and 𝜎ℎ are taken equal to 0.001, 0.2 and 0.4 

respectively.  

  

The goal is to find the value of 𝑝 = 𝑝 that minimizes C(p).  

  

𝜀𝐵𝑉𝑍(𝑝) model is non-linear according to p. C(p) is performed 

iteratively using the Raphson-Newton method: 

𝑝𝑘+1 = 𝑝0 + 𝐶𝑝 ∙ 𝐺𝑘
𝑇 ∙ 𝐻𝑘

−1 ∙ (𝑑 − 𝜀𝐵𝑉𝑍(𝑝𝑘) 

              +𝐺𝑘 ∙ (𝑝𝑘 − 𝑝0))                                                          (13) 

𝐺𝑘 is the derivative of the direct model 𝜀𝐵𝑉𝑍(𝑝̃𝑘) according to p 

in 𝑝𝑘. Explicitly, it is the following operator: 

𝐺𝑘 = [

𝜕𝜀𝐵𝑉𝑍_1 𝜕𝑓⁄ 𝜕𝜀𝐵𝑉𝑍_1 𝜕ℎ⁄ 𝜕𝜀𝐵𝑉𝑍_1 𝜕𝑔⁄

⋮ ⋮ ⋮
𝜕𝜀𝐵𝑉𝑍_𝑛 𝜕𝑓⁄ 𝜕𝜀𝐵𝑉𝑍_𝑛 𝜕ℎ⁄ 𝜕𝜀𝐵𝑉𝑍_𝑛 𝜕𝑔⁄

] 

where 𝜀𝐵𝑉𝑍_𝑖 is the model calculated at the point (S_i,T_i) of 

laboratory measurement i, i varying between 1 and n. The 

matrix has the dimension (n,3), n being the number of data. The 

Frechet derivatives 𝜕𝜀𝐵𝑉𝑍 𝜕𝑓⁄ , 𝜕𝜀𝐵𝑉𝑍 𝜕ℎ⁄  et 𝜕𝜀𝐵𝑉𝑍 𝜕𝑔⁄  can be seen 

as functional operators as well as matrix operators [17].  

 

𝐶𝑝. 𝐺𝑘
𝑇 . 𝐻𝑘

−1 is the gain applied to the residual vector 𝑑 −

𝜀𝐵𝑉𝑍(𝑝𝑘) + 𝐺𝑘(𝑝𝑘 − 𝑝0) with 𝐻𝑘 =  (𝐼 + 𝐺𝑘. 𝐶𝑝. 𝐺𝑘
𝑇  ) , where I 

is the unit matrix whose dimension is n  n. 

We note 𝑉𝑘 the vector 𝐻𝑘
−1. (𝑑 − 𝜀𝐵𝑉𝑍(𝑝𝑘) + 𝐺𝑘(𝑝𝑘 − 𝑝0)) . 

After convergence (k=10 ; indeed, the solution and the Chi2 

stabilize after typically 4 iterations), we estimate the parameters 

(𝑓(𝑇), ℎ̃(𝑆), 𝑔̃(𝑇)) using equation (13). 

 

The approximation of the functions (𝑓(𝑇), ℎ̃(𝑆), 𝑔̃(𝑇)) by 

polynomials is obtained using the polyfit function of matlab. 

The degree of the polynomials fitting (f,h,g) is 1, 3 and 2, 

respectively. This choice degrades the residuals in a non-

significant way. Note that the number of fitted polynomial 

coefficients is 9 in the α(T,S) case. This is in line with the a 

posteriori DOFFS [24] calculated in the first step, which is 

equal to 9.1. 

 

ANNEX 2: SMOS DATA PROCESSING  

Level-2 SMOS SSS are filtered according to validation protocol 

flags (Table A1). 

Monthly SSS fields are built on a grid composed of about 100 

km x 100 km bins (see later) using a weighting average within 

one bin:  

〈𝑆𝑆𝑆〉 = ∑
𝑆𝑆𝑆𝑗

𝑅𝑗
2𝜎𝑗

2 × (∑
1

𝑅𝑗
2𝜎𝑗

2

𝑁

𝑗=1

)

−1
𝑁

𝑗=1

 

where 𝑆𝑆𝑆𝑗 is the 𝑗𝑡ℎ Level-2 value within the bin, 𝑅𝑗 the 

equivalent footprint diameter relative to the corresponding 

dwell-line, 𝜎𝑗 the theoretical error yielded by the Level-2 

processor for that value, and 𝑁 the number of measurements 

available within the bin. As we are treating Level-2 half-orbit 

(descending) data, the averaged 〈𝑆𝑆𝑆〉 value is considered valid 

if 𝑁 ≥ 30. The grid is based on the Hierarchical Equal Area 

isoLatitude Pixelization of a sphere (HEALPix, 

https://healpix.jpl.nasa.gov/healpixBackgroundReferences.sht

ml), using a 𝑁𝑠𝑖𝑑𝑒  parameter value of 64 for which each bin area 

is 10377.3 km² (49152 pixels over the entire Earth).  
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Table A1:  

Quality-control and science flags used in VPF (1=True, 0=False). 
Flag name  Meaning  VPF value  

DG_AF_FOV  
Number of 

measurements in 

alias-free Field of 

View  
≥130  

FG_CTRL_ECMWF  No missing ECMWF 
data  1  

FG_CTRL_NUM_MEAS_MIN  Very few 

measurements  0  

FG_CTRL_NUM_MEAS_LOW  
Number of valid 

measurements below 

threshold (30)  
0  

FG_CTRL_MANY_OUTLIERS  Number of outliers 

above threshold  0  

FG_CTRL_SUNGLINT  
Number flagged for 

sun glint above 
threshold  

0  

FG_CTRL_MOONGLINT  
Number flagged for 

moon glint above 

threshold  
0  

FG_CTRL_REACH_MAXITER  Number of iterations 

above threshold  0  

FG_CTRL_MARQ  
Minimization 

procedure factor 

above threshold  
0  

FG_CTRL_CHI2_P   ² minimized value 

above threshold  0  

FG_CTRL_SUSPECT_RFI  Number flagged for 

RFI above threshold  0  
SC_LOW_WIND  Low wind speed  1  

SC_LAND_SEA_COAST1  Not land and not near 

coast  1  
SC_ICE  Ice present  0  

SC_SUSPECT_ICE  Possible ice 

contamination  0  

ANNEX 3: SIMPLIFIED ESTIMATE OF SSS DIFFERENCES 

Since SMOS data processing is quite computationally 

expensive, we have derived a simplified way to estimate the 

SSS difference expected from the use of various dielectric 

constant models.  

Let Tbmodel1 and Tbmodel2 be the Tb simulated under the same 

SSS and SST conditions with two different dielectric constant 

models, and ΔTbmodel their difference. The expected retrieved 

SSS difference, ΔSSS, is derived from the derivative of Tb with 

respect to SSS at the given (SSS,SST), after taking into account 

the change in Tb coming from the different OTT estimates 

when using two different models, ΔTbOTT.  

We approximate the retrieval of SMOS SSS from multiple Tb 

measured in full polarizations at incidence angle varying 

between nadir and ~60° by a retrieval from a nadir Tb, 

considering that for most SMOS incidence angles derivatives 

of nadir Tb and of Stokes 1 parameter are very similar and 

neglecting the adjustment of the wind speed made in the course 

of SMOS SSS retrieval. Considering Figure 3 of [25] at nadir,  

we approximate the ΔSSS as: 

∆𝑆𝑆𝑆 =  
∆𝑇𝑏

(0.015 ∙ 𝑆𝑆𝑇 + 0.25)
 

With ∆𝑇𝑏 =  ∆𝑇𝑏𝑚𝑜𝑑𝑒𝑙 − ∆𝑇𝑏𝑂𝑇𝑇 .  

∆𝑇𝑏𝑂𝑇𝑇  is an estimate of the mean difference of Tb derived over 

the OTT region with the two considered models at nadir. It is 

estimated for SST varying between 10°C and 25°C. The mean 

differences as function of SST (Figure A3) are weighted by the 

distribution of pixels over (SST, SSS) pairs commonly 

observed over the open ocean (FIGURE 1f). We validate this 

simplified approach by comparing ∆𝑆𝑆𝑆 such obtained with the 

GW-BV, BVZ-BV and GW-BVZ SSS differences obtained 

with full SMOS SSS retrievals (FIGURE 9). We observe very 

good consistency of the differences, with only few significant 

differences close to 0°C possibly due to artefacts of ice-sea 

contamination.   

 

Figure A3: Simplified estimate of differences of SMOS SSS 

yielded by the 5 dielectric constant parametrizations BV, 

GW2020, KS, MW and BVZ as function of SST. 
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