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ABSTRACT

As the latest video coding standard, Versatile Video Coding
(VVC) is highly efficient at the cost of very high coding com-
plexity, which seriously hinders its widespread application.
Therefore, it is very crucial to improve its coding speed. In
this paper, we propose a learning-based fast split type (ST)
prediction algorithm for VVC using a deep learning approach.
We first construct a large-scale database containing sufficient
STs with diverse video resolution and content. Next, since
the ST distributions of coding units (CUs) of different sizes
are significantly distinct, so we separately design neural net-
works for all different CU sizes. Then, we merge ambiguous
STs into four merged classes (MCs) to train models to obtain
probabilities of MCs and skip unlikely ones. Experimental
results demonstrate that the proposed algorithm can reduce
the encoding time of VVC by 67.53% with 1.89% increase in
Bjøntegaard delta bit-rate (BDBR) on average.

Index Terms— VVC, Split type, Deep learning

1. INTRODUCTION

With the rapid development of information technology, var-
ious video applications have been widely used in our daily
lives, such as network broadcasting and video conferencing.
Meanwhile, users are demanding higher video quality and
various ultra-high definition (UHD) video applications are be-
coming popular, such as 4K/8K video and virtual reality (VR)
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video, causing the explosive growth of visual data. The pre-
vious generation of coding standard, High-Efficiency Video
Coding (HEVC) [1], has gradually failed to meet the mar-
ket demand for more efficient coding efficiency targets for
high-resolution video. Therefore, the Joint Video Exploration
Team (JVET) has developed the latest generation standard,
Versatile Video Coding (VVC) [2]. Thanks to a series of new
tools, VVC achieves significantly higher coding efficiency
compared with HEVC [3]. However, its computational com-
plexity is also greatly increased, making VVC unsuitable for
real-time applications [4]. Therefore, it is necessary to de-
velop fast algorithms to reduce encoding complexity.

To this end, we propose a fast split type (ST) prediction
algorithm for VVC in this paper. Since the ST distributions
of different-sized coding units (CUs) are significantly differ-
ent, we design neural networks suitable for all different-sized
CUs, and merge ambiguous STs into four merged classes
(MCs) to train models for all different-sized CUs to pre-
dict candidate MCs. Comprehensive experiments show that
the proposed approach can significantly reduce encoding
time with a reasonable increase in Bjøntegaard delta bit-
rate (BDBR). In particular, it outperforms recent competing
methods.

2. RELATED WORK

In order to improve coding speed, numerous deep learning-
based methods have been proposed. Liu et al. [5] proposed a
convolutional neural network (CNN)-based coding tree unit
(CTU) structure decision to skip unlikely CU and prediction
unit (PU) modes to speed up the encoding of HEVC. Laude et
al. [6] used a CNN classifier to select likely prediction modes
in HEVC. Kim et al. [7] selected CU’s image values and vec-
tor data from the encoding information of CU, and then used
CNN to predict likely coding depths. Li et al. [8] modelled
CTU partitioning as a three-level classification problem, and



Fig. 1. VVC split types.

then used CNN to predict CTU partitioning. Xu et al. [9] used
CNN and long short-term memory (LSTM) networks, respec-
tively, to predict HEVC’s intra-encoding CU partitioning and
inter-encoding CU partitioning. The above algorithms were
developed for HEVC. Since the structure of HEVC is very
different from that of VVC, these HEVC-oriented methods
cannot be directly applied to VVC.

Given the complex quad-tree plus multi-type tree (QTMT)
partition structure of VVC, Li et al. [10] used a multi-stage
with an early exit mechanism to predict candidate STs for
VVC. However, errors in feature extraction can spread across
multiple stages, thus affecting prediction accuracy, especially
for small CU sizes. In addition, the convolution operation of
residual units is complex, hindering improvements in coding
speed. Park et al. [11] selected two useful types of features
- explicit VVC features and derived VVC features, and then
used a lightweight neural network model to terminate the
nested ternary tree (TT) block structure based on these fea-
tures. As only the TT partitions were terminated early, the
coding speed can hardly be improved significantly. Further-
more, this work does not take into account the ST distribution
of different CU sizes, which may also degrade the coding
performance. Therefore, there is still room for further coding
speed improvements.

Based on the above analysis, HEVC-oriented approaches
cannot be directly applied in VVC, and VVC-oriented ap-
proaches also have some drawbacks. In order to address these
issues, we propose a fast ST prediction algorithm to further
improve encoding speed.

3. LEARNING-BASED SPLIT TYPE PREDICTION

In VVC, there are at most six partition types: no split, QT,
binary-tree-horizontal (BTH), binary-tree-vertical (BTV),
ternarytree-horizontal (TTH) and ternary-tree-vertical (TTV),
as shown in Fig. 1. In addition, the numbers of STs may vary
from 2 to 6 in different CUs and is listed in the second column
of Table 1.

CNNs are widely used for image and video processing
and can achieve excellent performance. To efficiently predict
candidate STs, we use CNNs to extract features. More specif-
ically, we first build a database to train and test the CNN mod-

Table 1. STs and their corresponding merged classes of dif-
ferent CUs

CU Size Split Types Merged classes
64×64 No split, QT NSC, QC
32×32 No split, QT, BTH, BTV, TTH, TTV NSC, QC, HSC, VSC

32×16/16×32 No split, BTH, BTV, TTH, TTV NSC, HSC, VSC
32×8/8×32 No split, BTH, BTV, TTV/TTH NSC, HSC, VSC
32×4/4×32 No split, BTV/BTH, TTV/TTH NSC, VSC/HSC

16×16 No split, QT, BTH, BTV, TTH, TTV NSC, QC, HSC, VSC
16×8/8×16 No split, BTH, BTV, TTV/TTH NSC, HSC, VSC
16×4/4×16 No split, BTV/BTH, TTV/TTH NSC, VSC/HSC

8×8 No split, BTH, BTV NSC, HSC, VSC
8×4/4×8 No split, BTV/BTH NSC, VSC/HSC

els to predict VVC STs. Then, we design the structure of the
CNN models. Finally, we use these models to obtain the prob-
abilities of STs for the current CU and select likely STs based
on the probabilities. The proposed approach is described in
detail below.

3.1. Database Construction

To train and test the neural network models, we need to build
a large-scale database for the ST prediction of VVC Intra
coding (called the SPVIC database). As both image data
and quantization parameters (QPs) are closely related to the
ST selection, we choose both of them as components of the
database. The image data are derived from 204 original video
sequences [10], which come with different resolutions and
content. These video sequences were divided into three non-
overlapping sets, including a training set (160 sequences), a
validation set (22 sequences) and a test set (22 sequences).

According to the Common Test Conditions (CTC) [12],
the QPs are set to 22, 27, 32 and 37 with All-Intra (AI) con-
figuration for testing. All video sequences and images are en-
coded by the VVC reference software VTM-10.2. The ground
truth STs of the CUs can be obtained accordingly. The SPVIC
database is constructed through the process described above.
Each sample in the database includes the image data, CU’s
QP value, as well as its corresponding ground truth ST.

3.2. Design of the Neural Network Architecture

Before designing the Neural Network, we first investigate the
ST distribution of CUs. Extensive experimental results show
that the ST distributions of all different CUs are also different.
Clearly, if all CUs use the same model to predict candidate
STs, the corresponding predictions cannot always obtain the
best performance. Therefore, we should train separate models
for different CUs.

In VVC, there are many CUs have their corresponding
transposed CUs, such as 32×16 CU and 16×32 CU. To avoid
training redundant models, we only train the CUs whose
widths are larger than their heights.



Fig. 2. Proposed neural network architecture for ST prediction(conv and pooling refer to the convolutional layer and pooling
layers, respectively).

Fig. 2 is the proposed Neural network architecture of ST
prediction for training and inferencing. This structure first
uses the convolutional layers and pooling layers for the im-
age data, and finally, uses fully connected layers for the vector
data. Only the 3×3 convolution kernel with stride 1 and pad
1 is used in convolutional layers. The pooling layer is imple-
mented to reduce the size of their representation. Since there
are square CUs and rectangular CUs, a dynamic max-pooling
layer is implemented. More specifically, the 2×2 pooling ker-
nel is used for square CUs, and the 2×1 pooling kernel is
used for rectangular CUs. Through the 2×1 pooling kernel,
the ratio between the width and height of a rectangular CU
is reduced by 2. Through a series of 2×1 pooling kernels, a
rectangular CU can be reduced to a smaller square. For exam-
ple, through the 2×1 pooling kernel, a 32×8 CU is reduced
into a 16×8 CU. By performing the process once, the 16x8
CU is reduced into an 8x8 CU.

After being processed in a series of convolutional layers
and pooling layers, the vector data is concatenated to feed into
the fully connected layer. Furthermore, QPs are closely re-
lated to the partitioning of CU. For small QPs, CUs are more
likely to be partitioned, and vice versa. Therefore, the net-
work needs to be conditioned on the QP value and this is done
in the last fully connected (FC) layers. In addition, all convo-
lutional layers and FC layers are activated with rectified linear
units (ReLU). Finally, we obtain the predicted value ŷ by the
softmax output function. The number of ŷ depends on the
size of the CU itself and ranges between 2 and 6.

3.3. Training and Testing the Neural Network Architec-
ture

We construct the database and designed the neural network
architecture through the process discussed above. A model
can be learned by repeating the training and testing processes.
Using the trained model, six STs of 32×32 CUs are predicted,
and their corresponding test accuracies are shown in Table 2.

In Table 2, the rows and columns represent predicted STs
and actual STs, respectively. From Table 2, we can find that it

Table 2. Test accuracy (%) of STs of 32×32 CUs

Predicted ST
Actual ST

No split QT BTH BTV TTH TTV

No split 74 1 9 8 6 8
QT 1 75 8 11 14 15

BTH 12 13 52 14 26 12
BTV 6 9 10 47 7 24
TTH 5 1 20 1 46 1
TTV 2 1 1 19 1 40

is difficult to identify BT and TT in the horizontal and vertical
direction. For example, 26% of CUs use TTH when the pre-
dicted ST is BTH; 24% of CUs use TTV when the predicted
ST is BTV. To solve this problem, we merged the ambiguous
STs into one class. Specifically, we merged BTH and TTH
into the horizontal split class (HSC), and BTV and TTV into
the vertical split class (VSC). Accordingly, we grouped the
six STs into four classes, namely, no split class (NSC), QT
class (QC), HSC and VSC. We merged the ambiguous STs
for CUs of sizes 64×64 to 8×4, and their corresponding MCs
are listed in the third column of Table 1.

3.4. Probability-based MC selection

For MCs, we retrain MC-based models. Using these model,
we can obtain the probabilities of the MCs. Obviously, MCs
with high probabilities are more likely to be selected, and vice
versa. Therefore, we sort MCs according to their probabilities
from highest to lowest. ai denotes the probability of the ith
MC of the current CU, the sum of the probability of the first
n MCs, s1, is:

s1 =

n∑
i=1

ai. (1)

If s1 is greater than or equal to a threshold value denoted as
T1, we can early terminate ST seletion. How to choose the
best T1 is the key. On the validation data, the prediction accu-
racies and the numbers of MCs under different T1 are shown



(a) Prediction accuracy (b) The Number of MCs

Fig. 3. Prediction accuracy and the number of MCs under
different T1 on the validation data.

in Fig. 3.
From Fig. 3, we can see that both the prediction accuracy

and the number of MCs increase as T1 increases. While high
prediction accuracy leads to high coding efficiency, the high
number of MCs also results in high coding complexity. There-
fore, there is a trade-off between coding efficiency and cod-
ing complexity. Considering this trade-off, we set 0.7 as the
threshold. The MC selection can be written as follows:

n∑
i=1

ai ≥ 0.7 &

n−1∑
i=1

ai < 0.7. (2)

If the above conditions are met, only the first n MCs can be
selected and the later ones skipped to increase coding speed
and maintain coding efficiency.

4. EXPERIMENTAL RESULTS

To verify the performance of the proposed VVC fast coding
algorithm, we performed the evaluations on a server with an
Intel(R) 2.0 GHz CPU and 30 GB of RAM using the refer-
ence software VTM 10.2. For a fair comparison, we use the
GeForce RTX 3090 GPU to speed up the training only but dis-
able it when testing the coding performance. When training
the CNN model, we set all weights and bias parameters ran-
domly with Xavier initialization [13]. For each model trained
from scratch, we perform 200,000 iterations with a batch size
of 128. In every 2000 iterations, we initially set the learning
rate to 10−4 and then reduced it exponentially by 1%. During
the training process, we use the Adam algorithm to optimize
the parameters of the trainable components [14], while keep-
ing other parameters unchanged. We use the deep learning
framework PyTorch to train the CNN models, and then em-
bed them into the VTM encoder during the test.

According to the CTC [12], 22 video sequences in classes
A to E are selected in our experiments. All these sequences
are tested with the AI configuration with QP values (22,
27, 32, 37). The performance of our proposed algorithm
is evaluated by coding efficiency and computational com-
plexity. Coding efficiency refers to the visual quality and
its corresponding bit rate together, which is measured by

Table 3. Overall performance comparisons of three algo-
rithms

Class Sequence
Proposed DQTMT[10]:”faster” LCCPI[16]

BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%)

A1
Tango2 1.66 66.68 3.49 54.35 1.63 45.28

Foodmarket4 1.49 54.48 2.78 57.91 5.15 60.49
Campfire 1.65 65.00 4.17 66.52 2.64 50.12

A2
CatRobot 1.99 64.94 4.88 62.87 1.13 47.17

DaylightRoad2 1.97 72.63 2.78 65.63 2.18 52.45
ParkRunning3 1.45 58.05 2.68 63.01 1.25 45.58

B

MarketPlace 1.03 74.66 1.89 65.15 4.20 57.97
RitualDance 1.63 64.79 2.69 62.98 3.73 61.93

Cactus 1.71 71.37 2.85 67.70 1.32 60.68
BasketballDrive 2.20 74.75 3.87 68.50 2.19 55.07

BQTerrace 2.58 70.45 2.57 64.39 5.25 58.96

C

BasketballDrill 3.76 63.84 4.72 60.98 4.29 60.09
BQMall 1.88 69.84 3.10 67.45 2.84 55.04

PartyScene 1.30 65.81 1.86 64.64 2.79 57.20
RaceHorses 1.41 67.47 2.50 65.68 2.39 54.91

D

BasketballPass 2.13 67.14 3.66 62.62 1.88 54.69
BQSquare 1.76 66.77 2.04 62.52 1.37 51.36

BlowingBubbles 1.40 65.02 2.38 61.85 3.17 52.42
RaceHorses 1.75 65.35 2.92 61.29 1.19 45.47

E
FourPeople 2.18 72.71 3.30 66.91 1.66 51.51

Johnny 2.58 72.01 5.08 64.35 2.43 57.49
KristenAndSara 2.14 71.94 3.93 66.11 3.78 58.85
Average 1.89 67.53 3.19 63.79 2.66 54.31

BDBR [15]. Computational complexity is measured by the
percentage of coding time saved, denoted as TS.

We compare the performance of the proposed approach
with the DQTMT algorithm [10] and the LCCPI algo-
rithm [16], the corresponding overall performance compar-
isons are listed in Table 3. From Table 3, we find that the
averages of BDBR and TS of the proposed algorithm are
1.89% and 67.53% respectively, and those of the DQTMT
algorithm (”faster” mode) are 3.19% and 63.79%, and those
of the LCCPI algorithm are 2.66% and 54.31%. Obviously,
compared with these two algorithms, the proposed algorithm
has a smaller average BDBR and greater average TS. There-
fore, we can conclude that the proposed algorithm performs
much better in both coding speed and coding efficiency com-
pared with the DQTMT and LCCPI algorithms.

5. CONCLUSION

In this paper, we proposed a fast learning-based ST predic-
tion algorithm for VVC. Since split type (ST) distributions
of different-sized CUs are significantly different, we design
Neural Networks and train models for all different-sized CUs
to predict candidate MCs. Comprehensive experimental re-
sults show that our approach can outperform other state-of-
the-art approaches.
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