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5 Faculté des sciences et Technologies, Université de Lorraine, France
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Abstract

In this article we establish a new formula for the difference of a test function of the solution of a stochastic
differential equation and of the test function of an Itô process. The introduced formula essentially generalizes
both the classical Alekseev-Gröbner formula from the literature on deterministic differential equations as well
as the classical Itô formula from stochastic analysis. The discovered formula, which we suggest to refer to as
Itô-Alekseev-Gröbner formula, is a powerful tool for deriving strong approximation rates for perturbations
and approximations of stochastic ordinary and partial differential equations.

1 Introduction

The linear integration-by-parts formula states in the simplest case that for all a, b ∈ R, t ∈ [0,∞) it holds that

eat − ebt = −
∫ t

0

d
ds

(
ea(t−s)ebs

)
ds =

∫ t

0
ea(t−s)(a− b)ebs ds. (1)

The nonlinear integration-by-parts formula, which is also referred to as Alekseev-Gröbner formula or as nonlinear
variation-of-constants formula, generalizes this relation to nonlinear ordinary differential equations and has been
established in Alekseev [1] and Gröbner [17]. More formally, the Alekseev-Gröbner formula (cf., e.g., Hairer et
al. [19, Theorem I.14.5]) asserts that for all d ∈ N, T ∈ (0,∞), µ ∈ C0,1([0, T ] × Rd,Rd), Y ∈ C1([0, T ],Rd),
and all X ··,· = (Xx

s,t)s∈[0,t],t∈[0,T ],x∈Rd ∈ C({(s, t) ∈ [0, T ]2 : s ≤ t} × Rd,Rd) with ∀ s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd:
Xx
s,t = x+

∫ t
s µ(r,Xx

s,r) dr it holds that

XY0
0,T − YT =

∫ T

0

(
∂
∂xX

Yr
r,T

)(
µ(r, Yr)− d

drYr

)
dr. (2)

AMS 2010 subject classification: 60H10
Key words and phrases: Itô formula, Alekseev-Gröbner formula, nonlinear variation-of-constants formula, nonlinear integration-

by-parts formula, perturbation of stochastic differential equations, strong convergence rate, non-globally monotone coefficients,
small-noise analysis

1



Informally speaking, the Alekseev-Gröbner formula expresses the global error (the term XY0
0,T − YT in (2)) in

terms of the infinitesimal error (the term µ(r, Yr) − d
drYr in (2) which corresponds to the difference of time

derivatives). For this reason, the Alekseev-Gröbner formula is a powerful tool for studying perturbations of
ordinary differential equations; see, e.g., Norsett & Wanner [46, Theorem 3], Lie & Norsett [37, Theorem 1],
Iserles & Soederlind [27, Theorem 1], and Iserles [26, Theorem 3.7].

In this article we generalize the Alekseev-Gröbner formula to a stochastic setting and derive the nonlinear
integration-by-parts formula for stochastic differential equations (SDEs). Informally speaking, one key difficulty
in this generalization is that the integrand on the right-hand side of (2) (and a similar integrand appears in the
stochastic integral in (8) below) depends both on the past (e.g. the term µ(r, Yr)) and on the future (e.g. the
term ∂

∂xX
Yr
r,T ). This precludes a generalization which is solely based on Itô calculus. In this article we apply

Malliavin calculus and express anticipating stochastic integrals as Skorohod integrals. The following theorem,
Theorem 1.1, formulates our main contribution and establishes – what we call – the Itô-Alekseev-Gröbner
formula. For its formulation and throughout this article we use the notation introduced in Subsection 1.1
below.

Theorem 1.1 (Itô-Alekseev-Gröbner formula). Let d,m, k ∈ N, T, c ∈ (0,∞), p ∈ (4,∞), q ∈ [0, p2 − 2),
ξ ∈ Rd, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rm be a standard Brownian motion with
continuous sample paths, let N = {A ∈ F : P(A) = 0}, let µ ∈ C

(
[0, T ] × Rd,Rd

)
, σ ∈ C

(
[0, T ] × Rd,Rd×m

)
,

let X ··,· = (Xx
s,t)s∈[0,t],t∈[0,T ],x∈Rd : {(s, t) ∈ [0, T ]2 : s ≤ t} × Rd × Ω→ Rd be a continuous random field, assume

that for all s ∈ [0, T ], ω ∈ Ω it holds that (Rd 3 x 7→ Xx
s,T (ω) ∈ Rd) ∈ C2(Rd,Rd), assume that for all ω ∈ Ω

it holds that ∂2

∂x2X
·
·,T (ω) ∈ C([0, T ] × Rd, L(2)(Rd,Rd)), assume that for all s ∈ [0, T ], x ∈ Rd the stochastic

process [s, T ]×Ω 3 (t, ω) 7→ Xx
s,t(ω) ∈ Rd is (S(N ∪S(Wr −Ws : r ∈ [s, t])))t∈[s,T ]-adapted, assume that for all

s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd it holds P-a.s. that

Xx
s,t = x+

t
∫
s
µ(r,Xx

s,r) dr +
t
∫
s
σ(r,Xx

s,r) dWr, (3)

assume that for all s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd it holds P-a.s. that X
Xx
s,t

t,T = Xx
s,T , let A, Y : [0, T ] × Ω → Rd,

B : [0, T ] × Ω → Rd×m be (S(N ∪ S(Wr : r ∈ [0, t])))t∈[0,T ]-predictable stochastic processes, assume that Y

has continuous sample paths, assume that
∫ T

0 E
[
‖As‖pRd + ‖Ys‖pRd + ‖Bs‖pL(Rm,Rd)

]
ds <∞, assume that for all

t ∈ [0, T ] it holds P-a.s. that

Yt = ξ +
t
∫
0
As ds+

t
∫
0
Bs dWs, (4)

assume that

sup
s,t∈[0,T ]
s≤t

E
[∥∥∥µ(t,XYs

s,t

)∥∥∥p
Rd

+
∥∥∥σ(t,XYs

s,t

)∥∥∥p
L(Rm,Rd)

]
<∞, (5)

assume that

sup
r,s,t∈[0,T ]
r≤s≤t

E
[∥∥∥XXYr

r,s

t,T

∥∥∥p
Rd

+
∥∥∥ ∂
∂xX

XYr
r,s

t,T

∥∥∥ 4p
p−2(q+2)

L(Rd,Rd)
+
∥∥∥ ∂2

∂x2X
XYr
r,s

t,T

∥∥∥ 2p
p−2(q+2)

L(2)(Rd,Rd)

]
<∞, (6)

and let f ∈ C2(Rd,Rk) satisfy that for all x ∈ Rd it holds that

max
{
‖f(x)‖Rk
1+‖x‖Rd

, ‖f ′(x)‖L(Rd,Rk), ‖f ′′(x)‖L(2)(Rd,Rk)

}
≤ c(1 + ‖x‖qRd). (7)
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Then the stochastic process
(
f ′
(
XYr
r,T

)
∂
∂xX

Yr
r,T (σ(r, Yr)−Br)

)
r∈[0,T ]

is Skorohod-integrable and it holds P-a.s. that

f
(
XY0

0,T

)
− f(YT ) =

T
∫
0
f ′
(
XYr
r,T

)
∂
∂xX

Yr
r,T

(
µ(r, Yr)−Ar

)
dr +

T
∫
0
f ′
(
XYr
r,T

)
∂
∂xX

Yr
r,T

(
σ(r, Yr)−Br

)
δWr

+ 1
2

d∑
i,j=1

T
∫
0

(
σ(r, Yr)[σ(r, Yr)]

∗ −Br[Br]∗
)
i,j

(
f ′′
(
XYr
r,T

)(
∂
∂xX

Yr
r,T ,

∂
∂xX

Yr
r,T

)
+ f ′

(
XYr
r,T

)
∂2

∂x2X
Yr
r,T

)(
e

(d)
i , e

(d)
j

)
dr.

(8)

Theorem 1.1 follows immediately from Theorem 3.1 (applied with F0 = S(N ), O = Rd in the notation of
Theorem 3.1). Theorem 1.1 essentially generalizes the following results from the literature:

(i) Theorem 1.1 essentially generalizes the Alekseev-Gröbner formula. More formally, Theorem 1.1 (applied
with σ = 0, B = 0, k = d, = IdRd in the notation of Theorem 1.1) implies the Alekseev-Gröbner
formula in (2) (cf., e.g., Hairer et al. [19, Theorem I.14.5]) in the case where the solution process is twice
continuously differentiable in the space variable.

(ii) Theorem 1.1 essentially generalizes the Itô formula. More formally, Theorem 1.1 (applied with µ = 0,
σ = 0 in the notation of Theorem 1.1) implies the Itô formula for Itô processes (cf., e.g., Revuz & Yor [51,
Theorem IV.3.3]) in the case where the Itô process Y , its drift process A, and its diffusion process B satisfy

infp∈(4,∞)

(
sups∈[0,T ] E

[
‖Ys‖pRd

]
+
∫ T

0 E
[
‖As‖pRd +‖Bs‖pL(Rm,Rd)

]
ds
)
<∞. This moment requirement is due

to the fact that we use the Skorohod integral. An approach with rough path integrals (cf., e.g., Friz &
Hairer [15]) might be suitable to generalize Theorem 1.1 so that this moment condition would not be
needed.

(iii) Theorem 1.1 essentially generalizes the Alekseev-Gröbner formula in (2) (cf., e.g., Hairer et al. [19, Theorem
I.14.5]) even in the deterministic case (σ = 0 and B = 0 in the notation of Theorem 1.1) from f = IdRd to
general test functions. In Proposition 2.1 below we prove the Itô-Alekseev-Gröbner formula in (8) in the
deterministic case with the test function f : Rd → Rk being only in C1(Rd,Rk) instead of in C2(Rd,Rk) as
in Theorem 1.1 above. The proof of Proposition 2.1 below is also illustrative to understand the structure
of the Itô-Alekseev-Gröbner formula in (8).

(iv) Theorem 1.1 essentially provides a pathwise version of the well-known weak error expansion (cf., e.g.,
Graham & Talay [16, (7.48) and the last Display on page 182] or related weak error estimates in [53, 13, 54]).
More precisely, in the notation of Theorem 1.1 taking expectation of (8), using that the expectation of the
Skorohod integral vanishes, and exchanging expectations and temporal integrals results in the standard
representation of the weak error E

[
f
(
XY0

0,T

)]
− E

[
f(YT )

]
.

We note that (8) roughly follows from the case k = d, f = IdRd of Theorem 1.1 and from the Itô formula
for anticipating processes established in Alòs & Nualart [2] applied to the anticipating process [0, T ] 3 t 7→
XYt
t,T ∈ Rd. Moreover, using the two-sided stochastic integral of Pardoux & Protter [49], Nualart & Pardoux

[48, Proposition 8.2] establish a backward Itô-Ventzell-type formula where the random test function roughly
speaking has the form F (t, x, ω) = f(t, x, Yt(ω)) where f is deterministic and Y is a semimartingale. This result
is not applicable to the situation of Theorem 1.1 since x 7→ Xx is a random function. However, our proof of
Theorem 1.1 uses ideas of the proof of Nualart & Pardoux [48, Proposition 8.2]. Moreover, after the preprint
[21] of our paper appeared, Del Moral & Singh [14] establish a backward Itô-Ventzell formula and use this
to provide a new proof of Theorem 1.1 in the special case of coefficient functions which have continuous and
uniformly bounded spatial derivatives up to third order. In addition, independently of our results (cf. [3] with
our preprint [21]), Arnaudon & Del Moral [3, (3.2)] arrive at the Itô-Alekseev-Gröbner formula in a specific
situation (e.g. the diffusion terms are equal) by heuristically applying the backward Itô-Ventzell formula which
was later established in [14].
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Theorem 1.1 implies immediately an L2-estimate. For example the L2-norm of the right-hand side of (8)
can be bounded by the triangle inequality. The L2-norm of the Skorohod integral on the right-hand side of (8)
can then be calculated by applying the Itô isometry for Skorohod integrals (see, e.g., Alos & Nualart [2, Lemma
4]). Another approach for obtaining L2-estimates is to apply the Itô formula for Skorohod processes to the
squared norm of the right-hand side of (8). However this seems to require additional regularity.

Our main motivation for the Itô-Alekseev-Gröbner formula are strong convergence rates for time-discrete
numerical approximations of stochastic evolution equations (SEEs). In the literature, positive strong conver-
gence rates have been established for SEEs with monotone nonlinearities (see, e.g., [38, Chapter 4]); see, e.g.,
[18, 32, 28, 5, 8, 7, 39, ?, 6] for the case of additive noise and [24, 23, 52, 11, 45, 41, 40, 34, 30] for the case
of multiplicative noise; for lower bounds see, e.g., [12, 42, 43, 44, 4]. Recently, the classical Alekseev-Gröbner
formula has been applied in [25] to establish strong convergence rates for space-time discrete approximations for
stochastic Burgers equations with additive noise by rewriting the SEE as random partial differential equation.
This demonstrates that the Alekseev-Gröbner formula is a successful approach for proving convergence rates in
the case of SEEs such as the stochastic Burgers equation with additive noise. Now the Itô-Alekseev-Gröbner
formula in Theorem 1.1 provides an approach to derive strong convergence rates e.g. for stochastic Burgers
equations also in the case of non-additive noise. Applications of this approach are left to future research.

In addition, Theorem 1.1 can be applied to any approximation of an SDE which is an Itô process with respect
to the same Wiener process driving the SDE. Possible applications (cf., e.g., [23]) include, in the notation of
Theorem 1.1,

(i) strong convergence rates for time-discrete numerical approximations of SDEs (e.g., the Euler-Maruyama
approximation with N ∈ N time discretization steps is given by At = µ(kTN , Y kT

N
) and Bt = σ(kTN , Y kT

N
) for

all t ∈ [kTN , (k+1)T
N ), k ∈ N0 ∩ [0, N)),

(ii) strong convergence rates for Galerkin approximations for SEEs (see, e.g., [9]) (choose At = P (µ(t, Yt))
and Btu = P (σ(t, Yt)u) for all u ∈ Rm, t ∈ [0, T ] and some suitable projection operator P ∈ L(Rd) where
d,m ∈ N; Theorem 1.1 is applied to a finite-dimensional approximation of the exact solution of the SEE
of which convergence in probability is known), and

(iii) strong convergence rates for small noise perturbations of solutions of deterministic differential equations
(choose σ = 0, At = µ(t, Yt) and Bt = ε σ̃(t, Yt) for all t ∈ [0, T ] where σ̃ : [0, T ]×Rd → Rd×m is a suitable
Borel measurable function and where ε > 0 is a sufficiently small parameter).

In the literature, nearly all estimates of perturbation errors exploit the popular global monotonicity assumption
which, in the notation of Theorem 1.1, assumes existence of a real number c ∈ R such that for all x, y ∈ Rd,
t ∈ [0, T ] it holds that

〈x− y, µ(t, x)− µ(t, y)〉Rd + 1
2‖σ(t, x)− σ(t, y)‖2HS(Rm,Rd) ≤ c‖x− y‖

2
Rd ; (9)

cf. also [23] and the references therein. We emphasize that many SDEs from the literature do not satisfy (9)
and that Theorem 1.1 does not require that the global monotonicity assumption is fulfilled.

A crucial assumption in Theorem 1.1 is existence of a solution of the SDE (3) which is twice continuously
differentiable in the starting point since in the proof of Theorem 1.1 we apply Itô’s formula for independent
random fields to the random functions Rd 3 x 7→ Xx

t,T ∈ Rd, t ∈ [0, T ]. This assumption is not satisfied in
a number of cases. For example Li & Scheutzow [36] construct a two-dimensional example with smooth and
globally bounded coefficient functions which is not even strongly complete (that is, the exceptional subset of
Ω where (3) fails to hold can not be chosen independently of the starting point); cf. also Hairer et al. [20,
Theorem 1.2]. Under suitable assumptions on the coefficients, however, strong completeness and existence of a
solution of (3) which is continuous in the starting point can be ensured; see, e.g., [10, 56, 35]. Existence of a
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solution of (3) which is twice continuously differentiable in the starting point is known for strongly complete
SDEs whose coefficient functions have locally Lipschitz continuous second derivatives; see [50, Theorem V.40].
In future research we show that moments of the derivative processes up to order two are finite if the coefficient
functions grow moderately at infinity; see [22]. Moreover, in the case of non-differentiable coefficients a possible
approach is to approximate the SDE by SDEs with smooth coefficients and to apply Theorem 1.1 to the sequence
of smoothened SDE solutions.

We prove Theorem 1.1 as follows. First, we rewrite the left-hand side of equation (8) as telescoping sum;
see (21) below. Then we apply Itô’s formula to the random functions Rd 3 x 7→ Xx

t,T ∈ Rd, t ∈ [0, T ] in
order to expand the local errors. Thereby we obtain Itô integrals which we rewrite as Skorohod integrals by
applying Proposition A.8 below. These Skorohod integrals are non-standard since the integrands are in general
not measurable with respect to a Wiener process. For this reason we introduce an extended Skorohod integral
in the appendix. Moreover, the integrands in the Itô integrals are adapted to different filtrations. We apply
Proposition A.7 below in order to carefully rewrite the sum of these integrals as a single Skorohod integral.

1.1 Notation

The following notation is used throughout this article. We denote by N and by N0 the sets satisfying that
N = {1, 2, 3, . . . } and N0 = N ∪ {0}. For all c ∈ (0,∞) let 00, 0

0 , c
0 , −c0 , 0 · ∞, 0 · (−∞), ∞c denote the

extended real numbers 00 = 1, 0
0 = 0, c

0 = ∞, −c0 = −∞, 0 · ∞ = 0, 0 · (−∞) = 0, and ∞c = ∞. For all
T ∈ [0,∞) let ∆T ⊆ [0, T ]2 denote the subset with the property that ∆T = {(s, t) ∈ [0, T ]2 : s ≤ t} and denote
by T/N the set T/N = {T/n : n ∈ N}. For all h ∈ (0,∞), r ∈ [0,∞) let dreh, brch, dre0, brc0 ∈ [0,∞) be the
real numbers with the properties that dreh = inf{nh ∈ [r,∞) : n ∈ N0}, brch = sup{nh ∈ [0, r] : n ∈ N0},
dre0 = r, and brc0 = r. For a real vector space V and a subset S ⊆ V let span(S) ⊆ V denote the set with
the property that span(S) = {

∑n
i=1 rivi : n ∈ N, r1, . . . , rn ∈ R, v1, . . . , vn ∈ V }. For all (s, t) ∈ ∆T let λ[s,t] be

the Lebesgue-measure restricted to the Borel-sigma-algebra of [s, t]. For all d ∈ N, x ∈ Rd we write ‖x‖Rd for

the Euclidean norm of x and for all i ∈ {1, . . . , d} let e
(d)
i denote the i-th unit vector in Rd. For every set Ω we

denote by S(E) the smallest σ-algebra generated by E ⊆ P(Ω). For all measurable spaces (Ω,F), (Ω′,B) let
M(F ,B) be the set M(F ,B) = {f : Ω→ Ω′ : f is F/B-measurable}. For every measure space (Ω,F , µ), every
normed vector space (V, ‖ · ‖V ), and all p ∈ [1,∞) let B(V ) denote the Borel-sigma-algebra on V , let Lp(µ;V )
be the set with the property that Lp(µ;V ) = {f ∈M(F ,B(V )) : ∫Ω ‖f‖

p
V dµ <∞}, let Lp(µ;V ) be the set with

the property that Lp(µ, V ) =
{
{f ∈ Lp(µ, V ) : f = g µ-a.e.} : g ∈ Lp(µ, V )

}
, and let

‖ · ‖Lp(µ;V ) :
(
M(F ,B(V )) ∪

{
{f ∈M(F ,B) : f = g µ-a.e.} : g ∈M(F ,B)

})
→ [0,∞] (10)

be the function which satisfies for all f ∈
(
M(F ,B(V ))∪

{
{h ∈M(F ,B) : h = g µ-a.e.} : g ∈M(F ,B)

})
that

‖f‖Lp(µ;V ) =
(
∫Ω ‖f‖

p
V dµ

) 1
p . For all d,m ∈ N and all A ∈ Rd×m we denote by A∗ the transpose of A. For every

measurable space (Ω,F) and every n ∈ N let C∞,Fb (Rn × Ω,R) be the set which satisfies that

C∞,Fb (Rn × Ω,R) =

{
f : Rn × Ω→ R : ∀ω ∈ Ω: f(·, ω) ∈ C∞b (Rn,R),

∀x ∈ Rd : f(x, ·) is F/B(R)-measurable

}
. (11)

For all d, k ∈ N we denote by L(2)(Rd,Rk) the set of bilinear functions from (Rd)2 to Rk.

2 The Itô-Alekseev-Gröbner formula in the deterministic case

The following proposition, Proposition 2.1, generalizes the Alekseev-Gröbner formula (cf., e.g., Hairer et al. [19,
Theorem I.14.5]) (which is the special case k = d, f = IdRd of Proposition 2.1) to general test functions.
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Proposition 2.1 (Deterministic Itô-Alekseev-Gröbner formula). Let d, k ∈ N, T ∈ (0,∞), let O ⊆ Rd be a
non-empty open set, let µ ∈ C0,1([0, T ] × O,Rd), Y ∈ C1([0, T ], O), X ··,· = (Xx

s,t)s∈[0,t],t∈[0,T ],x∈O ∈ C({(s, t) ∈
[0, T ]2 : s ≤ t} × O,O), f ∈ C1(O,Rk), and assume for all s ∈ [0, T ], t ∈ [s, T ], x ∈ O that Xx

s,t = x +∫ t
s µ(r,Xx

s,r) dr. Then

f(XY0
0,T )− f(YT ) =

∫ T

0
f ′(XYs

s,T ) ∂
∂xX

Ys
s,T

(
µ(s, Ys)− d

dsYs

)
ds. (12)

Proof of Proposition 2.1. The assumptions and the fundamental theorem of calculus imply for all s ∈ [0, T ),
t ∈ [s, T ], x ∈ O that ([s, T ] 3 u 7→ Xx

s,u ∈ O) ∈ C1([s, T ], O) and that ∂
∂tX

x
s,t = µ(t,Xx

s,t). This, the
assumptions, and Hairer et al. [19, Theorem I.14.3]) prove that for all s ∈ [0, T ], t ∈ [s, T ] it holds that
(O 3 x 7→ Xx

s,t ∈ O) ∈ C1(O,O) and that ∂
∂xX

·
·,· ∈ C({(s, t) ∈ [0, T ]2 : s ≤ t} × O,L(Rd,Rd)). Moreover, the

assumptions, and Hairer et al. [19, Theorem I.14.4]) show that for all x ∈ O it holds that ([0, T ] 3 s 7→ Xx
s,T ∈

O) ∈ C1([0, T ], O), that ∂
∂sX

·
·,T ∈ C([0, T ]×O,Rd), and that for all s ∈ [0, T ], x ∈ O it holds that

∂
∂sX

x
s,T = − ∂

∂xX
x
s,Tµ(s, x). (13)

Therefore, the chain rule implies that ([0, T ] 3 s 7→ XYs
s,T ∈ O) ∈ C1([0, T ], O). Moreover, the fundamental

theorem of calculus, the chain rule, and (13) yield that

f(XY0
0,T )− f(YT ) = −

∫ T

0

d
ds

(
f
(
XYs
s,T

))
ds

= −
∫ T

0
f ′(XYs

s,T )

((
∂
∂sX

x
s,T

)∣∣∣
x=Ys

+ ∂
∂xX

Ys
s,T

d
dsYs

)
ds

= −
∫ T

0
f ′(XYs

s,T )
(
− ∂

∂xX
Ys
s,Tµ(s, Ys) + ∂

∂xX
Ys
s,T

d
dsYs

)
ds

=

∫ T

0
f ′(XYs

s,T ) ∂
∂xX

Ys
s,T

(
µ(s, Ys)− d

dsYs

)
ds.

(14)

This finishes the proof of Proposition 2.1.

3 The Itô-Alekseev-Gröbner formula in the general case

The following theorem, Theorem 3.1, is the main result of this article. We note that throughout this article we
use notation introduced in Subsection 1.1 and in the Appendix.

Theorem 3.1 (Itô-Alekseev-Gröbner formula). Let d,m, k ∈ N, T, c ∈ (0,∞), p ∈ (4,∞), q ∈ [0, p2 − 2),
let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → Rm be a standard Brownian motion, let N = {A ∈
F : P(A) = 0}, let F = (Ft)t∈[0,T ] be a filtration on (Ω,F) which satisfies that F0 and S(Ws : s ∈ [0, T ]) are

independent and which satisfies for all t ∈ [0, T ] that Ft = S(F0 ∪S(Ws : s ∈ [0, t]) ∪N ), let O ⊆ Rd be a non-
empty open set, let µ : [0, T ]×O → Rd, σ : [0, T ]×O → Rd×m be continuous functions, let X ··,· : ∆T×O×Ω→ O,

X1,·
·,T : [0, T ]×O×Ω→ L(Rd,Rd), and X2,·

·,T : [0, T ]×O×Ω→ L(2)(Rd,Rd) be continuous random fields, assume

that for all s ∈ [0, T ], ω ∈ Ω it holds that (O 3 x 7→ Xx
s,T (ω) ∈ O) ∈ C2(O,O), assume that for all s ∈ [0, T ],

x ∈ O the stochastic process [s, T ]× Ω 3 (t, ω) 7→ Xx
s,t ∈ O is (Ft)t∈[s,T ]-adapted, assume that for all s ∈ [0, T ],

t ∈ [s, T ], x ∈ O it holds P-a.s. that

Xx
s,t = x+

t
∫
s
µ(r,Xx

s,r) dr +
t
∫
s
σ(r,Xx

s,r) dWr, (15)
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assume that for all (s, t) ∈ ∆T , x ∈ O it holds P-a.s. that X
Xx
s,t

t,T = Xx
s,T , assume that for all (s, x, ω) ∈

[0, T ] × O × Ω it holds that X1,x
s,T (ω) = ∂

∂x

(
Xx
s,T (ω)

)
and X2,x

s,T (ω) = ∂2

∂x2

(
Xx
s,T (ω)

)
, let Y ∈ Lp(λ[0,T ] ⊗ P;O),

A ∈ Lp(λ[0,T ] ⊗ P;Rd), B ∈ Lp(λ[0,T ] ⊗ P;Rd×m) be stochastic processes, assume that Y has continuous sample
paths, assume that Y and B are F-predictable, assume that for all t ∈ [0, T ] it holds P-a.s. that

Yt = Y0 +
t
∫
0
As ds+

t
∫
0
Bs dWs, (16)

assume that

sup
h∈T/N

E
[
T
∫
0

∥∥∥µ(t,XYbtch
btch,t

)∥∥∥p
Rd

+
∥∥∥σ(t,XYbtch

btch,t

)∥∥∥p
HS(Rm,Rd)

dt

]
<∞, (17)

assume that

sup
r,s,t∈[0,T ]
r≤s≤t

E
[∥∥∥XXYr

r,s

t,T

∥∥∥p
Rd

+
∥∥∥X1,XYr

r,s

t,T

∥∥∥ 4p
p−2(q+2)

L(Rd,Rd)
+
∥∥∥X2,XYr

r,s

t,T

∥∥∥ 2p
p−2(q+2)

L(2)(Rd,Rd)

]
<∞, (18)

and let f ∈ C2(O,Rk) satisfy that for all x ∈ O it holds that

max
{
‖f(x)‖Rk
1+‖x‖Rd

, ‖f ′(x)‖L(Rd,Rk), ‖f ′′(x)‖L(2)(Rd,Rk)

}
≤ c(1 + ‖x‖qRd). (19)

Then the stochastic process
(
f ′
(
XYr
r,T

)
X1,Yr
r,T (σ(r, Yr)−Br)

)
r∈[0,T ]

is Skorohod-integrable and it holds P-a.s. that

f
(
XY0

0,T

)
− f(YT ) =

T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T

(
µ(r, Yr)−Ar

)
dr +

T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T

(
σ(r, Yr)−Br

)
δW F0

r

+ 1
2

d∑
i,j=1

T
∫
0

(
σ(r, Yr)[σ(r, Yr)]

∗ −Br[Br]∗
)
i,j

(
f ′′
(
XYr
r,T

)(
X1,Yr
r,T , X1,Yr

r,T

)
+ f ′

(
XYr
r,T

)
X2,Yr
r,T

)(
e

(d)
i , e

(d)
j

)
dr.

(20)

Proof of Theorem 3.1. The fact that for all ω ∈ Ω the function O 3 x 7→ Xx
T,T (ω) ∈ O is continuous and

equation (15) imply that it holds P-a.s. that XYT
T,T = YT . Moreover, we rewrite the left-hand side of equation (20)

as telescoping sum and obtain that for all n ∈ N, h ∈ {Tn } it holds P-a.s. that

f
(
XY0

0,T

)
− f

(
YT
)

= f
(
XY0h

0h,T

)
− f

(
XYnh
nh,T

)
=

n−1∑
i=0

(
f
(
XYih
ih,T

)
− f

(
X
Y(i+1)h

(i+1)h,T

))
=

n−1∑
i=0

(
f
(
XYih
ih,T

)
− f

(
XYih

(i+1)h,T

))
−
n−1∑
i=0

(
f
(
X
Y(i+1)h

(i+1)h,T

)
− f

(
XYih

(i+1)h,T

))
.

(21)

First, we analyze the second sum on the right-hand side of equation (21). For all t ∈ [0, T ], x ∈ O,
i ∈ {1, 2} the functions Ω 3 ω 7→ Xx

t,T (ω) ∈ O, Ω 3 ω 7→ Xi,x
t,T (ω) ∈ L(i)(Rd,Rd) are S(N ∪ S(Ws −Wt : s ∈

[t, T ]))-measurable. This together with the fact that for all ω ∈ Ω, t ∈ [0, T ] it holds that
(
O 3 x 7→ f(Xx

t,T (ω)) ∈

Rk
)
∈ C2(O,Rk) implies that for all t ∈ [0, T ] the function Ω 3 ω 7→

(
O 3 x 7→ f(Xx

t,T (ω)) ∈ Rk
)
∈ C2(O,Rk)

is independent of the sigma-algebra Ft. Itô’s formula for independent random fields (e.g., Klenke [31, Theorem

25.30 and Remark 25.26]) (applied with the functions Ω 3 ω 7→
(
O 3 x 7→ f(Xx

(i+1)h,T (ω)) ∈ Rk
)
∈ C2(O,Rk)

for n ∈ N, i ∈ {0, 1, . . . , n− 1}, h ∈ {Tn }) yields that for all n ∈ N, i ∈ {0, 1, . . . , n− 1}, h ∈ {Tn } it holds P-a.s.
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that

f
(
X
Y(i+1)h

(i+1)h,T

)
− f

(
XYih

(i+1)h,T

)
=

(i+1)h

∫
ih

∂
∂x

(
f(Xx

(i+1)h,T )
)∣∣
x=Yr

dYr + 1
2

d∑
l,j=1

(i+1)h

∫
ih

∂2

∂x2

(
f(Xx

(i+1)h,T )
)∣∣
x=Yr

(e
(d)
l , e

(d)
j ) d (〈Y 〉r)l,j

=
(i+1)h

∫
ih

f ′
(
XYr

(i+1)h,T

)
X1,Yr

(i+1)h,TAr dr +
(i+1)h

∫
ih

f ′
(
XYr

(i+1)h,T

)
X1,Yr

(i+1)h,TBr dWr

+ 1
2

d∑
l,j=1

(i+1)h

∫
ih

(Br[Br]
∗)l,j

(
f ′′
(
XYr

(i+1)h,T

)(
X1,Yr

(i+1)h,T , X
1,Yr
(i+1)h,T

)
+ f ′

(
XYr

(i+1)h,T

)
X2,Yr

(i+1)h,T

)
(e

(d)
l , e

(d)
j ) dr.

(22)

Inequalities (19) and (18) imply for all i ∈ {1, 2} that

sup
r,s,t∈[0,T ]
r≤s≤t

∥∥∥f (i)
(
X
XYr
r,s

t,T

)∥∥∥
L
p
q (P;L(i)(Rd,Rk))

≤ c sup
r,s,t∈[0,T ]
r≤s≤t

∥∥∥1 +
∥∥∥XXYr

r,s

t,T

∥∥∥q
Rd

∥∥∥
L
p
q (P;R)

≤ c

(
1 + sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥XXYr
r,s

t,T

∥∥∥q
Lp(P;Rd)

)
<∞.

(23)

Hölder’s inequality, inequalities (18), (23), and the assumption B ∈ Lp(λ[0,T ] ⊗ P;Rd×m) imply that for all

n ∈ N, i ∈ {0, 1, . . . , n− 1}, h ∈ {Tn } it holds that∥∥∥f ′(XY·
(i+1)h,T

)
X1,Y·

(i+1)h,TB·

∥∥∥
L2(P;L2(λ[ih,(i+1)h];Rk×m))

≤
∥∥∥f ′(XY·

d·eh,T
)
X1,Y·
d·eh,TB·

∥∥∥
L2(λ[0,T ]⊗P;Rk×m)

≤
∥∥∥∥∥f ′(XY·

d·eh,T
)∥∥
L(Rd,Rk)

∥∥X1,Y·
d·eh,T

∥∥
L(Rd,Rd)

‖B·‖HS(Rm,Rd)

∥∥∥
L2(λ[0,T ]⊗P;R)

(24)

≤
∥∥f ′(XY·

d·eh,T
)∥∥
L
p
q (λ[0,T ]⊗P;L(Rd,Rk))

∥∥X1,Y·
d·eh,T

∥∥
L

2p
p−2(q+1) (λ[0,T ]⊗P;L(Rd,Rd))

‖B‖Lp(λ[0,T ]⊗P;Rd×m)

≤ T
p−2
2p

(
sup

(r,s)∈∆T

∥∥f ′(XYr
s,T

)∥∥
L
p
q (P;L(Rd,Rk))

)(
sup

(r,s)∈∆T

∥∥X1,Yr
s,T

∥∥
L

2p
p−2(q+1) (P;L(Rd,Rd))

)
‖B‖Lp(λ[0,T ]⊗P;Rd×m) <∞.

For all n ∈ N, i ∈ {0, 1, . . . , n − 1}, h ∈ {Tn } the stochastic process
(
f ′
(
XYr

(i+1)h,T

)
X1,Yr

(i+1)h,TBr
)
r∈[ih,(i+1)h]

is

predictable with respect to the filtration(
S
(
Fr ∪S

(
{Ws −W(i+1)h : s ∈ [(i+ 1)h, T ]}

)))
r∈[ih,(i+1)h]

. (25)

Proposition A.8 together with inequality (24), Proposition A.7, and linearity of the Skorohod integral yield
that for all h ∈ T/N it holds that (f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr)r∈[0,T ] is Skorohod-integrable and that for all n ∈ N,
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h ∈ {Tn } it holds P-a.s. that

n−1∑
i=0

(i+1)h

∫
ih

f ′
(
XYr

(i+1)h,T

)
X1,Yr

(i+1)h,TBr dWr

=
n−1∑
i=0

(i+1)h

∫
ih

f ′
(
XYr

(i+1)h,T

)
X1,Yr

(i+1)h,TBr δW
S(Fih∪S({Ws−W(i+1)h : s∈[(i+1)h,T ]}))
r

=

n−1∑
i=0

T
∫
0
1[ih,(i+1)h](r)f

′(XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r

=
T
∫
0
f ′
(
XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r .

(26)

Equations (22) and (26) imply that for all n ∈ N, h ∈ {Tn } it holds P-a.s. that

n−1∑
i=0

(
f
(
X
Y(i+1)h

(i+1)h,T

)
− f

(
XYih

(i+1)h,T

))
=

T
∫
0
f ′
(
XYr
dreh,T

)
X1,Yr
dreh,TAr dr +

T
∫
0
f ′
(
XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r

+ 1
2

d∑
l,j=1

T
∫
0

(Br[Br]
∗)l,j

(
f ′′
(
XYr
dreh,T

)(
X1,Yr
dreh,T , X

1,Yr
dreh,T

)
+ f ′

(
XYr
dreh,T

)
X2,Yr
dreh,T

)
(e

(d)
l , e

(d)
j ) dr.

(27)

Next we analyze the first sum on the right-hand side of equation (21). For all (s, t) ∈ ∆T , x ∈ O
it holds that P

(
Xx
s,T = X

Xx
s,t

t,T

)
= 1. This and the fact that X is a continuous random field imply for all

(s, t) ∈ ∆T that P
(
XYs
s,T = X

XYs
s,t

t,T

)
= 1. For all t ∈ [0, T ], x ∈ O, i ∈ {1, 2} the functions Ω 3 ω 7→ Xx

t,T (ω) ∈ O,

Ω 3 ω 7→ Xi,x
t,T (ω) ∈ L(i)(Rd,Rd) are S(N ∪S(Ws −Wt : s ∈ [t, T ]))-measurable. This together with the fact

that for all ω ∈ Ω, t ∈ [0, T ] it holds that
(
O 3 x 7→ f(Xx

t,T (ω)) ∈ Rk)
)
∈ C2(O,Rk) implies that for all

t ∈ [0, T ] the function Ω 3 ω 7→
(
O 3 x 7→ f(Xx

t,T (ω)) ∈ Rk)
)
∈ C2(O,Rk) is independent of the sigma-algebra

Ft. Itô’s formula for independent random fields (e.g., Klenke [31, Theorem 25.30 and Remark 25.26]) (applied

with the functions Ω 3 ω 7→
(
O 3 x 7→ f(Xx

(i+1)h,T (ω)) ∈ Rk
)
∈ C2(O,Rk) for n ∈ N, i ∈ {0, 1, . . . , n − 1},

9



h ∈ {Tn }) yields that for all n ∈ N, i ∈ {0, 1, . . . , n− 1}, h ∈ {Tn } it holds P-a.s. that

f
(
XYih
ih,T

)
− f

(
XYih

(i+1)h,T

)
= f

(
X
X
Yih
ih,(i+1)h

(i+1)h,T

)
− f

(
XYih

(i+1)h,T

)
=

(i+1)h

∫
ih

f ′
(
X
X
Yih
ih,r

(i+1)h,T

)
X

1,X
Yih
ih,r

(i+1)h,T dX
Yih
ih,r

+ 1
2

d∑
l,j=1

(i+1)h

∫
ih

(
f ′′
(
X
X
Yih
ih,r

(i+1)h,T

)(
X

1,X
Yih
ih,r

(i+1)h,T , X
1,X

Yih
ih,r

(i+1)h,T

)
+ f ′

(
X
X
Yih
ih,r

(i+1)h,T

)
X

2,X
Yih
ih,r

(i+1)h,T

)(
e

(d)
l , e

(d)
j

)
d
(
〈XYih

ih,· 〉r
)
l,j

=
(i+1)h

∫
ih

f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T µ
(
r,X

Ybrch
brch,r

)
dr +

(i+1)h

∫
ih

f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
dWr

+ 1
2

d∑
l,j=1

(i+1)h

∫
ih

(
σ
(
r,X

Ybrch
brch,r

)[
σ
(
r,X

Ybrch
brch,r

)]∗)
l,j

·
(
f ′′
(
X
X
Ybrch
brch,r
dreh,T

)(
X

1,X
Ybrch
brch,r

dreh,T , X
1,X

Ybrch
brch,r

dreh,T

)
+ f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

2,X
Ybrch
brch,r

dreh,T

)(
e

(d)
l , e

(d)
j

)
dr.

(28)

Hölder’s inequality and inequalities (23), (18), (17) imply that for all n ∈ N, i ∈ {0, 1, . . . , n − 1}, h ∈ {Tn } it
holds that∥∥∥∥∥f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

1,X
Yb·ch
b·ch,·

d·eh,T σ
(
·, X

Yb·ch
b·ch,·

)∥∥∥∥∥
L2(P;L2(λ[ih,(i+1)h];Rk×m))

≤

∥∥∥∥∥f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

1,X
Yb·ch
b·ch,·

d·eh,T σ
(
·, X

Yb·ch
b·ch,·

)∥∥∥∥∥
L2(λ[0,T ]⊗P;Rk×m)

≤

∥∥∥∥∥
∥∥∥∥∥f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L(Rd,Rk)

∥∥∥∥∥X1,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
L(Rd,Rd)

∥∥∥σ(·, XYb·ch
b·ch,·

)∥∥∥
HS(Rm,Rd)

∥∥∥∥∥
L2(λ[0,T ]⊗P;R)

(29)

≤

∥∥∥∥∥f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L
p
q (λ[0,T ]⊗P;L(Rd,Rk))

∥∥∥∥∥X1,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
L

2p
p−2(q+1) (λ[0,T ]⊗P;L(Rd,Rd))

∥∥∥σ(·, XYb·ch
b·ch,·

)∥∥∥
Lp(λ[0,T ]⊗P;Rd×m)

≤ T
p−2
2p

(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥∥f ′(XXYr
r,s

t,T

)∥∥∥∥
L
p
q (P;L(Rd,Rk))

)(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥∥X1,XYr
r,s

t,T

∥∥∥∥
L

2p
p−2(q+1) (P;L(Rd,Rd))

)

·
(

sup
κ∈T/N

∥∥∥σ(·, XYb·cκ
b·cκ,·

)∥∥∥
Lp(λ[0,T ]⊗P;Rd×m)

)
<∞.

For all n ∈ N, i ∈ {0, 1, . . . , n − 1}, h ∈ {Tn } the process
(
f ′
(
X
X
Yih
ih,r

(i+1)h,T

)
X

1,X
Yih
ih,r

(i+1)h,Tσ
(
r,XYih

ih,r

))
r∈[ih,(i+1)h]

is

predictable with respect to the filtration (25). Proposition A.8 together with inequality (29), Proposition A.7,

and linearity of the Skorohod integral assert that the process f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

1,X
Yb·ch
b·ch,·

d·eh,T σ
(
·, X

Yb·ch
b·ch,·

)
is Skorohod-
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integrable and that for all n ∈ N, h ∈ {Tn } it holds P-a.s. that

n−1∑
i=0

(i+1)h

∫
ih

f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
dWr

=
n−1∑
i=0

(i+1)h

∫
ih

f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
δW

S(Fih∪S(Ws−W(i+1)h : s∈[(i+1)h,T ]))
r

=
n−1∑
i=0

T
∫
0
1[ih,(i+1)h](r)f

′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
δW F0

r

=
T
∫
0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
δW F0

r .

(30)

Equations (28) and (30) imply that for all n ∈ N, h ∈ {Tn } it holds P-a.s. that

n−1∑
i=0

(
f
(
XYih
ih,T

)
− f

(
XYih

(i+1)h,T

))
=

T
∫
0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T µ
(
r,X

Ybrch
brch,r

)
dr +

T
∫
0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
δW F0

r

+ 1
2

d∑
l,j=1

T
∫
0

(
σ
(
r,X

Ybrch
brch,r

)[
σ
(
r,X

Ybrch
brch,r

)]∗)
l,j

·

(
f ′′
(
X
X
Ybrch
brch,r
dreh,T

)(
X

1,X
Ybrch
brch,r

dreh,T , X
1,X

Ybrch
brch,r

dreh,T

)
+ f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

2,X
Ybrch
brch,r

dreh,T

)(
e

(d)
l , e

(d)
j

)
dr.

(31)

Equations (21), (31), and (27) imply that for all h ∈ T/N it holds P-a.s. that

f
(
XY0

0,T

)
− f

(
YT
)

=
T
∫
0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T µ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TAr dr

+
T
∫
0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r

+ 1
2

d∑
l,j=1

T
∫
0

(
σ
(
r,X

Ybrch
brch,r

)[
σ
(
r,X

Ybrch
brch,r

)]∗)
l,j

(32)

·

(
f ′′
(
X
X
Ybrch
brch,r
dreh,T

)(
X

1,X
Ybrch
brch,r

dreh,T , X
1,X

Ybrch
brch,r

dreh,T

)
+ f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

2,X
Ybrch
brch,r

dreh,T

)(
e

(d)
l , e

(d)
j

)
dr

− 1
2

d∑
l,j=1

T
∫
0

(Br[Br]
∗)l,j

(
f ′′
(
XYr
dreh,T

)(
X1,Yr
dreh,T , X

1,Yr
dreh,T

)
+ f ′

(
XYr
dreh,T

)
X2,Yr
dreh,T

)
(e

(d)
l , e

(d)
j ) dr.

Next we want to let T/N 3 h → 0 in (32) in a suitable sense and first justify this. Hölder’s inequality,
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inequalities (23), (18), (17), and the fact that A ∈ Lp(λ[0,T ] ⊗ P;Rd) imply that

sup
h∈T/N

∥∥∥∥∥f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

1,X
Yb·ch
b·ch,·

d·eh,T µ
(
·, X

Yb·ch
b·ch,·

)
− f ′

(
XY·
d·eh,T

)
X1,Y·
d·eh,TA·

∥∥∥∥∥
L2(λ[0,T ]⊗P;Rk)

≤ T
p−2
2p

(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥f ′(XXYr
r,s

t,T

)∥∥∥
L
p
q (P;L(Rd,Rk))

)(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥X1,XYr
r,s

t,T

∥∥∥
L

2p
p−2(q+1) (P;L(Rd,Rd))

)
·
(

sup
h∈T/N

∥∥∥µ(·, XYb·ch
b·ch,·

)∥∥∥
Lp(λ[0,T ]⊗P;Rd)

+ ‖A‖Lp(λ[0,T ]⊗P;Rd)

)
<∞.

(33)

Hölder’s inequality and inequalities (23) and (18) imply that for all l, j ∈ {1, . . . , d} it holds that

sup
h∈T/N

∥∥∥∥∥
(
f ′′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)(
X

1,X
Yb·ch
b·ch,·

d·eh,T , X
1,X

Yb·ch
b·ch,·

d·eh,T

)
+ f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

2,X
Yb·ch
b·ch,·

d·eh,T

)(
e

(d)
l , e

(d)
j

)∥∥∥∥∥
L

2p
p−4 (λ[0,T ]⊗P;Rk)

≤ sup
h∈T/N

∥∥∥∥∥
∥∥∥∥∥f ′′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L(2)(Rd,Rk)

∥∥∥∥∥X1,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
2

L(Rd,Rd)

+

∥∥∥∥∥f ′(XX
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L(Rd,Rk)

∥∥∥∥∥X2,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
L(2)(Rd,Rd)

∥∥∥∥∥
L

2p
p−4 (λ[0,T ]⊗P;R)

≤ sup
h∈T/N

(∥∥∥∥∥f ′′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L
p
q (λ[0,T ]⊗P;L(2)(Rd,Rk))

∥∥∥∥∥X1,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
2

L
4p

p−2(q+2) (λ[0,T ]⊗P;L(Rd,Rd))

+

∥∥∥∥∥f ′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)∥∥∥∥∥
L
p
q (λ[0,T ]⊗P;L(Rd,Rk))

∥∥∥∥∥X2,X
Yb·ch
b·ch,·

d·eh,T

∥∥∥∥∥
L

2p
p−2(q+2) (λ[0,T ]⊗P;L(2)(Rd,Rd))

)

≤ T
p−4
2p

((
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥f ′′(XXYr
r,s

t,T

)∥∥∥
L
p
q (P;L(2)(Rd,Rk))

)(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥X1,XYr
r,s

t,T

∥∥∥2

L
4p

p−2(q+2) (P;L(Rd,Rd))

)

+

(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥f ′(XXYr
r,s

t,T

)∥∥∥
L
p
q (P;L(Rd,Rk))

)(
sup

r,s,t∈[0,T ]
r≤s≤t

∥∥∥X2,XYr
r,s

t,T

∥∥∥
L

2p
p−2(q+2) (P;L(2)(Rd,Rd))

))
<∞

(34)

and, analogously, that for all i, j ∈ {1, . . . , d} it holds that

sup
h∈T/N

∥∥∥(f ′′(XY·
d·eh,T )

(
X1,Y·
d·eh,T , X

1,Y·
d·eh,T

)
+ f ′(XY·

d·eh,T )X2,Y·
d·eh,T

)(
e

(d)
i , e

(d)
j

)∥∥∥
L

2p
p−4 (λ[0,T ]⊗P;Rk)

<∞. (35)

The fact that for all C ∈ Rd×m it holds that
∑d

i,j=1 |(CC∗)i,j | ≤ d‖C‖2
HS(Rm,Rd)

, Hölder’s inequality, assump-
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tion (17), and inequality (34) imply that

sup
h∈T/N

1
2

∥∥∥∥∥
d∑

l,j=1

(
σ
(
·, X

Yb·ch
b·ch,·

)[
σ
(
·, X

Yb·ch
b·ch,·

)]∗)
l,j

·

(
f ′′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)(
X

1,X
Yb·ch
b·ch,·

d·eh,T , X
1,X

Yb·ch
b·ch,·

d·eh,T

)
+ f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

2,X
Yb·ch
b·ch,·

d·eh,T

)(
e

(d)
l , e

(d)
j

)∥∥∥∥∥
L2(λ[0,T ]⊗P;Rk)

≤ sup
h∈T/N

1
2

∥∥∥∥∥d∥∥∥σ(·, XYb·ch
b·ch,·

)∥∥∥2

HS(Rm,Rd))

·
d∑

l,j=1

∣∣∣∣∣f ′′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)(
X

1,X
Yb·ch
b·ch,·

d·eh,T , X
1,X

Yb·ch
b·ch,·

d·eh,T

)
+ f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

2,X
Yb·ch
b·ch,·

d·eh,T

∣∣∣∣∣(e(d)
l , e

(d)
j

)∥∥∥∥∥
L2(λ[0,T ]⊗P;Rk)

≤ sup
h∈T/N

d
2

(∥∥∥σ(·, XYb·ch
b·ch,·

)∥∥∥2

Lp(λ[0,T ]⊗P;Rd×m)

·
∑

l,j∈{1,...,d}

∥∥∥∥∥f ′′
(
X
X
Yb·ch
b·ch,·
d·eh,T

)(
X

1,X
Yb·ch
b·ch,·

d·eh,T , X
1,X

Yb·ch
b·ch,·

d·eh,T

)
+ f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

2,X
Yb·ch
b·ch,·

d·eh,T

)(
e

(d)
l , e

(d)
j

)∥∥∥∥∥
L

2p
p−4 (λ[0,T ]⊗P;Rk)

)
<∞.

(36)

Analogously, the fact that for all C ∈ Rd×m it holds that
∑d

i,j=1 |(CC∗)i,j | ≤ d‖C‖2HS(Rm,Rd)
, Hölder’s inequality,

the assumption B ∈ Lp(λ[0,T ] ⊗ P;Rd×m), and inequality (35) yield that

sup
h∈T/N

1
2

∥∥∥∥ d∑
l,j=1

(B·[B·]
∗)l,j

(
f ′′(XY·

d·eh,T )
(
X1,Y·
d·eh,T , X

1,Y·
d·eh,T

)
+ f ′(XY·

d·eh,T )X2,Y·
d·eh,T

)(
e

(d)
l , e

(d)
j

)∥∥∥∥
L2(λ[0,T ]⊗P;Rk)

≤ d

2
‖B‖2Lp(λ[0,T ]⊗P;Rd×m)

·
∑

l,j∈{1,...,d}

sup
h∈T/N

∥∥∥∥(f ′′(XY·
d·eh,T )

(
X1,Y·
d·eh,T , X

1,Y·
d·eh,T

)
+ f ′(XY·

d·eh,T )X2,Y·
d·eh,T

)(
e

(d)
l , e

(d)
j

)∥∥∥∥
L

2p
p−4 (λ[0,T ]⊗P;Rk)

<∞.

(37)

Next Klenke [31, Corollary 6.21 and Theorem 6.25] together with the uniform L2-bounds in (33), (36), and (37),
continuity of f ′ and of f ′′, path continuity of Y and of ∆T × O 3 (s, t, x) 7→ Xx

s,t ∈ O, and infr∈[0,T ] P(XYr
r,r =

13



Yr) = 1 imply that

lim
T/N3h↘0

∥∥∥∥∥ T∫0 f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T µ(r,X
Ybrch
brch,r)− f

′(XYr
dreh,T

)
X1,Yr
dreh,TAr dr

−
T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T

(
µ
(
r, Yr

)
−Ar

)
dr

+ 1
2

d∑
l,j=1

T
∫
0

(
σ
(
r,X

Ybrch
brch,r

)[
σ
(
r,X

Ybrch
brch,r

)]∗)
l,j

·

(
f ′′

(
X
X
Ybrch
brch,r
dreh,T

)(
X

1,X
Ybrch
brch,r

dreh,T , X
1,X

Ybrch
brch,r

dreh,T

)
+ f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

2,X
Ybrch
brch,r

dreh,T

)(
e

(d)
l , e

(d)
j

)
dr

− 1
2

d∑
l,j=1

T
∫
0

(Br[Br]
∗)l,j

(
f ′′
(
XYr
dreh,T

)(
X1,Yr
dreh,T , X

1,Yr
dreh,T

)
+ f ′

(
XYr
dreh,T

)
X2,Yr
dreh,T

)
(e

(d)
l , e

(d)
j ) dr

− 1
2

d∑
l,j=1

T
∫
0

(σ(r, Yr)[σ(r, Yr)]
∗ −Br[Br]∗)l,j

(
f ′′
(
XYr
r,T

)(
X1,Yr
r,T , X1,Yr

r,T

)
+ f ′

(
XYr
r,T

)
X2,Yr
r,T

)
(e

(d)
l , e

(d)
j ) dr

∥∥∥∥∥
L1(P;Rk)

= 0.

(38)

Inequality (19) implies that for all x, y ∈ O it holds that

‖f(x)− f(y)‖Rk ≤ ‖f(x)‖Rk + ‖f(y)‖Rk ≤ c(1 + ‖x‖Rd)(1 + ‖x‖Rd)q + c(1 + ‖y‖Rd)(1 + ‖y‖Rd)q. (39)

This, Hölder’s inequality, the fact that 2q + 2 < p, the fact that P
(
XY0

0,T = X
X
Y0
0,0

0,T

)
= 1 = P

(
YT = X

X
YT
T,T

T,T

)
, and

inequality (18) show that∥∥f(XY0
0,T

)
− f

(
YT
)∥∥
L2(P;Rk)

≤ c
∥∥(1 +

∥∥XY0
0,T

∥∥
Rd
)1+q∥∥

L2(P;R)
+ c
∥∥(1 + ‖YT ‖Rd

)1+q∥∥
L2(P;R)

(40)

≤ c
(
1 +

∥∥XY0
0,T

∥∥
L2q+2(P;Rd)

)q+1
+ c
(
1 + ‖YT ‖L2q+2(P;Rd)

)q+1

≤ sup
r,s,t∈[0,T ]
r≤s≤t

2c
(

1 +

∥∥∥∥XXYr
r,s

t,T

∥∥∥∥
Lp(P;Rd)

)q+1
<∞.

Equation (32) and inequalities (40), (33), (36), and (37) imply that there exists a constant K ∈ [0,∞) such

14



that for all h ∈ T/N it holds that∥∥∥∥∥ T∫0 f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r

∥∥∥∥∥
L2(P;Rk)

≤
∥∥f(XY0

0,T

)
− f (YT )

∥∥
L2(P;Rk)

+
∥∥∥ T∫

0
f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T µ(r,X
Ybrch
brch,r)− f

′(XYr
dreh,T

)
X1,Yr
dreh,TAr dr

∥∥∥
L2(P;Rk)

+

∥∥∥∥∥1
2

d∑
l,j=1

T
∫
0

(
σ
(
r,X

Ybrch
brch,r

)[
σ
(
r,X

Ybrch
brch,r

)]∗)
l,j

·

(
f ′′

(
X
X
Ybrch
brch,r
dreh,T

)(
X

1,X
Ybrch
brch,r

dreh,T , X
1,X

Ybrch
brch,r

dreh,T

)
+ f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

2,X
Ybrch
brch,r

dreh,T

)
(e

(d)
l , e

(d)
j )

−
(
Br[Br]

∗)
l,j

(
f ′′
(
XYr
dreh,T

)(
X1,Yr
dreh,T , X

1,Yr
dreh,T

)
+ f ′

(
XYr
dreh,T

)
X2,Yr
dreh,T

)
(e

(d)
l , e

(d)
j ) dr

∥∥∥∥∥
L2(P;Rk)

< K.

(41)

The fact that Y , X, X1 are continuous random fields, continuity of f ′, and the fact that infr∈[0,T ] P(XYr
r,r =

Yr) = 1 yield that for all r ∈ [0, T ] it holds P-a.s. that

lim
T/N3h↘0

(
f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr

)
= f ′

(
XYr
r,T

)
X1,Y r
r,T

(
σ(r, Yr)−Br

)
.

(42)

This, Fatou’s lemma, and the inequalities (29) and (24) yield that the sequence(
f ′

(
X
X
Yb·ch
b·ch,·
d·eh,T

)
X

1,X
Yb·ch
b·ch,·

d·eh,T σ
(
·, X

Yb·ch
b·ch,·

)
− f ′

(
XY·
d·eh,T

)
X1,Y·
d·eh,TB· − f

′(XY·
·,T
)
X1,Y·
·,T

(
σ(·, Y·)−B·

))
h∈T/N

(43)

is bounded in L2(λ[0,T ] ⊗ P;Rk×m). This, the fact that every bounded sequence in the separable Hilbert

space L2(λ[0,T ] ⊗ P;Rk×m) has a weakly converging subsequence (e.g., Kato [29, Lemma 5.1.4]), and the con-

vergence (42) ensure that the sequence (43) converges to 0 in the weak topology of L2(λ[0,T ] ⊗ P;Rk×m) as
T/N 3 h↘ 0. This, the fact that the processes(

f ′
(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr

)
r∈[0,T ]

, h ∈ T/N, (44)

are Skorohod-integrable, (41), and Lemma A.9 imply that the stochastic process(
f ′
(
XYr
r,T

)
X1,Yr
r,T (σ(r, Yr)−Br)

)
r∈[0,T ] (45)

is Skorohod-integrable and that for every FT /B([−1, 1]k)-measurable function Z : Ω→ [−1, 1]k it holds that

lim
T/N3h↘0

E

[〈
Z,

T
∫
0
f ′

(
X
X
Ybrch
brch,r
dreh,T

)
X

1,X
Ybrch
brch,r

dreh,T σ
(
r,X

Ybrch
brch,r

)
− f ′

(
XYr
dreh,T

)
X1,Yr
dreh,TBr δW

F0
r

−
T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T σ(r, Yr)− f ′

(
XYr
r,T

)
X1,Yr
r,T Br δW

F0
r

〉
Rk

]
= 0.

(46)
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Equation (32) and the convergences (38) and (46) imply that for every FT /B([−1, 1]k)-measurable function
Z : Ω→ [−1, 1]k it holds that

E

[〈
Z,

T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T

(
µ(r, Yr)−Ar

)
dr +

T
∫
0
f ′
(
XYr
r,T

)
X1,Yr
r,T

(
σ(r, Yr)−Br

)
δW F0

r

+ 1
2

d∑
l,j=1

T
∫
0

(
σ(r, Yr)[σ(r, Yr)]

∗ −Br[Br]∗
)
l,j

(
f ′′
(
XYr
r,T

)(
X1,Yr
r,T , X1,Yr

r,T

)
+ f ′

(
XYr
r,T

)
X2,Yr
r,T

)(
e

(d)
l , e

(d)
j

)
dr

− f
(
XY0

0,T

)
+ f(YT )

〉
Rk

]
= 0.

(47)

This implies equation (20). The proof of Theorem 3.1 is thus completed.

Appendix: The Skorohod integral with respect to Brownian motion and
additional independent information

In this appendix we introduce the Skorohod integral with respect to a Brownian motion W and an additional
sigma-algebra F0 which is independent of W . As a motivation, note that for every probability space (Ω,F ,P)
and every standard Brownian motion W : [0, 3] × Ω → R the Itô integrals ∫1

0 sin(Ws(W2 − W1)) dWs and
∫2
1 sin(Ws(W3 −W2)) dWs are well-defined (however with respect to different filtrations) but their sum cannot

be written as Itô integral ∫2
0 sin(Ws(Wdse1+1 −Wdse1)) dWs (which is not well-defined as Itô integral). In this

appendix we provide sufficient results to rewrite Itô integrals as Skorohod integrals and then to write the sum
of these as a single Skorohod integral.

Setting A.1. Let d,m ∈ N, let S, T ∈ R satisfy S < T , let (Ω,F ,P) be a probability space, let W : [S, T ]×Ω→
Rm be a stochastic process such that (WS+t − WS)t∈[0,T−S] is a standard Brownian motion with continuous
sample paths, let FS ⊆ F be a sigma-algebra which is independent of S(Wt −WS : t ∈ [S, T ]), let N = {A ∈
F : P(A) = 0}, let FT ⊆ F be the sigma-algebra which satisfies that FT = S(FS ∪S(Wt −WS : t ∈ [S, T ])∪N ),
let S(P,FS ,W ;Rd) ⊆ L2(P|FT ;Rd) be the subset with the property that

S(P,FS ,W ;Rd) =


F ∈ L2(P|FT ;Rd) : ∃n ∈ N, ∃φ1, . . . , φn ∈ L2(λ[S,T ];Rm),

∃f ∈ C∞,S(FS∪N )
b (Rn × Ω,R),∃h ∈ Rd such that it holds P-a.s. that

F = f
(
∫TS φ1(r) dWr, . . . , ∫TS φn(r) dWr

)
h

 , (48)

and for all s, t ∈ [S, T ] satisfying that s < t let F[S,s]∪[t,T ] ⊆ F be the sigma-algebra with the property that
F[S,s]∪[t,T ] = S(FS ∪S(Wr −WS : r ∈ [S, s]) ∪S(Wr −Wt : r ∈ [t, T ]) ∪N ).

Definition A.2. Assume Setting A.1. The extended Malliavin differential operator

D(P,FS ,W ;Rd) : D(1,2)(P,FS ,W ;Rd)→ L2(P|FT ;L2(λ[S,T ];Rd×m)) (49)

is the closed linear operator with the property that for all F ∈ S(P,FS ,W ;Rd) with the property that ∃n ∈ N,

∃φ1, . . . , φn ∈ L2(λ[S,T ];Rm), ∃f ∈ C
∞,S(FS∪N )
b (Rn × Ω,R), ∃h ∈ Rd such that it holds P-a.s. that F =

f
(
∫TS φ1(r) dWr, . . . , ∫TS φn(r) dWr

)
h it holds λ[S,T ] ⊗ P-a.e. that

D(P,FS ,W ;Rd)F =

n∑
i=1

∂f

∂xi

( T
∫
S
φ1(s) dWs, . . . ,

T
∫
S
φn(s) dWs

)
φih (50)
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and where D(1,2)(P,FS ,W ;Rd) is the closure of span(S(P,FS ,W ;Rd)) ⊆ L2(P|FT ;Rd) with respect to the norm

‖ · ‖D(1,2)(P,FS ,W ;Rd) =
(
E
[
‖ · ‖2Rd + ‖D(P,FS ,W ;Rd) · ‖2L2(λ[S,T ];Rd)

])1
2
. (51)

We write D = D(P,S(N ),W ;Rd) and denote D as the classical Malliavin derivative.

The following lemma, Lemma A.3, shows that the extended Malliavin derivative is well-defined (in particular,
the left-hand side of (50) does not depend on the representative and such a closed linear operator exists). The
proof of Lemma A.3 is almost literally identical to the proofs of Proposition 4.2 and Proposition 4.4 in Kruse [33]
and therefore omitted.

Lemma A.3. Assume Setting A.1. Then the operator

D(P,FS ,W ;Rd) : D(1,2)(P,FS ,W ;Rd)→ L2(P|FT ;L2(λ[S,T ];Rd×m)) (52)

is well-defined.

The following lemma, Lemma A.4, shows that the set S(P,FS ,W ;Rd) is sufficiently rich. The proof of
Lemma A.4 is standard and therefore omitted.

Lemma A.4. Assume Setting A.1. Then span
(
S(P,FS ,W ;Rd)

)
is dense in L2(P|FT ;Rd).

In particular, Lemma A.4 implies that the extended Malliavin differential operator is densely defined. Next
we introduce the adjoint of the densely defined extended Malliavin differential operator.

Definition A.5. Assume Setting A.1. The extended Skorohod integral is the linear operator

δ(P,FS ,W ;Rd) : Domδ(P,FS ,W ;Rd)→ L2(P|FT ;Rd) (53)

which satisfies that X ∈ L2(P|FT ;L2(λ[S,T ];Rd×m)) is in the domain Domδ(P,FS ,W ;Rd) if and only if there

exists a c ∈ [0,∞) with the property that for all F ∈ span
(
S(P,FS ,W ;Rd)

)
it holds that

E[〈D(P,FS ,W ;Rd)F,X〉L2(λ[S,T ];Rd×m)] ≤ c‖F‖L2(P;Rd) (54)

and which satisfies that for all X ∈ Domδ(P,FS ,W ;Rd), F ∈ S(P,FS ,W ;Rd) it holds that

E
[〈
F, δ(P,FS ,W ;Rd)(X)

〉
Rd

]
= E

[〈
D(P,FS ,W ;Rd)F,X

〉
L2(λ[S,T ];Rd×m)

]
. (55)

We say that X is (P,FS ,W ;Rd)-Skorohod-integrable if and only if X ∈ Domδ(P,FS ,W ;Rd). For all X ∈
Domδ(P,FS ,W ;Rd) we denote by ∫TS Xr δW

FS
r the equivalence class satisfying that

T
∫
S
Xr δW

FS
r = δ(P,FS ,W ;Rd)(X). (56)

For all X ∈ Domδ(P,S(N ),W ;Rd) we denote by ∫TS Xr δWr the equivalence class satisfying that

T
∫
S
Xr δWr =

T
∫
S
Xr δW

S(N )
r (57)

and we refer to ∫TS Xr δWr as the classical Skorohod integral.

The following lemma will be applied in the proof of Proposition A.7.
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Lemma A.6. Assume Setting A.1 and let s, t ∈ [S, T ] satisfy that s < t. Then

D(1,2)(P,FS ,W ;Rd) ⊆ D(1,2)(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd) (58)

and for all F ∈ D(1,2)(P,FS ,W ;Rd) it holds λ[s,t] ⊗ P-a.e. that(
D(P,FS ,W ;Rd)F

)∣∣∣
[s,t]×Ω

= D(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)F. (59)

Proof of Lemma A.6. Throughout this proof let F ∈ S(P,FS ,W ;Rd), let n ∈ N, φ1, . . . , φn ∈ L2(λ[S,T ];Rm),

f ∈ C∞,S(FS∪N )
b (Rn × Ω,R), and h ∈ Rd satisfy that it holds P-a.s. that

F = f
( T
∫
S
φ1(r) dWr, . . . ,

T
∫
S
φn(r) dWr

)
h, (60)

and let g ∈ C∞,F[S,s]∪[t,T ]

b (Rn × Ω,R) be a function such that for all (x1, . . . , xn) ∈ Rn it holds P-a.s. that

g(x1, . . . , xn) = f
(
x1 +

s
∫
S
φ1(r) dWr +

T
∫
t
φ1(r) dWr, . . . , xn +

s
∫
S
φn(r) dWr +

T
∫
t
φn(r) dWr

)
. (61)

Then it holds P-a.s. that

F = g
( t
∫
s
φ1(r) dWr, . . . ,

t
∫
s
φn(r) dWr

)
h. (62)

This implies that F ∈ S(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd). Next for all i ∈ {1, . . . , n} it holds P-a.s. that

∂f

∂xi

( T
∫
S
φ1(r) dWr, . . . ,

T
∫
S
φn(r) dWr

)
=

∂g

∂xi

( t
∫
s
φ1(r) dWr, . . . ,

t
∫
s
φn(r) dWr

)
. (63)

It follows that it holds λ[s,t] ⊗ P-a.e. that(
D(P,FS ,W ;Rd)F

)∣∣∣
[s,t]×Ω

=
n∑
i=1

∂f

∂xi

( T
∫
S
φ1(r) dWr, . . . ,

T
∫
S
φn(r) dWr

)(
φi|[s,t]

)
h =

n∑
i=1

∂g

∂xi

( t
∫
s
φ1(r) dWr, . . . ,

t
∫
s
φn(r) dWr

)(
φi|[s,t]

)
h

= D(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)F.

(64)

Equation (64) implies that

‖F‖2D(1,2)(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)

= E
[
‖F‖2Rd + ‖D(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)F‖2L2(λ[s,t];Rd)

]
= E

[
‖F‖2Rd +

∥∥∥(D(P,FS ,W ;Rd)F
)∣∣∣

[s,t]×Ω

∥∥∥2

L2(λ[s,t];Rd)

]
≤ E

[
‖F‖2Rd + ‖D(P,FS ,W ;Rd)F‖2L2(λ[S,T ];Rd)

]
= ‖F‖2D(1,2)(P,FS ,W ;Rd)

.

(65)

Since F ∈ S(P,FS ,W ;Rd) was chosen arbitrarily it follows that

span(S(P,FS ,W ;Rd)) ⊆ span(S(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)). (66)

This and inequality (65) yield the inclusion (58), and equation (64) implies equation (59). The proof of
Lemma A.6 is thus completed.

18



The following result, Proposition A.7, shows how to change the domain of integration for Skorohod integrals.

Proposition A.7. Assume Setting A.1, let X ∈ L0(P;L2(λ[S,T ];Rd×m)), and let s, t ∈ [S, T ] satisfy that s < t.
Then the following two statements are equivalent:

(i) It holds that X|[s,t]×Ω is (P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)-Skorohod-integrable.

(ii) It holds that 1[s,t]X is (P,FS ,W ;Rd)-Skorohod-integrable.

If any of these two statements is true, then it holds P-a.s. that

t
∫
s
Xr δW

F[S,s]∪[t,T ]
r =

T
∫
S
1[s,t](r)Xr δW

FS
r . (67)

Proof of Proposition A.7. ‘(i) implies (ii)’: Assume that the process X|[s,t]×Ω is (P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)-
Skorohod-integrable. This implies that 1[s,t]X ∈ L2(P|FT ;L2(λ[S,T ];Rd×m)). Lemma A.6, the definition of the

Skorohod integral, and the Cauchy-Schwarz inequality imply for all F ∈ D(1,2)(P,FS ,W ;Rd) that

E
[〈
D(P,FS ,W ;Rd)F,1[s,t]X

〉
L2(λ[S,T ];Rd×m)

]
= E

[〈
(D(P,FS ,W ;Rd)F )|[s,t]×Ω, X|[s,t]×Ω

〉
L2(λ[s,t];Rd×m)

]
= E

[〈
D(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)F,X|[s,t]×Ω

〉
L2(λ[s,t];Rd×m)

]
= E

[〈
F,

t
∫
s
Xr δW

F[S,s]∪[t,T ]
r

〉
Rd

]
≤
∥∥∥ t
∫
s
Xr δW

F[S,s]∪[t,T ]
r

∥∥∥
L2(P;Rd)

· ‖F‖L2(P;Rd) <∞.

(68)

We conclude that 1[s,t]X is (P,FS ,W ;Rd)-Skorohod-integrable.

‘(ii) implies (i)’: Assume that 1[s,t]X is (P,FS ,W ;Rd)-Skorohod-integrable. This implies that it holds

that X|[s,t]×Ω ∈ L2(P|FT ;L2(λ[s,t];Rd×m)). Lemma A.6 and the definition of the Skorohod integral yield for all

F ∈ D(1,2)(P,FS ,W ;Rd) that F ∈ D(1,2)(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd) and that

E
[〈(
D(P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)F

)
, X
∣∣
[s,t]×Ω

〉
L2(λ[s,t];Rd×m)

]
= E

[〈(
D(P,FS ,W ;Rd)F

)∣∣
[s,t]×Ω

, X
∣∣
[s,t]×Ω

〉
L2(λ[s,t];Rd×m)

]
= E

[〈
D(P,FS ,W ;Rd)F,1[s,t]X

〉
L2(λ[S,T ];Rd×m)

]
= E

[〈
F,

T
∫
S
1[s,t](r)Xr δW

FS
r

〉
Rd
]

≤
∥∥∥ T∫
S
1[s,t](r)Xr δW

FS
r

∥∥∥
L2(P;Rd)

· ‖F‖L2(P;Rd) <∞.

(69)

Lemma A.4 shows that span(S(P,FS ,W ;Rd)) is dense in L2(P|FT ;Rd). This, (68), (69), and the definition of
the Skorohod integral imply that X|[s,t]×Ω is (P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)-Skorohod-integrable and that it holds
P-a.s. that

t
∫
s
Xr δW

F[S,s]∪[t,T ]
r =

T
∫
S
1[s,t](r)Xr δW

FS
r . (70)

The proof of Proposition A.7 is thus completed.
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It is well-known (e.g., Nualart [47, Proposition 1.3.11]) that the classical Skorohod integral generalizes the Itô
integral restricted to square-integrable integrands which are adapted to the Brownian filtration. The following
result, Proposition A.8, generalizes this. The proof of Lemma A.8 is analogous to the proof of Nualart [47,
Proposition 1.3.11] and is therefore omitted.

Proposition A.8. Assume Setting A.1, let s, t ∈ [S, T ] satisfy s < t, let F̃ = (F̃r)r∈[s,t] be a filtration with

the property that for all r ∈ [s, t] it holds that F̃r = S(S(Wu − Ws : u ∈ [s, r]) ∪ F[S,s]∪[t,T ]) and let X ∈
L2(P;L2(λ[s,t];Rd×m)) be F̃-predictable. Then X is (P,F[S,s]∪[t,T ],W |[s,t]×Ω;Rd)-Skorohod-integrable and it holds
P-a.s. that

t
∫
s
Xr δW

F[S,s]∪[t,T ]
r =

t
∫
s
Xr dWr. (71)

The next result, Lemma A.9, proves that if a sequence of integrals converges weakly and has uniformly
bounded Skorohod integrals, then the limit is Skorohod-integrable and the sequence of Skorohod integrals of
the sequence converges weakly. Lemma A.9 follows immediately from the definition of the Skorohod integral
and its proof is therefore omitted.

Lemma A.9. Assume Setting A.1, let X ∈ L2(P|FT ;L2(λ[S,T ];Rd×m)), and let (Xn)n∈N ⊆ Domδ(P,FS ,W ;Rd)
be a sequence which satisfies that supn∈N ‖δ(P,FS ,W ;Rd)(Xn)‖L2(P|FT ;Rd) < ∞ and which converges to X in

the weak topology of L2(P|FT ;L2(λ[S,T ];Rd×m)). Then X ∈ Domδ(P,FS ,W ;Rd) and (δ(P,FS ,W ;Rd)(Xn))n∈N
converges to δ(P,FS ,W ;Rd)(X) in the weak topology of L2(P|FT ;Rd).
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[18] Gyöngy, I., and Millet, A. Rate of convergence of implicit approximations for stochastic evolution
equations. In Stochastic differential equations: theory and applications, vol. 2 of Interdiscip. Math. Sci.
World Sci. Publ., Hackensack, NJ, 2007, pp. 281–310.

[19] Hairer, E., Nørsett, S. P., and Wanner, G. Solving Ordinary Differential Equations I, second
edition ed. Springer-Verlag, Berlin Heidelberg New York, 1993.

[20] Hairer, M., Hutzenthaler, M., and Jentzen, A. Loss of regularity for Kolmogorov equations. Ann.
Probab. 43, 2 (2015), 468–527.

[21] Hudde, A., Hutzenthaler, M., Jentzen, A., and Mazzonetto, S. On the Itô-Alekseev-Gröbner
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