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Abstract

In this article we establish a new formula for the difference of a test function of the solution of a stochastic
differential equation and of the test function of an It6 process. The introduced formula essentially generalizes
both the classical Alekseev-Grobner formula from the literature on deterministic differential equations as well
as the classical Ito6 formula from stochastic analysis. The discovered formula, which we suggest to refer to as
[t6-Alekseev-Grobner formula, is a powerful tool for deriving strong approximation rates for perturbations
and approximations of stochastic ordinary and partial differential equations.

1 Introduction

The linear integration-by-parts formula states in the simplest case that for all a,b € R, ¢t € [0,00) it holds that

¢ t
e — e = —/ d% (ea(tfs)ebs) ds = / ea(tfs)(a — b)e® ds. (1)

0 0
The nonlinear integration-by-parts formula, which is also referred to as Alekseev-Grobner formula or as nonlinear
variation-of-constants formula, generalizes this relation to nonlinear ordinary differential equations and has been
established in Alekseev [I] and Grébner [I7]. More formally, the Alekseev-Grobner formula (cf., e.g., Hairer et
al. [19, Theorem 1.14.5]) asserts that for all d € N, T' € (0,00), u € C%'([0,7] x R RY), Y € CL([0,T], RY),
and all X, = (XZ,)scio.ef0.10ere € C({(s,1) € [0,T]*: s <t} x RE,RY) with Vs € [0,T], t € [5,T), x € R%:

oy =x+ [Ip(r,XZ,)dr it holds that

T
ngOT —-Yr = /0 (a%XfTT) (u(r, V) - d%Yr> dr. 2)
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Informally speaking, the Alekseev-Grobner formula expresses the global error (the term XS/OT —Yprin (2)) in

terms of the infinitesimal error (the term pu(r,Y;) — %Yr in which corresponds to the difference of time
derivatives). For this reason, the Alekseev-Grobner formula is a powerful tool for studying perturbations of
ordinary differential equations; see, e.g., Norsett & Wanner [46, Theorem 3|, Lie & Norsett [37, Theorem 1],
Iserles & Soederlind [27, Theorem 1], and Iserles [26], Theorem 3.7].

In this article we generalize the Alekseev-Groébner formula to a stochastic setting and derive the nonlinear
integration-by-parts formula for stochastic differential equations (SDEs). Informally speaking, one key difficulty
in this generalization is that the integrand on the right-hand side of (2] . and a similar integrand appears in the
stochas‘mc integral in (8)) below) depends both on the past (e.g. the term pu(r,Y;)) and on the future (e.g. the
term - X Yr 7). This precludes a generalization which is solely based on It6 calculus. In this article we apply
Malliavin calculus and express anticipating stochastic integrals as Skorohod integrals. The following theorem,
Theorem formulates our main contribution and establishes — what we call — the I[t6-Alekseev-Grébner
formula. For its formulation and throughout this article we use the notation introduced in Subsection [I.]]
below.

Theorem 1.1 (Ito-Alekseev-Grobner formula). Let d,m,k € N, T,c € (0,00), p € (4,00), ¢ € [0,5 —2),
€ € RY, let (Q,F,P) be a probability space, let W:[0,T] x Q — R™ be a standard Brownian motion with
continuous sample paths, let N' = {A € F: P(A) =0}, let p € C([0,T] x R4, R?), o € C([0,T] x R, R>™),
let X = (X% )sciomciomzerd: {(s,t) € [0,T]*: 5 <t} x RY x @ = R? be a continuous random field, assume
that for all s € [0,T], w € Q it holds that (R? > x Xir(w) € RY) € C?(R4,RY), assume that for all w €
it holds that gsz (w) € C([0,T] x R* LA (R4, RY)), assume that for all s € [0,T), z € R? the stochastic
process [s,T| x Q3 (t,w) = XZT(w) € R is (SN US(W, — W,: 1 € [s,1])))se(s 7)-adapted, assume that for all
s€[0,T], t €[s,T)], x € RY it holds P-a.s. that

t t
Xoe = o+ [ulr, Xg,) dr+ [o(r, X5,) AW, (3)
s s

assume that for all s € [0,T], t € [5,T], x € R? it holds P-a.s. that Xi(:g’t = X{rp, let AY: [0,T] x Q — R4,
B:[0,T] x Q@ — R™™ be (SN UGS Wy: 1 € [0,t])))iejor)-predictable stochastic processes, assume that Y
has continuous sample paths, assume that fUTlE[HAsH%d + 1 Ysllga + I1Bsl%,
t € [0,T] it holds P-a.s. that

(Rde)] ds < o0, assume that for all

t t
Y =6+ [Asds + [ BsdW, (4)
0 0
assume that )
p p
sup B (6 %23) [ + lo (623 | < 5
s,tGL[lgT] ,LL R4 R4 —l_ g st L(Rm,Rd) o0 ( )
s<t
assume that .
Yr Y — Y| —L2
Sup El:llXXTs 'rs p— 2(;4‘2) ‘ 837;2 tAXTr,s P*;(Ql’d?) . :| < OO, (6)
r,s,t€[0,7T L(R%R%) ’ L) (R4,RY)
r<s<t

and let f € C*(RY,RF) satisfy that for all x € R? it holds that

f(z
ax { WM ) ) gy 157 @) gy J < (L ) (7)



Then the stochastic process (f’ (Xg/}) %Xf%(a(r, Y,)—B,)) is Skorohod-integrable and it holds P-a.s. that

r€[0,T]

o

T
F(Xo%) = £(vr) = f@ﬁH%XﬁOMﬂn—&)m+gﬁ@%%%@g@w3n—BJM%

d 7
S (oY)t Yol = BB

l?]

(8)
_|_

l\')\»—t

(7" () (B X0 2XY0) + 1/(X)5) 22 X2 ) (e i) .
i,j=1

Theorem follows immediately from Theorem (applied with Fg = S(N), O = R? in the notation of
Theorem . Theorem essentially generalizes the following results from the literature:

(i) Theorem essentially generalizes the Alekseev-Grobner formula. More formally, Theorem (applied
with ¢ = 0, B = 0, k = d, = Idge in the notation of Theorem implies the Alekseev-Grébner
formula in (cf., e.g., Hairer et al. [I9, Theorem 1.14.5]) in the case where the solution process is twice
continuously differentiable in the space variable.

(ii) Theorem essentially generalizes the It6 formula. More formally, Theorem (applied with p = 0,
o = 0 in the notation of Theorem implies the It6 formula for It6 processes (cf., e.g., Revuz & Yor [51,
Theorem 1V.3.3]) in the case where the It process Y, its drift process A, and its diffusion process B satisfy
infpe(4,00) (SUPseo.r) B[l YslIhd] —|—f0 E[|Aslb. + HBsle(Rm,Rd)] ds) < co. This moment requirement is due
to the fact that we use the Skorohod integral. An approach with rough path integrals (cf., e.g., Friz &
Hairer [I5]) might be suitable to generalize Theorem so that this moment condition would not be
needed.

(iii) Theorem [L.1]essentially generalizes the Alekseev-Grobner formula in (2)) (cf., e.g., Hairer et al. [19, Theorem
1.14.5]) even in the deterministic case (¢ = 0 and B = 0 in the notation of Theorem from f = Idga to
general test functions. In Proposition below we prove the It6-Alekseev-Grobner formula in in the
deterministic case with the test function f: R? — R* being only in C'!(R?, R¥) instead of in C?(R%, R¥) as
in Theorem above. The proof of Proposition below is also illustrative to understand the structure
of the Itd-Alekseev-Grobner formula in .

(iv) Theorem essentially provides a pathwise version of the well-known weak error expansion (cf., e.g.,
Graham & Talay [16, (7.48) and the last Display on page 182] or related weak error estimates in [53, [13],[54]).
More precisely, in the notation of Theorem taking expectation of , using that the expectation of the
Skorohod integral vanishes, and exchanging expectations and temporal integrals results in the standard
representation of the weak error E[f (X({OT)] —E[f(Y7)].

We note that roughly follows from the case ¥ = d, f = Idga of Theorem and from the It6 formula
for anticipating processes established in Alos & Nualart [2] applied to the anticipating process [0,7] 3 ¢ +—
X, Yt € R?. Moreover, using the two-sided stochastic integral of Pardoux & Protter [49], Nualart & Pardoux
[48 Proposition 8.2] establish a backward Ito-Ventzell-type formula where the random test function roughly
speaking has the form F(t,z,w) = f(t,z,Y;(w)) where f is deterministic and Y is a semimartingale. This result
is not applicable to the situation of Theorem since z — X% is a random function. However, our proof of
Theorem uses ideas of the proof of Nualart & Pardoux [48, Proposition 8.2]. Moreover, after the preprint
[21] of our paper appeared, Del Moral & Singh [I4] establish a backward It6-Ventzell formula and use this
to provide a new proof of Theorem in the special case of coefficient functions which have continuous and
uniformly bounded spatial derivatives up to third order. In addition, independently of our results (cf. [3] with
our preprint [2I]), Arnaudon & Del Moral [3, (3.2)] arrive at the Ito-Alekseev-Grobner formula in a specific
situation (e.g. the diffusion terms are equal) by heuristically applying the backward Ito-Ventzell formula which
was later established in [14].



Theorem implies immediately an L2-estimate. For example the L?-norm of the right-hand side of (8]
can be bounded by the triangle inequality. The L?-norm of the Skorohod integral on the right-hand side of
can then be calculated by applying the It6 isometry for Skorohod integrals (see, e.g., Alos & Nualart [2, Lemma
4]). Another approach for obtaining L2-estimates is to apply the It6 formula for Skorohod processes to the
squared norm of the right-hand side of . However this seems to require additional regularity.

Our main motivation for the It6-Alekseev-Grobner formula are strong convergence rates for time-discrete
numerical approximations of stochastic evolution equations (SEEs). In the literature, positive strong conver-
gence rates have been established for SEEs with monotone nonlinearities (see, e.g., [38, Chapter 4]); see, e.g.,
18, 32, 28, 5, 8 7, 39, ?, 6] for the case of additive noise and [24, 23, 52], 1), 45| (411, 40, 34], [30] for the case
of multiplicative noise; for lower bounds see, e.g., [12, [42] [43] [44], [4]. Recently, the classical Alekseev-Grobner
formula has been applied in [25] to establish strong convergence rates for space-time discrete approximations for
stochastic Burgers equations with additive noise by rewriting the SEE as random partial differential equation.
This demonstrates that the Alekseev-Grobner formula is a successful approach for proving convergence rates in
the case of SEEs such as the stochastic Burgers equation with additive noise. Now the It6-Alekseev-Grobner
formula in Theorem provides an approach to derive strong convergence rates e.g. for stochastic Burgers
equations also in the case of non-additive noise. Applications of this approach are left to future research.

In addition, Theorem[I.T] can be applied to any approximation of an SDE which is an It6 process with respect
to the same Wiener process driving the SDE. Possible applications (cf., e.g., [23]) include, in the notation of
Theorem [L.1

(i) strong convergence rates for time-discrete numerical approzimations of SDEs (e.g., the Euler-Maruyama
approximation with N € N time discretization steps is given by A; = pu( k’WT, Yir) and By = a(kWT, Yir) for
N N

all t € (BT (BHITY ' e Ny 1 [0, N)),

(ii) strong convergence rates for Galerkin approzimations for SEFEs (see, e.g., [9]) (choose A; = P(u(t,Y:))
and Byu = P(o(t,Y;)u) for all u € R™, t € [0, 7] and some suitable projection operator P € L(R?) where
d,m € N; Theorem is applied to a finite-dimensional approximation of the exact solution of the SEE
of which convergence in probability is known), and

(iii) strong convergence rates for small noise perturbations of solutions of deterministic differential equations
(choose 0 = 0, Ay = u(t,Y;) and By = 6(t,Y;) for all t € [0,T] where 6: [0, 7] x R? — R¥*™ is a suitable
Borel measurable function and where € > 0 is a sufficiently small parameter).

In the literature, nearly all estimates of perturbation errors exploit the popular global monotonicity assumption
which, in the notation of Theorem assumes existence of a real number ¢ € R such that for all z,y € R,
t € [0,7T] it holds that

(& =y, u(t, ) = u(t,y))ra + 3llo(t, ) = o(t,v) g @m gy < €llz — yllza (9)

cf. also [23] and the references therein. We emphasize that many SDEs from the literature do not satisfy (9)
and that Theorem does not require that the global monotonicity assumption is fulfilled.

A crucial assumption in Theorem is existence of a solution of the SDE which is twice continuously
differentiable in the starting point since in the proof of Theorem [I.I] we apply It6’s formula for independent
random fields to the random functions R¢ > z + Xir € R9, ¢ € [0,7]. This assumption is not satisfied in
a number of cases. For example Li & Scheutzow [36] construct a two-dimensional example with smooth and
globally bounded coefficient functions which is not even strongly complete (that is, the exceptional subset of
Q where fails to hold can not be chosen independently of the starting point); cf. also Hairer et al. [20]
Theorem 1.2]. Under suitable assumptions on the coefficients, however, strong completeness and existence of a
solution of which is continuous in the starting point can be ensured; see, e.g., [10, 56l 35]. Existence of a



solution of which is twice continuously differentiable in the starting point is known for strongly complete
SDEs whose coefficient functions have locally Lipschitz continuous second derivatives; see [50, Theorem V.40].
In future research we show that moments of the derivative processes up to order two are finite if the coefficient
functions grow moderately at infinity; see [22]. Moreover, in the case of non-differentiable coefficients a possible
approach is to approximate the SDE by SDEs with smooth coefficients and to apply Theorem [I.1]to the sequence
of smoothened SDE solutions.

We prove Theorem as follows. First, we rewrite the left-hand side of equation as telescoping sum;
see below. Then we apply Itd’s formula to the random functions R? 5 z — X'r € RY, t € [0,T] in
order to expand the local errors. Thereby we obtain Ito6 integrals which we rewrite as Skorohod integrals by
applying Proposition below. These Skorohod integrals are non-standard since the integrands are in general
not measurable with respect to a Wiener process. For this reason we introduce an extended Skorohod integral
in the appendix. Moreover, the integrands in the It6 integrals are adapted to different filtrations. We apply
Proposition below in order to carefully rewrite the sum of these integrals as a single Skorohod integral.

1.1 Notation

The following notation is used throughout this article. We denote by N and by Ny the sets satisfying that
N = {1,2,3,...} and Ny = NU {0}. For all ¢ € (0,00) let 0°, %, 5 o5 000, 0-(—00), c0® denote the
extended real numbers 00 = 1, % =0,§=o00, 5F =-00,0-00=0,0-(-00) =0, and 00 = co. For all
T € [0,00) let Ap C [0,7]? denote the subset with the property that Ap = {(s,t) € [0,T]?: s < t} and denote
by T/n the set T/N = {T/n: n € N}. For all h € (0,00), r € [0,00) let [r|pn, [7]n, [7]o, [7]o € [0,00) be the
real numbers with the properties that [r], = inf{nh € [r,00): n € Ny}, |r|;, = sup{nh € [0,7]: n € Ny},
[]o = r, and |r]o = r. For a real vector space V and a subset S C V let span(S) C V denote the set with
the property that span(S) = {>_;", rivi: n € Nyry,...,r € Ryvr,...,v, € V}. For all (s,t) € Ap let Als,y) be
the Lebesgue-measure restricted to the Borel-sigma-algebra of [s,t]. For all d € N, z € R? we write ||z||ga for
the Euclidean norm of = and for all i € {1,...,d} let egd) denote the i-th unit vector in R%. For every set (2 we
denote by &(&) the smallest o-algebra generated by £ C P(f2). For all measurable spaces (2, F), (€, B) let
M(F,B) be the set M(F,B) = {f: Q@ — Q': f is F/B-measurable}. For every measure space (2, F, 11), every
normed vector space (V.|| - ||v), and all p € [1,00) let B(V') denote the Borel-sigma-algebra on V', let £P(u; V)
be the set with the property that £P(u; V) = {f € M(F,B(V)): [qllfII},dn < oo}, let LP(p; V') be the set with
the property that LP(u, V) = {{f € LP (1, V): f = g p-a.e.}: g € LP(u,V)}, and let

I Nergevy: (MFBV)U{{f € M(F,B): f=g pae}: ge MF,B)}) — (0,00 (10)

be the function which satisfies for all f € (M(F,B(V))U{{h € M(F,B): h =g p-a.e.}: g€ M(F,B)}) that
1

1l ogvy = (Jo I fI5-di)?. For all d,m € N and all A € R™™ we denote by A* the transpose of A. For every
measurable space (2, F) and every n € N let C}° F(R™ x Q,R) be the set which satisfies that

(11)

Czo,]—‘(RnXQR):{f:R"XQ%R: Vw e Q: f(-,w) € Cp°(R™, R), }

Vo € R: f(z,-) is F/B(R)-measurable

For all d, k € N we denote by L) (R? RF) the set of bilinear functions from (R%)? to R¥.

2 The Ito-Alekseev-Grobner formula in the deterministic case

The following proposition, Proposition generalizes the Alekseev-Grobner formula (cf., e.g., Hairer et al. [I9]
Theorem 1.14.5]) (which is the special case k = d, f = Idga of Proposition to general test functions.



Proposition 2.1 (Deterministic Ito-Alekseev-Grobner formula). Let d,k € N, T € (0,00), let O C R? be a
non-empty open set, let € COH([0,T] x O,R%), Y € C}([0,T],0), X.. = (XZ)sep..tci0.1),0c0 € C{(s,t) €
[0,T)%: 5 <t} x 0,0), f € C'(O,R¥), and assume for all s € [0,T], t € [s,T], x € O that X%, = = +
f p(r, Xg,) dr. Then

FX3%) — fF(OYp) = / F(X%) Xf( (s,Ys) — )ds (12)

Proof of Proposition[2.1 The assumptions and the fundamental theorem of calculus imply for all s € [0,7),
t € [s,T], € O that ([s,7] 3 u — XZ, € O) € C'([5,T],0) and that %sz,t = u(t,Xg,). This, the
assumptions, and Hairer et al. [I9, Theorem I.14.3]) prove that for all s € [0,T], ¢t € [s,T] it holds that
(O3 z+— X € 0) e CY0,0) and that %X}f e C({(s,t) € [0,T]?: s < t} x O, L(R%,R%)). Moreover, the
assumptions, and Hairer et al. [I9, Theorem 1.14.4]) show that for all z € O it holds that ([0,7] > s — X{p €
0) € CY([0,T],0), that £ X € C([0,T] x O,R?), and that for all s € [0,T], € O it holds that

S Xy = = Xrn(s, ). (13)

Therefore, the chain rule implies that ([0,7] 2 s — X Y‘*T € 0) € CY([0,T],0). Moreover, the fundamental
theorem of calculus, the chain rule, and (| . yield that
) ds

F(Xo) = f(Yr) = - /0 ' (r(x%)
(810, + A o

T
=— | f(x5) (

- (14)
= | >( ZXVpn(s, V) + X054V, ) ds
/ P& X S (5. Y5) = 473 ds.
This finishes the proof of Proposition O

3 The Ito-Alekseev-Grobner formula in the general case

The following theorem, Theorem [3.1] is the main result of this article. We note that throughout this article we
use notation introduced in Subsection [1.1} and in the Appendix.

Theorem 3.1 (Ito-Alekseev-Grobner formula). Let d,m,k € N, T,c € (0,00), p € (4,00), ¢ € [0,§ —2),
let (2, F,P) be a probability space, let W: [0,T] x Q& — R™ be a standard Brownian motion, let N = {A €
F:P(A) = 0}, let F = (Ft)epo,m) be a filtration on (2, F) which satisfies that Fo and &(Ws: s € [0,T]) are
independent and which satisfies for all t € [0,T] that Fy = &(Fo US(W;: s € [0,1]) UN), let O C R? be a non-
empty open set, let pu: [0,T]x O — R, o: [0, T] x O — R¥>*™ be continuous functions, let Xt ArxOxQ — O,
X{%: [0,T] x O x Q — L(RY,RY), and X,Z’%: [0, 7] x O x Q — L& (R RY) be continuous random fields, assume
that for all s € [0,T], w € Q it holds that (O 3 x — X{r(w) € 0) € C%(0,0), assume that for all s € [0,T),
x € O the stochastic process [s,T] x Q > (t,w) — X7} € O is (Ft)ie[s 1)-adapted, assume that for all s € [0,T7,
t€[s,T], x € O it holds P-a.s. that

t t
Xop =+ [ pr, X5, ) dr + [o(r, X5,) AW, (15)



assume that for all (s,t) € Ap, © € O it holds P-a.s. that X;(E’t = XS . assume that for all (s,x,w) €
[0,T] x O x Q it holds that X} 7(w) = & (XZp(w)) and X25(w) = 25 (X270 w)), let Y € LP(Agz) @ P;0),
A€ LP( Mo @ P RY), B € LP(No,r) @ P; R™) be stochastic processes, assume that Y has continuous sample
paths, assume that' Y and B are F-predictable, assume that for all t € [0,T] it holds P-a.s. that

t t
Y =Yy + [Asds+ [ Bs dWs, (16>
0 0

assume that

[T Y, p Y, P
[tln Lth
S B o 20 ) | (o 2052 | s dt] <o, (17)
assume that
XYr||P B edlr= 2, XY ||7=20TD)
Sup ]E HX 8 +H r,s [|P q H iTr,s p q <007 (18)
7,8,t€[0,7T] R L(R4,R?) t’ L) (R4 R4)

r<s<t

and let f € C?(O,R¥) satisfy that for all x € O it holds that

ax { LML 1 72 e ey I ) o gy} < 1+ ). (19)

Then the stochastic process (f’ (XZTT)Xi’%/’”(J(r, Y,) — BT))re[o 7] s Skorohod-integrable and it holds P-a.s. that
T T
F(X38) = $0) = [ 1 () X0 (. Yo) = Ay ) it [ 1 (X)) X (o, Y0) = By ) 0,

d 7
S (oY)t Yol = B[BY)

Z?]

! (7 (X05) (X1 X00) 4+ £ (XE) X207 ) (e

w\»—‘

4,j=1

Proof of Theorem [3.1. The fact that for all w € Q the function O 3 z — X%’T(w) € O is continuous and
equation imply that it holds P-a.s. that X}ﬁip = Y7. Moreover, we rewrite the left-hand side of equation
as telescoping sum and obtain that for alln € N, h € {%} it holds PP-a.s. that

n—1
FER) = F(¥e) = F(Xoft) = FOOR) = D2 (F() = 1)
=0

(21)
n—1 n—1
=3 () = FX ) = 2 (P Ern) = F(X )
=0 =

First, we analyze the second sum on the right-hand side of equation . For allt € [0,T], x € O,
i € {1,2} the functions Q 3 w — XFr(w) € 0, Q5 w — X7 (w) € LORLRY) are SN US(W, — Wy s €

[t,T]))-measurable. This together with the fact that for allw € Q, t € [0, T] it holds that (O Sz f(Xfrp(Ww)) €
Rk> € C?(0,RF) implies that for all ¢ € [0,T] the function Q > w — (O Sz f(XPr(Ww)) € Rk) € C?(0O,RF)
is independent of the sigma-algebra F;. 1t6’s formula for independent random fields (e.g., Klenke [31, Theorem
25.30 and Remark 25.26]) (applied with the functions Q > w — (O S f(X z+1)hT( w)) € Rk) € C?(0O,RF)

forn €N, i€ {0,1,....,n—1}, h € {L}) yields that for all n € N, i € {0,1,...,n — 1}, h € {1} it holds P-a.s.



that

PO ) = £

(i+1)h,T (i+1)h,T

(i+1)h N 4+, N d
= | UG sy, 4% 330 T S (G sy, (67 ) 4 (V)0

1 lj=1 2

(i+1)h (i+1)h

Y, LY, Y, LY,
= f P (X ynr) Xy rAr dr + f P (X ) X @y Br AW,

(i+1)h
1 * Yy 1,Yr 1Y, Y, 2,Yr (d) (d)
+3 ) Z{L (Br[Br]*), (f”(X(H-l)h r) (X(i—i-l)h,T’X(i—i-l)h )+ (X (i4-1)h, T)X(z'—f—l)h,T) (¢ ;) dr.
1j=1
(22)
Inequalities and imply for all i+ € {1,2} that
Yr Y
sup Hf X”) L <c sup Hl—i—HXX” L
r,s,t€[0,7T L4 (P;L() (R4,RF)) r,8,t€[0,7T RAILT (P5R)
r<s<t r<s<t
(23)
X
c{1+ sup HX e < 00.
r,s,t€[0,T Lp(P;R4)

r<s<t

Holder’s inequality, inequalities , , and the assumption B € LP ()\[07T] ® P; R¥™) imply that for all
neN,ie{0,1,...,n—1}, h € {L} it holds that

Y. LY.
(X(erl)h T)X(i+1)h,TB' ‘

Y. 1,Y.
f/(X[-wh,T)X[-u,TB"

L2(P;L2 (Apin, s+ 1)nsREX™)) ’ L2(Ajg, 7| @P;REXm)

< “}|f/(XF-/jh,T)}|L(Rd,Rk HX[]h,THL(Rd,JRd)”B'”HS(R"%W) L2(Ap.r®P;R) (24)

Y b
Hf (X 1n,T )HLq A, ]®P§L(Rd7Rk))HX[']h’THLm()\[O T]®P L(RY, Rd))|’BHLP()\[O’T]®P;Rde)
=2 1Y ) < 1Y, )
< T2 ((TE;IEPAT Hf (XS,T) HL% (P;L(R4 RF)) (r,5) sup HX L7P*22(Zq)+1) (P;L(R4,RY)) HB”LP()\[(),T]Q?P;Rdxm) < 0.

For all n € N, i € {0,1,...,n — 1}, h € {£} the stochastic process (f’(XffH)h T)X(lffl)h TB”)re[z‘h (i41)n] 18
predictable with respect to the filtration
(SF US{Ws = Wiirayn: s € [0 + DI TI)) cin 1y (25)

Proposition [A.§ m together with inequality ([24] ., Proposition and linearity of the Skorohod integral yield
that for all h € T'/N it holds that (f’ (XF:“M T)X[lrﬁ B )re[O,T] is Skorohod-integrable and that for all n € N,



h € {Z} it holds P-a.s. that

n—1
(i+1)h
Y, 1Y,
f f (X i+1 hT)X(i—i-l)h,TBT AW,
i=0
n—1;
(i+1)h SFiUS{We—Wiip1yn: s€[(i+1)h,T]}))
= [ X0 B 0y T ’
2 ( (i+1)h, 7) (i+1)h,T ”
] (20)
nooT
= g]]-[ih,(i-i—l)h] (’I“)f (X“ﬁm )X]};%/}:,TBT 5W,,I,FO
i=0
= ff’(XYr )X B, s
=P A ) A
Equations and imply that for alln € N, h € {%} it holds P-a.s. that
n—1 v
i+1)h Y;
> (Fexinn) = F (X))
i=0
T
Y, 1 Yr Y- I,Yr
=1 (X0, 2) X, A d”"Hf(Xm 2) X Br W (27)
d
T
* Yy LY, LY, Yy 2,Yy (d) _(d)
+%l g(Br[Br] )1 (f”(th, V(X Xprp) + (X r]hT)th,T)(el ve; ) dr.
=1

Next we analyze the ﬁrst sum on the right-hand side of equation (21). For all (s,t) € Ap, z € O
it holds that ]P’(X“T = XtT ) = 1. This and the fact that X is a continuous random field imply for all
Ys
(s,t) € A that ]P’(XSYT =X ) = 1. Forall t € [0,T], = € O, i € {1,2} the functions 2 3 w s X7(w) € O,
Qo>w— XZ%(w) e LO(R? RY) are S(N U S(W, — W;: s € [t, T]))-measurable. This together with the fact
that for all w € Q, ¢t € [0,7] it holds that (O >z f(Xfr(w)) € Rk)) € C%*(O,R*) implies that for all
t € [0,T] the function 2 > w — (O Sz f(XPr(Ww)) € Rk)> € C%(0,R¥) is independent of the sigma-algebra
F;. Itd’s formula for independent random fields (e.g., Klenke [3I, Theorem 25.30 and Remark 25.26]) (applied
with the functions Q 3 w (O >z — f(X ZJrl)hT( w)) € Rk> € C*(O,RF) forn € N, i € {0,1,...,n — 1},



h € {L}) yields that for all n € N, i € {0,1,...,n — 1}, h € {Z} it holds P-a.s. that

Yin

. Xi (1 7
PO = FXr) = PGSR = P )

(Z+1 Yin 1 X
ih,r b, Y;
- f f (X i+1 hT) X(erl)thth};"

(i+1)h 1.X lih 1.X Yin Yin 2.X Yin
1 ih,r ih,r ih,r ih,r ih,r (d) (d) 5/1
+ 2 Z f (f” <X(z+h1)h T) <X(1+1;h T X(erl;lh T) + f <X z+h1 h T> X(z+1;Lh T> ( € ej ) d(<Xihf>7’)l,j

Lj=1
(i+1)h x iy g xrn (i+1)h x ey g x n Y,
_ r]por el por Yir) Ll e por L]
B {}[L f <th3" )th,Th u(r L?‘thT) dr + f f ( (7] h}’} )th,Th U(T’XU‘M?T) dW;
d .
# Y x) fe(xe)])
22 e e )| )

x5 Lxpiin v XN ax by oy )
1 Tlp,T vl vl / |y, g,
’ <f (th} ><th,Th ’th»Th ) +f (Xﬁ“]h} )XfﬂhyTh )(el 1 €4 )d?‘.
(28)

Holder’s inequality and inequalities , , imply that for all n € N, i € {0,1,...,n— 1}, h € {%} it
holds that

XLEJh 1*X?5‘Jh Y1)
f( [T )erh,Th’ ”("Xujh,h-)

L2(P;L2(Njin, (i41)nRFX™))

XLEJh 19{3“ i)
h» “Jhs h
<[ X r | X e ( X, )
L2 (Ao, 7| @P;REXxm)
X 1Xf5“ v,
! Ah h . Ih
L(R?,RF) L(R?,R%) L2(A\jo, 7] ®P;R)
x Lln 1.x b
< |lp[ x7 Lt X L HU< Xﬂ-m)‘
-~ ['—|h;T p "]h: 2p ’ L'Jh,' LP(A[O T]®P;Rd><m)
La (Ao, 1) ®P;L(R4,RF)) Lp=2(a+D) (Ao, 1 QP; L(R4,R9)) '

1L,X)T
Xt,

p—2
<T2 sup
r,s,t€[0,7T
r<s<t

X
()

i ) < Sup G )
Ld (P;L(R% RF)) r,s tG[O T] L£p=2(aF7T) (P; (R4, R%))

'(g;%H o[ x|

. T X’L Zhr" lX’L “;1 3/1
For all n € N, i € {0,1,...,n— 1}, h € {—} the process (f’(X Z—I—hl hT)X(H_l;hTa(r Xih};>)re[zh _

predictable with respect to the filtration . Proposition |A.§} m together with 1nequahty ., Proposition
x Lln YL

17
and linearity of the Skorohod integral assert that the process f’ ( ]Lth )X HhLTJ}“ a(-,X L-JL ih) is Skorohod-

< oQ.

Lp()‘[O,T] ®P7Rd><m)>

10



integrable and that for all n € N, h € {%} it holds [P-a.s. that

n—1 Yir] Yir]
(i+1)h X 0\ X Y,
> IS (Xmlh{;* )X e a<r,X “h)dWr

R [71n,T Lr]n,r
1=
=l (it 1)h , XLY}JT:Z I,XELE”; Yirg, S(FipUS(Ws—W(i 11y sE[(i+1)h,T)))
=3 DX X e (n ) e
i=0 30
n—1 XE’LJT‘Jh 1 XE’LJT'Jh Yool . (30
!/ Ty, ’ Ty, r
= ({]l[ih,(i—i-l)h] (T)f <X[T]h31 )Xfr]h,Th U(T,XLrthLT) (5WTO
=0
Y, Y,
T x ey 1 x e Y
g Lrlpor el L7 F
=11 (th} )th’Th o(r X, ) oW,
Equations and imply that for alln € N, h € {%} it holds P-a.s. that
n—1
Y; Y;
S (A = (X))
i=0
Y, Y, Y, Y,
T x Lrin 1.x. v T x Lrln 1.x. rin v
_ / Lrlp.r el lrlp / [rlpr el lrlp F
= <th,T )th,T p(r X i) dr s 11 (X[T‘M,T >th,T o(r Xpn) owi
p (31)
T Y] Y
1 Lr) Lrln \7*
£330 Lol Xy ) o (x0T,
lj=1 ’
Yirly, Yy Yy Yirn Yirly,
X 1,X 1,X X 2,X
Lrlpor Rl lrlpr Lr]por lrlper (d) (d)
'(f”<X(r1h,'5r ><th,Th Xt )*f/<er1h,hT )th,Th >(ez vej) dr.
Equations , , and imply that for all ~ € 7/N it holds P-a.s. that
Yi
f(Xolr) = £(¥r)
T X Vi) Y, 1Y,
/ r|p,T ’ Ty, T / r Y
=47 <th,'% )th,Th wlr X)) = F(Xp5, p) X, p A dr
T X E/LJTJh LX E/LJTJh Yir) Y, LY, F
/ r|p,T ) r|p,T T / s Y
I <th,’% )th,Th o (r X050) = (G, ) X B OW
d
3 T (ot x5 o X (32)
2l' 0 P nr P ner Lj
?J:

Xy (X XN XN ) @)
73 rlp,r ) r|p,T ’ rly,r / r|p,T ’ T,
'(f (th} ><th,Th X >+f <th,'5r )th,Th >(el ej) dr
d
T
* Yy 1Y: 1Y, Yy 2,Y, (d) (d)
-3 é’(BT[BT] )ij (f"(th’T) (Xpnz X r) +f/(X[r]h,T)X|'ﬂh,T>(el vej ) dr.

Next we want to let 7/ 3 h — 0 in in a suitable sense and first justify this. Holder’s inequality,

11



inequalities , , , and the fact that A € LP(A\ 1] @ P; R%) imply that

Ln\ 1 x Ln
Lo T S (A Y. xlY
sup | (XH )Xﬂh, p( X000 = P (X, )X A
€T/N L2 (Ajg, 71 ®P;R)
2 Yy Y'r
<2 O ) 2 P ) O
7,8,6€[0,T ’ La (P;L(R4,RF)) r,s tE[O 7] Lp—2(q+D) (P;L(R4,R%))
r<s<t r<s<t
Y,
. X Ln A ) ) )
(hseuTI/)N ,U«( BT ) LP (A, 1) ®P;RY) + HLP(’\[O,T]@P:Rd) <0
Holder’s inequality and inequalities and imply that for all [,j € {1,...,d} it holds that
YLl x Ln YL YL YL
X 1 1LX X 2,X
" Llps ey g / LIpse R (@) ()
e (f <th,T > (Xfm R, ) +/ (th,T )thr ) (@7
< LPT (Ao, 1) OP;RY)
YL YL
X 1,X
< sup ||| /" (Xwaf,hT”) Xﬂh,uh
hET/N L(2) (Rd,Rk) L(Rd,Rd)
Y, Y,
X0, 2,
/! Ih h
|/ <Xﬂh7T ) Xﬂh, 2p
L(R?,RF) L@ (Re,RY) ILP=T (Ao, 1) @P;R)
i
1/ . ) 2 . 5
< sup | X Xppr™ || (34)
het/ LT (Ao, 1 @F;L() (R4 RF)) Lp=2a¥2) (Ao, 7 @S LR RT))
i e
/ Jpo h
+ f (X(.IhaT ) ’—.Ihv 2p )
L (Ao, ®P;L(R4,RF)) Lp=2(a+2) (Ao, T]®P§L(2)(Rdde))
p—4 XYT‘ 1 XYT‘
< 3 1 (X r,s) ‘ HX T,
<07 (oo SNt s (3 5 ot s
r<s<t r<s<t
XX 2, X%
+ su ’ '(X ”5)’ » )( su HX ™8 ) < 0
(r,s,te[l()),T} P ) s (P;L(R? RK)) r,s,te%()),T] BT | 52t (.2 (R )
r<s<t r<s<t
and, analogously, that for all 7,5 € {1,...,d} it holds that
S mexY XlY ’XlY i X2Y ) (d) (d) ‘ < oo. 35
helifl;/)N <f ( H’“T>( [Tn.T HhT) fx HhT) [T ( "% ) L%(MO,T]@P;R’“) OO (35)

The fact that for all C € R¥™ it holds that Zf L [(CC*); 5] < d|IC HHS(Rm R)> Holder’s inequality, assump-
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tion , and inequality imply that

z,]é( o XE/JUhﬂg(.,XE:f)r)”

sup =
heT/N

S (e Y ) )
1 . , I . y I . ) / s
'(f (th,'% ) (Xf-wh,Th A )*f <Xr1h,h )Xﬂh,Th >(@z '€
el Gl
Lln HS Rde))
x Lln 1x b Tl IR g x Ln
1 LJhs LJns LR LJpo R
'lzl ! (th,T > (XH X >+f< [T )th,T
7]:
< sup ¢ Ha( Y“h) ’
~ heT/N2 L-Jhse Lr(A [07T1®]P’;Rd><m)

XU\ (e ax X\ ex (U )
/, . . b . ) K . ) / . \ b
Do X s N X Xt ) X s ) Xt ) @7 e”)

Lje{l,....d}
< Q.

Analogously, the fact that for all C' € R¥*™ it holds that ZZ =1 1(CC) 5 < d||IC ||HS R R Holder’s inequality,

the assumption B € LP( A\ @ P; R¥™) " and inequality . yield that

L2(Ajg, 1 ®P;RF)

< sup 3
heT/N

d

LQ(A[O’T](@P;R’C)

_2p )
LP=% (X0, 71 QP;RF)

(36)

d
1 * 7 Y 1,Y. 1,Y. / Y. 2,Y. (@) (d)
sup - g B.[B]", . (f Xn o, X + (X7, )X € e
heT/N2 l,j:1< 5] )Z’J< (X [0, T 7)( [Tn,T Hh’T) ( [T Hh’T>( Lo ) L2(Apo, 1) @F;R)
d
< 2|| ||LP (Ao.7] ®P;RAX™) (37)

sup || (/"(X[3, ) (X130 X ) + 11X

Lj€{Tyd} PETN

2)Y. >( (d) (d)

1hT) [1n.7 ) \€l ’ej)

2p_
Lr=% (X, 1) ®P;RF)

Next Klenke [31, Corollary 6.21 and Theorem 6.25] together with the uniform L?-bounds in , , and ,
continuity of f" and of f”, path continuity of Y" and of Az x O > (s,t,x) = X7, € O, and inf,¢|o 1y P(X)r =
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Y,) = 1 imply that

Y
T X [7]lp 1.X lrlp
Lrlp.r )T m Y, 1YT
If (th} >th7Th u(r, thhr) —f (XWhT) thA dr

T / Y, 1Y, o
_ gf (erT)XryT (u(r,Y}) AT> dr
d 7 Y] Y] *
F3 30 (ol XL (X 50))7),
Yirly, Yy Yirly Yty Yrin
Xr T l’Xr ,T l’Xr ,T Xr T 2’Xr T d d
: (f ! (X ﬁh{i} > (X mht,:;h Xt ) +f (X [T]th,'f} )X A )(el( ),e§~ ') dr
d
1Y BB (7", ) (X s X )+ 1 (X0, ) XE ) (el el e
2 — 0 T r l» [T“h) |—T-‘h7T7 r-|h7 |—T hT I—T-IhiT U J

d
—3 3 [t )t Yl = BB, (" () (X7 X07) + 7 (X)X ) (e, e dr

L1(P;Rk)

(38)
Inequality implies that for all z,y € O it holds that

1 (@) = FW)llrr < 1F@)[Re + 1 (9)l[re < (1 + [[2]lra) (X + [l2]lra)? + (1 + [ly[lRa) (X + [ly[[Ra)? (39)

YO Yp

This, Holder’s inequality, the fact that 2¢ + 2 < p, the fact that }P(ngOT — X, ) —1= IP(YT — X;f %T), and
inequality show that

Hf(XST%F) - f(YT) HLQ(IP;R’C)

<cf(1+ |!X<§°T||Rd)1+qHL2<P;R> + e[ (1 + V2 lea) ™ o oimy (40)

< e(1+]|1X35 DT e+ Yl o)™

q+1
) <

XY
< sup 2c<1+ X, r°
r,5,t€[0,T) ’
r<s<t

L?(P;R%)

Equation and inequalities , , , and imply that there exists a constant K € [0,00) such

14



that for all A € 7/N it holds that

Y Y,
T x Ltrln 1.x mln v
/ lrlpr T Lrlpr Lr] Y, 1Y, F
I (th,"} )XMMT” o Xyt ) = £/ (X, ) X0 Br 6

L2(P;RF)
Y’F
< Hf(XYo) Y H I Hff < XLTLJi}L)Xl,XL,«LJi}:" ( X Lrjh)_f (XYT )Xl,Y,. A d?"‘
- or 72 (p;RK) [r1n,T [71n,T L7l nr [r]p, T/ [P0, T
1 T x i x
+E X X X)),
J=

X0 Ly X\ 2x N g o
" rpr [ K el psr / T “rly,r
'<f (Xfﬂh3><XWh,Th ’X’—T]thh >+f (XWh,hT )th,Th >(6l 165 )

(BB, (f”<X?iﬁh ) (X Xi) + 7 (X3, >X?;%”;,T> (e i) dr

L2(P;RF)

The fact that Y, X, X! are continuous random fields, continuity of f’, and the fact that inf,.co,m ]P’(X},,/;; =
Y,;) =1 yield that for all » € [0, 7] it holds P-a.s. that

(S0 ) - () )
T/u3h N0 [rln T )2 1T T Lo 10T ) [l 757 (42)
= (X)X (a(r,Y,) = By).
This, Fatou’s lemma, and the inequalities and yield that the sequence
XYL‘Jh 1,XYHh v
[ (58 )R o () (st 1O (e -0))
heT/N

is bounded in LQ(A[O’T] ® P; RF*™). This, the fact that every bounded sequence in the separable Hilbert
space LQ()\[OyT] ® P;R**™) has a weakly converging subsequence (e.g., Kato [29, Lemma 5.1.4]), and the con-
vergence ensure that the sequence converges to 0 in the weak topology of LQ(/\[07T] ® P; RFX™) as
T/N > h 0. This, the fact that the processes

XTLJTM ! XTLJTJ Yir) Y, Ly,
/ rlpr ’ T T rlp - Y
P (X ) X, o (r X ) = £ (K0, 1) X0 1B, » heT/N, (44)
rel0,T]
are Skorohod-integrable, , and Lemma imply that the stochastic process
T ’YT
(f/ (X:T)Xi,T (o(r,Y) — Br))re[oj] (45)

is Skorohod-integrable and that for every Fr/B([—1, 1]¥)-measurable function Z:  — [—1, 1]* it holds that

lim E

Y, Y,
T x, e\ g x e
/ rlp,r g mh . Y 1Y,
i <Z,gf (th’T )th’T (r X ) f (XM T)XM 1By W0

(46)
T
TP X 0,7 1 () X, 5WJFO> ] o
Rk
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Equation and the convergences and imply that for every Fr/B([—1,1]*)-measurable function
Z:Q — [~1,1]* it holds that

T T
E <Z, I (X)X (u(rve) = Ar) dr + (X)X (o ¥2) = B, ) oW
o @ (@
* * r 1,Y'r LYT‘ T 2’Y'r
£330 (e o Y0l = BB) (F(35) (%27, X37) + £/ (X)X ) (e o) dr (47)
lj=1 ’
— F(X0%) + f(YT)> =0.
RFE
This implies equation (20). The proof of Theorem [3.1]is thus completed. O

Appendix: The Skorohod integral with respect to Brownian motion and
additional independent information

In this appendix we introduce the Skorohod integral with respect to a Brownian motion W and an additional
sigma-algebra Fy which is independent of W. As a motivation, note that for every probability space (2, F,P)
and every standard Brownian motion W: [0,3] x @ — R the It6 integrals [J sin(Wy(Wo — W1))dW; and
J? sin(W, (W3 — Wa)) dW, are well-defined (however with respect to different filtrations) but their sum cannot
be written as Ito integral [3 sin(Ws(Wis1,41 — Wie),)) dWs (which is not well-defined as It6 integral). In this
appendix we provide sufficient results to rewrite It integrals as Skorohod integrals and then to write the sum
of these as a single Skorohod integral.

Setting A.1. Let d,m € N, let S,T € R satisfy S < T, let (2, F,P) be a probability space, let W: [S,T] x Q —
R™ be a stochastic process such that (Wsyy — Ws)iejo,r—s) i a standard Brownian motion with continuous
sample paths, let Fs C F be a sigma-algebra which is independent of S(Wy — Ws: t € [S,T)), let N = {A €
F:P(A) =0}, let Fr C F be the sigma-algebra which satisfies that Fr = G(Fs US(W, — Wg: t € [S,T]) UN),
let S(P,Fg, W;RY) C L2(P|p,; R?) be the subset with the property that

F e L*(Plr,;RY): 3n € N, 3¢, ..., dn € L2(Njg; R™),
S(P,Fs,W;R?) = ¢ 3f € C>FsUN)(Rn 5 0 R), 3h € R such that it holds P-a.s. that g,  (48)
F=f([Eo1(r)dW,,..., [T ¢u(r)dW;)h

and for all s,t € [S,T] satisfying that s < t let Fg o S F be the sigma-algebra with the property that
F[S,s]U[t,T] =6(FsUS(W, —Wg: T € [S, SD US(W, —W;:re [t,T]) UN)

Definition A.2. Assume Setting [A.T] The extended Malliavin differential operator
D(P,Fg, W;R?): DOD(P, Fg, W;R?Y) — LA(Plr,; L2 (Ajs.p; R™)) (49)

is the closed linear operator with the property that for all F € S(P,Fg, W;R?) with the property that In € N,
361, b0 € L2\ R™), 3f € CSFPM (R« O R), 3h € RY such that it holds P-a.s. that F =
FOIE d1(r) dW,, ..., [& én(r) AW, )h it holds Ajg 7] @ P-a.e. that

D(P7F57W;Rd)F = Z gxf

=1

T T
(Jor(s)dWe,... [ u(s) AW, ) oih (50)
S S
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and where D12 (P, Fg, W;R?) is the closure of span(S(P, Fg, W;R?)) C L?(P|g,.; R?) with respect to the norm

1

2
| Ipo @z = (B[l 1 + ID@Fs, WiRY - 250, 0 ]).

We write D = D(P, &(N), W;RY) and denote D as the classical Malliavin derivative.

(51)

The following lemma, Lemma shows that the extended Malliavin derivative is well-defined (in particular,
the left-hand side of does not depend on the representative and such a closed linear operator exists). The
proof of Lemma is almost literally identical to the proofs of Proposition 4.2 and Proposition 4.4 in Kruse [33]
and therefore omitted.

Lemma A.3. Assume Setting[A.1 Then the operator
D(P,Fs, W; R : DUA(P, Fg, W;R?Y) — L2(Plr,; L*(Aj5.79: R>™)) (52)
1s well-defined.

The following lemma, Lemma shows that the set S(P,Fg, W;RY) is sufficiently rich. The proof of
Lemma [A.4] is standard and therefore omitted.

Lemma A.4. Assume Setting|A.1l Then span (S(P, Fg, W;Rd)) is dense in L*(P|p,.; R?).

In particular, Lemma [A74] implies that the extended Malliavin differential operator is densely defined. Next
we introduce the adjoint of the densely defined extended Malliavin differential operator.

Definition A.5. Assume Setting The extended Skorohod integral is the linear operator
5(P,Fg, W;R?): Doms(P,Fg,W;R?) — L*(P[p,; RY) (53)

which satisfies that X € L?(P|g,; L2()\[S,T];Rdxm)) is in the domain Domg(P,Fg, W;R?) if and only if there
exists a ¢ € [0,00) with the property that for all F' € span (S(P,Fg, W; R%)) it holds that

E[(D(P,Fg, W;R%)F, X) 2 (g rixm)] < |l F | p2pra) (54)
and which satisfies that for all X € Domgs(P,Fg, W;R?), F € S(P,Fg, W;R?) it holds that

E [<F 5(P,Fg, W:; Rd)(X)>Rd] ~E [<D(IP>, Fg,W:R%)F, X> (55)

L2(’\[S,T]§Rdxm)] '

We say that X is (P,Fg, W;R?)-Skorohod-integrable if and only if X € Doms(P,Fg, W;R%). For all X €
Domg (P, Fg, W;R?) we denote by fg X, 6WFs the equivalence class satisfying that

T
é‘XT SWEs = §(P,Fg, W; R?)(X). (56)
For all X € Domg(P, S(N), W;R%) we denote by [& X, §W, the equivalence class satisfying that
T T
éXT SW, = é[Xr SWEN) (57)

and we refer to fg X, 0W, as the classical Skorohod integral.

The following lemma will be applied in the proof of Proposition
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Lemma A.6. Assume Setting[A.1] and let s,t € [S,T) satisfy that s < t. Then
DEA(P,Fg, W;RY) € DO, Fig o) Wlis g0 RY) (58)

and for all F € DUA(P,Fg, W;R?) it holds A5y ® P-a.e. that

<D(]P’, Fg, W: Rd)F>

X D(P, Fis,suie.1), Wlis g x0: RY) F. (59)

Proof of Lemma[A.G. Throughout this proof let F' € S(P,Fg, W;R%), let n € N, ¢1,...,¢, € £2()\[57T];Rm),
fe C‘ZO’G(]FSUN) (R™ x Q,R), and h € R satisfy that it holds P-a.s. that

T
F=f(J o) Wi, our) aw, ) (60)
and let g € CiO’F[S’S]U[t’T] (R™ x Q,R) be a function such that for all (z1,...,x,) € R™ it holds P-a.s. that
s T
a1, von) = £ (014 [ W, + 1) W+ [ onlr) AW+ [on(r) ). (01
Then it holds P-a.s. that . .
F=g([ou(r)dWe,....[ 6u(r) AW, )h. (62)
This implies that F' € S(P, Fg quje,775 W|[S,t]XQ;Rd). Next for all 7 € {1,...,n} it holds P-a.s. that

of
ox;

T t
(Jor) Wi fontr) W) = 2 (r(r) AW Lon(r) iy, (63)
S s
It follows that it holds As ; ® P-a.e. that

(D(IP’, Fg, W: Rd)F)

[s:t] %

Zax<f¢>1 g f¢n<> W, ) (i) h = Z
t i=1

= D(P, Fis guie,7), Wlis gxa; RO F.

Equation implies that

( Wm cee :;én(r) dWr) (¢2’[s,t})h (64)

s

2
||FHD(1’2) (P.Fs,sjue,775W s, x 2 RE)

—E||IFIZ + D, Fis qupe ),

d 2
R F a0, gm0

2 (65)
— E[|| 7|2 H D(P,Fg, W;RY)F
[H s + ( (P, Fs, W3R ) [5,] x Q2 LQ(/\[S,t];Rd)}
<E[|F|2 + D Fs, WiRDF 22 o] = 1 Fl20 oipo
Since F € S(P,Fg, W;R?%) was chosen arbitrarily it follows that
Sp&n(S(]P, Fs, W; Rd)) - span(S(IF’, F[S,s]U[t,T]: W’[s,t}xQ? Rd)). (66)

This and inequality yield the inclusion , and equation implies equation . The proof of
Lemma is thus completed. O
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The following result, Proposition [A.7] shows how to change the domain of integration for Skorohod integrals.

Proposition A.7. Assume Setting let X € LO(P; L*(\(s,; R™™)), and let s,t € [S,T) satisfy that s < t.
Then the following two statements are equivalent:

(i) It holds that X |5 gxq is (P, Fis quier)s Wlisgxa: RY)-Skorohod-integrable.
(ii) It holds that 1,y X is (P, Fg, W; R%)-Skorohod-integrable.

If any of these two statements is true, then it holds P-a.s. that
! Fissuie,r) _ & F
[ X 6W, 2=l = é Lig g (r) Xy OW,S. (67)
S

Proof of Proposition[A.7 ‘(i) implies (ii)’: Assume that the process Xsgxa is (P, Fis quier)s Wlis,gxa; RY)-

Skorohod-integrable. This implies that 1j, yX € L*(Plp,; LQ()\[&T];Rdxm)). Lemma |A.6, the definition of the
Skorohod integral, and the Cauchy-Schwarz inequality imply for all F' € ID)(LQ)(IF’, Fg, W;R?) that

EKD

—~

P, Fg, W:RY)F,1;, X> }

S WHBOE V%) o gy
. md

- (D(P,Fs,W,R )F)|[s,t]><(27X‘[s7t]XQ>L2(A[S’t];RdeJ

T T 1
N~

=E[{D(P, F[S73]U[t7T]7 w

.md
[s,t]x(bR )F1X|[s,t]><Q>L2()\[S t];Rde)] (68)

=E[(F, f X, oy ey |

< [ F |l L2(piray < 0.

t Frs.s
fXT 6Wr [S,s]U[t,T]
S

L2(P;Re)

We conclude that 1, 1 X is (P, Fg, W; RY)-Skorohod-integrable.

‘(ii) implies (i)’: Assume that 1,4 X is (P, Fg, W; R?)-Skorohod-integrable. This implies that it holds
that X|,gqx0 € L2(P|p,; Lz()\[&ﬂ;]Rdxm)). Lemma and the definition of the Skorohod integral yield for all
F e DLA(P,Fg, W;R?) that F € DUD(P, Fig gup 77 Wlis.gxo; RY) and that

E [< (D(P’ Fis o, W

_ [<(D(IP>,IFS,W;Rd)F)hs,t]xan‘[s,ﬂxﬂ>

E[(D(P,Fs, W;R)F, 15 1 X)

[s,t] x> Rd)F) ’ X‘ [s,t]xQ>L2(/\[s ] ;R’“m)}

L2(>‘[s,t]§Rde)i|

L2(>\[S,T]%Rdxm)] (69)

T
=E[(F, é s, (r) X0 W) ]

r NEN L2 pyray < oo

= H Zﬂ[s,q ()X OW;'s

L2(P;R%)

Lemma shows that span(S(P,Fg, W;R%)) is dense in L?(P|p,; RY). This, (68), (69), and the definition of
the Skorohod integral imply that X|i g« is (P, Fis sup,r1, Wlis,gx0; R?)-Skorohod-integrable and that it holds
P-a.s. that

¢ IF[S s]U[t,T) T F
[ Xy W ST = g () X SWS. (70)
s S

The proof of Proposition is thus completed. O
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It is well-known (e.g., Nualart [47, Proposition 1.3.11]) that the classical Skorohod integral generalizes the It
integral restricted to square-integrable integrands which are adapted to the Brownian filtration. The following
result, Proposition generalizes this. The proof of Lemma is analogous to the proof of Nualart [47]
Proposition 1.3.11] and is therefore omitted.

Proposition A.8. Assume Setting let s,t € [S,T] satisfy s < t, let F = (IF‘T)TG[S’Q be a filtration with
the property that for all v € [s,t] it holds that F, = &(&(Wy — Ws: u € [s,7]) UFggup,)) and let X €
L2(P; LQ()\[S’t];RdX"Z)) be F-predictable. Then X is (P, Fis,suit, 115 W][MXQ;]Rd)—Skorohod—integmble and it holds
P-a.s. that . . .

[ X, oW, ST — X W, (71)

The next result, Lemma proves that if a sequence of integrals converges weakly and has uniformly
bounded Skorohod integrals, then the limit is Skorohod-integrable and the sequence of Skorohod integrals of
the sequence converges weakly. Lemma follows immediately from the definition of the Skorohod integral
and its proof is therefore omitted.

Lemma A.9. Assume Setting|A.1, let X € L*(P|p,; LQ(A[S,T];Rdxm)), and let (X)) nen € Domg(P, Fg, W;RY)
be a sequence which satisfies that sup,cy H5(P,FS,W;Rd)(Xn)HB(MFT;Rd) < 0o and which converges to X in
the weak topology of L*(Plr,; L*(Ajg); R™™)). Then X € Doms(P,Fs, W;R?) and (6(P,Fs, W;R?)(X,))nen
converges to §(P,Fg, W;R?)(X) in the weak topology of L*(P|p,;RY).
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