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ABSTRACT

ONERA — The French Aerospace Lab — develops new concepts of 3D-LiDAR imaging systems including new
sensor technologies and data processing. Here, we present a more efficient strategy than existing solutions to
numerically enhance the lateral resolution of low photon 3D-LiDAR operating in Geiger mode. Our pipeline
makes it possible to reconstruct 3D-images with an unprecedented lateral-resolution, simultaneously at low
photon count and Hertz level framerates. It is applied on simulated GmAPD 3D-LiDAR signals. Signals
acquired using this category of sensors are unsuitable for direct applications of Compressive Sensing algorithms.
Our contribution focuses on a more efficient strategy for waveform denoising and reconstruction. For each pixel,
we reconstruct sub-pixels by using a Compressive Sensing approach. Compressive Sensing has already been used
for single-photon applications with single-pixel cameras. In our pipeline, we extend this method to focal plane
arrays in Geiger-mode. This process can be summarized as a set of signal processing techniques to enhance
the incoming signal and to improve the Compressive Sensing reconstruction. Our goal is to recover a complete
noise-free waveform. We distinguish two main parts: a reconstruction part which compensates the low dynamic
range of the signal induced by the Geiger mode; a denoising part which uses a new denoising strategy based
on statistical comparisons. This pipeline can be parallelized on GPU, as each pixel in the focal plane array is
independent from the others. In this paper, we will detail the pipeline and then demonstrate its applicability on
realistic simulated data.

Keywords: Compressive Sensing, 3D-LiDAR, Enhanced lateral-resolution, Low-photon count imaging, Signal
processing, Focal plane arrays, Geiger mode Avalanche Photo-Diode, GmAPD

1. INTRODUCTION

Single-photon cameras are increasingly being used in 3D-LiDAR sensing systems, especially in low Size Weight
and Power (SWaP) systems. Here we focus on systems using Geiger-mode Avalanche Photodiode (GmAPD)
sensors. These sensors are highly sensitive,! capable of statistically detecting fractional photons return levels.
This, coupled with centimeter depth-resolution provides a competitive edge against “classical” linear systems.
This is especially true in long range (> 10 km) remote sensing and surveillance applications. However, SWIR-
GmAPD sensors are limited to a few large pixels (up to 128x32 pixels),> which may result in insufficient
resolution. Increasing the pixel count at the sensor level might pose its own problems, namely the size of the
image plane and light gathering capabilities. Increasing lateral-resolution could be achieved using Compressive
Sensing (CS) algorithm.® In this work, we reconstruct the 3D-images using CS considering each pixel in the
Focal Plane Array (FPA) as a single-pixel detector. We use a Digital Micro-mirror Device (DMD) to modulate
the incoming light onto the FPA in a binary basis used in CS. Note that GmAPD sensors can only detect the first
photon without information on photon count. Those properties could degrade the reconstructed-image using CS.
To tackle this issue, we also developed signal processing methods should be applied upstream to correct them.
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2. PIPELINE GENERAL CONCEPT
2.1 Motivation and principle

The main idea of the proposed pipeline is to used photon-counting FPA instead of single-pixel camera to achieved
LiDAR system with higher resolution at long-range. Using CS, the framerate could be kept low while increasing
lateral-resolution. With the same purpose, we which to keep signal-level rather high (> 0.1 photon in average).*
Considering signal-level above superior at 0.1 photon in average, imply the introduction of dead-time effect,
sometime referred as pile-up.>® Indeed, as only the first backscattered signal could be acquired due to dead-
time, all others are lost. Dead-time effect introduced unwanted temporal-correlation, which limit the accuracy
of CS reconstruction.”

For instance, the temporal resolution is sufficient, with CS we which to increased only the lateral-resolution.
Therefore, for each temporal bin we increase lateral-resolution with CS. Thus, we suppose that each bin is
independent of previous bin if the impulse is short enough. Such that, for a given pattern, CS measurement
variation depend essentially of cross-section. These hypotheses are not meet when dead-time effect occurs. This
will introduce unwanted reconstruction artifacts using CS to increase resolution.

SNR can be low. Moreover, using CS to reconstruct an image in bin with only noise isn’t efficient computationally.
We could take advantage of the LiDAR system specification. Indeed, considering the fact that state-of-the-art
GmAPD sensor? as an acquisition framerate higher than the pulse frequency of state-of-the-art LIDAR ruggedized
for low SWaP application.® Denoising signal could be done by comparing statistically useful-frame (with pulse)
and noise-frame (without pulse) acquired between each useful-frame. We summarize our method in a pipeline
as shown in fig. 1, where different step corresponds to (i) compressed acquisition using DMD, (ii) return-times
histogram following TSCPC approach, (iii.a) waveform dead-time effect correction, (iii.b) support estimation
with statistical test using additional noise frame, (iv) merge step (iii) by multiplication, (v) recover an image for
each bin using CS.
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Figure 1: Tllustration of a pipeline increasing lateral resolution of 3D-LiDAR using CS



2.2 Compressive Sensing

CS is a signal processing technique that compresses the signal during the acquisition in specific basis (collection
of patterns) and then uses a priori knowledge to reconstruct the acquired compressed information.” ' CS
algorithms use an a priori on the sparsity of the scene in a certain basis (which may be unknown) and the
incoherence between this basis and a specific measurement basis which is an incomplete linear system. That
knowledge enables CS algorithm to reconstruct exactly the image by solving L1 optimization problem, using
fewer measurements than a “classical” acquisition.

L _ 2 _
S_sren]llaf}vHS”l’ st. ||V —@Us||53=0

Where the image to reconstruct is X = ¥Us € RY, ¥ € RV is the basis that promote sparsity, ¢ € RM*N
is the linear measurement process and Y € IRM is the resulting measurement with M << N.

2.3 Dead-time effect

Dead-time effect occur if the backscattered light generates a signal with multiple echoes. The coefficient of
a pattern is defined as the signal acquired for a given (discrete) time and pattern. Consider two acquisitions
with two different patterns but identical cross-section. In this case, their pattern coefficients must be equal,
regardless of the detections made at previous times. This is because the coefficient of a pattern corresponds to
a measurement in the CS framework, and getting the measurement wrong necessarily introduces errors in the
reconstruction. These errors manifest themselves mainly as artifacts on the reconstructed point cloud. Thus, if
this condition is not met, the estimation of the pattern coefficients may be erroneous, making the reconstruction
of the 3D image by CS incorrect.

fig. 2 shows the temporal-correlations. Two patterns are selected. Pattern (®y,) hides only one object. Both
objects are visible with pattern (®g,). In the first case (®y,), the signal peaks twice as high as in the second at
the time corresponding to the triangle position. The signal recovered for (®,) should have an identical peak for
the "triangle" object because they have an identical effective cross section. This illustrates the stacking effect
on the temporal signal with the pattern selection induced by the camera’s dead time. The same effect occurs for
a slope or any combination of targets producing multiple echoes in the recovered signal.
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Figure 2: Illustration of time dependency

Recent advanced on the field are focused on model involved calculation as Bayesian inference!? or Markovian
Chain model'? to tackle this issue. While those approaches give very precise results, they could be too much
computationally intensive (from 8s to few hours'®). Indeed, as we deal with CS for each frame reconstruction
the method should be applied for each pattern in each pixel. Thus, similarly to” we choose to use simpler and
faster algorithm as the correction proposed by Coates.? 6



2.4 Denoising strategy

The denoising strategy could be summarize as acquire additional frame of noise between each useful-frame with
a concomitant laser pulse, then compare each histogram-bin statistically. The comparison is made for each bin
considering as two statistical population the histogram-bin for a given pattern with and without concomitant
laser pulse. To test if both populations have the same distribution, we use the non-parametric Mann-Whitney
U-test.!* This allows us to determine whether or not the bin contain a backscattered signal. Determine each
bin that contain a backscattered signal give us an estimation of the function support as shown in Fig. 1. After
correcting the dead-time effect and estimate the function support we merge both simply by a multiplication
before applying CS algorithm.

3. RESULT AND DISCUSSION
3.1 Data

We validate our proof-of-concept, using 3D-LiDAR acquisitions under realistic daylight conditions simulated by
MATLIS software.'® ¢ The 3D scene was designed to illustrate the improvement brought by the method (fig. 3).
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Figure 3: (a) 3D scene with various features as high frequency, different size and inclination, all materials are
considered as 10% Lambertian; (b) Simulated LiDAR acquisition from the 3D scene after removing noise. Gray
scale in (b) is the normalized intensity.

3.2 Result

As shown in Figure 4, the pipeline recovers many scene details from the raw data due to the increased number
of points. Reconstruction artifacts (e.g., holes, noise), resulting from solving the CS optimization problem, can
be noticed. Higher spatial frequencies (ray target) and flat surfaces with a cross section smaller than the size of
a projected DMD pixel are not recovered (synthetic scene). Our method has clear advantages for detail recovery
by reconstructing better defined edges as in cases like in squares and slope (figs. 4a and 4b). Another advantage
concerns the reconstruction of objects with high spatial frequency (Siemens star). The lateral resolution is
increased by a factor of 8 in each lateral direction, the depth resolution remains unchanged. Moreover, using
only half of the total number of measurements doesn’t lower significantly the reconstruction quality.
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Figure 4: 3D reconstruction from a pipeline using the Haar basis as sparsifying basis and the Hadamard transform
as measurement process with (a) all patterns and (b) only half. The gray scale represents the normalized intensity
on both images. Gate start at 13km from the sensor.

4. CONCLUSION

We have described in this paper a comprehensive pipeline to increase the lateral resolution of 3D-LiDAR GmAPD
systems using compressive sensing (CS). Our pipeline takes into account the nature of the signal by using a
statistical approach to denoise, which is novel for this application, and estimate a corrected waveform before
solving the CS optimization problem. The feasibility of our method is demonstrated numerically on simulated
data. In our case, the lateral resolution is improved by 64 times while preserving the depth resolution and
minimizing artifacts. This pipeline therefore appears as particularly appealing for very long-range daylight
observation. We have validated it on static targets, but future work will focus on the reconstruction of moving
targets by evaluating the use of pattern matching.
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