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Abstract

We propose a perceptual chromatic adaptation transform for white balance that makes
use of split-quaternions. The novelty of the present work, which is motivated by a recently
developed quantum-like model of color perception, consists at stressing the link between the
algebraic structures appearing in this model and a certain sub-algebra of the split-quaternions.
We show the potentiality of this approach for color image processing applications by proposing
a chromatic adaptation transform, implemented via an appropriate use of the split-quaternion
multiplication. Moreover, quantitative comparisons with the widely used state-of-the art von
Kries chromatic adaptation transform are provided.

1 Introduction

The main objective of this work is to describe a new white balance algorithm that is implemented
by means of split-quaternions. The peculiarity of this algorithm is the fact that it is designed
to fit coherently with a recently developed mathematical model of color perception [9, 7]. This
model provides an alternative to the CIE (Commission Internationale de l’Éclairage) description
of colors by means of three coordinates in a colorimetric space, e.g. RGB, HSV, CIELab and
so on. It also emphasizes the fact that a perceived color should be described as the result of a
(perceptual) measurement procedure. The measurement equation, that is the cornerstone of the
proposed algorithm, uses tools from quantum information and expresses the result of a so-called
Lüders operation.

A complete mathematical description of this new paradigm about color perception is out of
the scope of this work. For the sake of self-consistency, the essential concepts of this model
will be recalled in section 2, the reader interested in more details can consult the following papers
[9, 7, 4, 6, 8, 5]. We deem worthwhile to mention that this model permits to: intrinsically reconcile
trichromacy with Hering’s opponency [4, 6]; formalize Newton’s chromatic disk [4]; single out the
Hilbert-Klein hyperbolic metric as a natural perceptual chromatic distance [5]; solve the long-
lasting problem of bounding the infinite perceptual color cone to a convex finite-volume solid of
perceived colors [4, 9]; predict uncertainty relations for chromatic opposition [8] and give coherent
mathematical definitions of perceived color perceptual attributes [7].

As we will underline with more detail in section 2, the color measurement equation takes place
in the algebra H(2,R) of 2 × 2 symmetric matrices with real entries. To obtain a meaningful
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description of the measurement process, this algebra should not be considered as the associative,
non-commutative algebra w.r.t. the matrix product, but rather as a non-associative, commutative
algebra w.r.t. the product given by the symmetrized matrix product. Such a non-associative,
commutative algebra is called a Jordan algebra, see e.g. [2] for more details.

As we will see in the following, three distinct incarnations of a certain suitable Jordan algebra
A give rise to three different perspectives on color measurements:

1. A viewed as H(2,R), gives a quantum information point of view, where color measurements
are expressed via the so-called Lüders operations;

2. A viewed as the direct sum R ⊕ R2 provides a geometric and relativistic interpretation,
where color measurements are expressed via normalized Lorentz boosts in the 3-dimensional
Minkowski space-time;

3. A viewed as a sub-algebra S0 of the split-quaternion algebra S brings a purely algebraic
point of view, in which simple algebraic operations on split-quaternions allow us to encode
color measurements.

The three representations of A are linked by explicit Jordan algebra isomorphisms, which
allow us to pass from one to another and to obtain a simple formula for the measurement process
by means of split-quaternions. It is precisely this formula that can be efficiently implemented
in the white balance algorithm. Although understanding all these mathematical arguments is
not necessary in practice to perform experiments, and maybe readers more interested in the
computational aspects would prefer to skip them and to focus on Sec. 3 and 4, we deem important
to underline that the proposed algorithm relies on a rigorous mathematical modeling of color
perception.

The outline of the paper is the following: in Sec. 2 we start by introducing the basic definitions
and notations necessary to formulate the measurement equation that defines a color perceived by
an observer from a visual scene. We also explain how color measurements can be interpreted
geometrically by means of Lorentz boosts. Sec. 3 is devoted to the split-quaternion point of view.
After recalling some preliminary notions, we show how to encode the measurement equation by a
so-called ‘sandwich formula’. We also make explicit the geometric operations in R4 corresponding
to this last formula to explain the difference with the usual sandwich formula involving the split-
quaternion conjugacy. Experiments with the white balance algorithm are presented in Sec. 4.
The practical implementation is detailed through appropriate approximations of a suitable subset
of S0 used in the measurement equation. Comparisons with the well-known von Kries algorithm
are also presented.

2 Color perception and color measurements

As said in the introduction, the proposed algorithm for white balance relies on a measurement
equation that describes, from a quantum information point of view, the color perceived by an
observer from a visual scene. The purpose of this section is to introduce the basic definitions and
notations that permit to describe this equation. For additional information the interested reader
may consult the references mentioned in the introduction.

2.1 Color measurements and quantum information

H(2,R), endowed with the Jordan product A ◦ B = (AB + BA)/2, is a commutative, but not
associative, Jordan algebra with domain of positivity H+(2,R), given by the set of real positive
semi-definite 2× 2 matrices. As usual in quantum information, mesurements are described by the
duality between states and effects. In the context of color perception, the state space is that of a
rebit, the real analog of a qubit, with the complex vector space C2 replaced by the real vector space
R2. In [9, 7] it is explained why this quantum structure, that emerges from the sole axiomatic
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approach, is perfectly adapted to translate mathematically Hering’s color opponency. A so-called
chromatic state s is represented by a density matrix ρs:

ρs =
1

2

(
1 + s1 s2
s2 1− s1

)
, (1)

with 1− s21− s22 ≥ 0, or equivalently by a chromatic vector vs = (s1, s2), with ||vs|| ≤ 1. An effect
e is represented by a matrix ηe:

ηe =

(
e0 + e1 e2
e2 e0 − e1

)
= e0

(
1 + e1/e0 e2/e0
e2/e0 1− e1/e0

)
, (2)

such that 0 ≤ ηe ≤ Id2, or equivalently by a chromatic vector ve = (e1/e0, e2/e0) with ||ve|| ≤ 1
and 0 ≤ e0 ≤ 1. Given an effect e, associated to a human observer, and a chromatic state s,
associated to the preparation of a visual scene, we have that the color perceived, or measured,
by e from s is encoded in the outcome of the so-called Lüders operation parametrized by e and
acting on s, explicitly [10]:

ψe(s) = η1/2e ρsη
1/2
e . (3)

This last formula is the main topic of interest of this work. It is shown in [7] how it naturally
permits to derive a coherent system of mathematical definitions of the CIE perceptual attributes,
such as lightness, brightness, saturation and hue, using quantum information tools such as relative
entropy.

2.2 Color measurements and Lorentz boosts

The commutative Jordan product of the so-called spin factor R⊕R2 is given by (α,v) ◦ (β,w) =
(αβ + 〈v,w〉, αw + βv) with α, β ∈ R, v,w ∈ R2. The domain of positivity of R ⊕ R2 is L+ =
{(α,v)t ∈ R ⊕ R2, α ≥ 0, α2 − ‖v‖2 ≥ 0}, which is the closure of the future lightcone in
the 3-dimensional Minkowski space-time M. The two Jordan algebras H(2,R) and R ⊕ R2 are
isomorphic, as Jordan algebras, via the following map:

χ : H(2,R)
∼−→ R⊕ R2(

α+ v1 v2
v2 α− v1

)
7−→

α
v1
v2

 .
(4)

Clearly χ(H+(2,R)) = L+. Using the isomorphism χ, we can interpret eq. (3) of color measure-
ments as the action of a geometric transformation onM. Given a chromatic state s and an effect
e parameterized by the vectors vs = (s1, s2) and ve = (e1/e0, e2/e0), respectively, it is shown in
[9] that, whenever ||ve|| < 1 we have

χ(ψe(s)) =
e0
γve

B(ve)
1

2

(
1
vs

)
(5)

where

γve =
1√

1− ||ve||2
(6)

and the matrix representation of B(ve) is given by

[B(ve)] =

(
γve γvev

t
e

γveve σ0 +
γ2
ve

1+γve
vev

t
e

)
, (7)

which can be recognized to be the Lorentz boost of M parameterized by the vector ve.
According to Minkowski geometry, this boost leaves the future lightcone invariant. The right-

hand side of eq. (5) is the vector of L+ that represents the outcome of the measurement given
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by eq. (3). Besides emphasizing the relativistic aspect of color perception, see also [9, 5], this
geometric description is very useful to analyze transformations between perceived color and to
design white balance algorithms, as it will be discussed in the sequel.

The isomorphism χ provides a bridge between the two different perspectives on color measure-
ments given by quantum information and Minkowski geometry. We underline here that eq. (3)
expresses precisely the way in which an observer, represented by an effect, perceives a color of
a visual scene prepared for a measurement in a given state. This description is radically differ-
ent from the usual CIE color description because it relies on the very act of perceiving, and the
geometric transformation in eq. (5) corresponds actually to perceived color measurements.

3 Color measurements and split-quaternions

We describe now the last Jordan algebra S0 which is a sub-algebra of the split-quaternion algebra,
and how to encode with simple algebraic equations the previous color measurement formulas by
means of the so-called ‘sandwich formulas’.

3.1 The algebra of split-quaternions

The non-commutative, associative algebra of split-quaternions S is generally introduced in a similar
way as the usual algebra of Hamilton’s quaternions H, see e.g. [12, 13, 18] for more details. There
are four basis elements, denoted by 1, i, j, k, however, differently from classic quaternions1, i and
j are such that i2 = j2 = 1, furthermore ij = −ji. The element k is defined as k = ij, this implies
that k2 = −1. Moreover, the following multiplication rules hold: kj = −jk = i and ik = −ki = j.
Every split-quaternion q can be written as

q = q0 + q1i+ q2j + q3k, (8)

with qi ∈ R, i ∈ {0, . . . , 3}. The real constant q0 is called the scalar part of q, while vq :=
q1i+ q2j + q3k is its vector part. The multiplication of two generic split-quaternions q, r ∈ S can
be easily computed by writing them in the form of eq. (8) and then using the multiplication rules
described above, obtaining the following explicit expression:

qr = q0r0 + q1r1 + q2r2 − q3r3 + (q0r1 + q1r0 − q2r3 + q3r2)i

+(q0r2 + q2r0 + q1r3 − q3r1)j + (q0r3 + q3r0 + q1r2 − q2r1)k.
(9)

In the same way as in the usual quaternion algebra H, the conjugate q∗ of a split-quaternion q
is obtained by changing the sign of its vector part. The squared norm of a split-quaternion is
given by N2(q) = qq∗ = q20 − q21 − q22 + q23 . Differently from H, N2 is not positive-definite and
the split-quaternions are classified according to the sign of N2(q): if N2(q) < 0, q is space-like; if
N2(q) = 0, q is light-like and if N2(q) > 0, q is time-like.

We denote with Ss, Sl and St the subsets of S containing space-like, light-like and time-like
split quaternions, respectively. If q ∈ St, then vq can belong to both Ss and St. However, if
q ∈ Ss, then vq can only belong to Ss. The first statement follows from the fact that, if q ∈ St,
then q20 + q23 > q21 + q22 , so both the cases q21 + q22 < q23 or q23 < q21 + q22 are possible, implying
N2(vq) = −q21 − q22 + q23 > 0 or N2(vq) = −q21 − q22 + q23 < 0, i.e. vq ∈ St or vq ∈ Ss, respectively.

To verify the last statement, consider q ∈ Ss, then q20 +q23 < q21 +q22 , which implies q23 < q21 +q22 ,
thus N2(vq) = −q21 − q22 + q23 < 0 and so vq ∈ Ss.

Contrary to H, S is not a division ring. In fact, it is easy to show that light-like split-quaternions
do not admit a multiplicative inverse. The non-commutative, associative algebra S is isomorphic
to the algebra of 2× 2 matrices with real entries via the following map

ζ : S ∼−→ M(2,R)

q0 + q1i+ q2j + q3k 7−→
(
q0 + q1 q2 + q3
q2 − q3 q0 − q1

)
.

(10)

1In classic quaternions i and j are imaginary units, hence i2 = j2 = −1, while in the split-quaternions algebra
they are roots of the unity.
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The split-quaternion multiplication corresponds to the matrix multiplication via ζ, hence ζ(qr) =
ζ(q)ζ(r), for all q, r ∈ S.

3.2 The sub-algebra S0 of the split-quaternion algebra

Let us denote S0 the set of split-quaternions such that q3 = 0, so every q ∈ S0 has the following
form q = q0 + q1i + q2j. S0 becomes a commutative but not associative Jordan algebra when it
is equipped with the Jordan product q ◦ r = (qr + rq)/2. The restriction of ζ to S0, still denoted
with ζ for simplicity, induces the following isomorphism of Jordan algebras:

ζ : S0
∼−→ H(2,R)

q0 + q1i+ q2j 7−→
(
q0 + q1 q2
q2 q0 − q1

)
.

(11)

As a consequence, if S+0 indicates the domain of positivity of S0, then ζ(S+0 ) = H+(2,R). If σ1
and σ2 denote the Pauli matrices with real entries, i.e.

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
(12)

then ζ−1(σ1) = i, ζ−1(σ2) = j. The real Pauli matrices play a fundamental role in the quantum
interpretation of color perception since they encode Hering’s opponent mechanism, see e.g. [4, 9].

The spin factor R ⊕ R2 is isomorphic, as a Jordan algebra, to the commutative and non-
associative sub-algebra of the Clifford algebra CL(2, Q), where Q is the positive definite quadratic
form on R2, linearly generated by the unit 1 and a spin system of CL(2, Q). Let us recall that the
Clifford algebra CL(2, Q) is the quotient of the tensor algebra

T (R2) = R⊕ R2 ⊕ (R2 ⊗ R2)⊕ · · · =
⊕
i≥0

(R2)⊗i (13)

by the two-sided ideal I(R2, Q) generated by the elements of the form u⊗ u−Q(u), for u in R2.
For further details the interested reader can consult e.g. [20].

Since CL(2, Q) is isomorphic to S, this means that the map

ω : S0
∼−→ R⊕ R2

q0 + q1i+ q2j 7−→ (q0, q1, q2)t,
(14)

is an isomorphism of Jordan algebras.
This completes the description of the three perspectives on color measurements listed in the

introduction. The following commutative diagram of isomorphisms gives a concise mathematical
representation of the relations between these perspectives:

H(2,R) R⊕ R2

S0

χ

ζ
ω

(15)

According to what has been discussed before, this means that transformations corresponding to
perceived color measurements can be computed in the split-quaternion framework.

3.3 The sandwich formula for color measurements

Our aim here is to express the original measurement equation (3), which was written in the setting
of the Jordan algebra H(2,R) and its geometric counterpart expressed by eq. (5), which exploited
the isomorphism with the spin-factor R ⊕ R2, in terms of split-quaternions by making use of the
Jordan algebra S0.
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To do so, we use the isomorphism ζ defined in eq. (11) and the definitions (1) and (2) of density

and effect matrix, respectively. It is clear that, if we define the two split quaternions pe, qs ∈ S+0
as follows

pe = e0 + e1i+ e2j, qs = (1 + s1i+ s2j)/2, (16)

then
χ(ψe(s)) = χ(η1/2e ρsη

1/2
e ) = χ(ζ(p1/2e )ζ(qs)ζ(p1/2e )) = χ(ζ(p1/2e qsp

1/2
e )), (17)

which, since χ ◦ ζ = ω, simplifies to

χ(ψe(s)) = ω(p1/2e qsp
1/2
e ). (18)

Thus, in the Jordan algebra S0 the color measurement is expressed as a sandwich of split-

quaternions with the same split-quaternion p
1/2
e on both sides. We must stress that this is different

than the conjugation action q 7→ αqα∗, in which, figuratively speaking, one of the bread slices ap-
pears as conjugated. The consequences of this particular sandwich formula will be explained in
detail in the following section.

Given e, it is of course useful to know how to obtain an explicit expression for p
1/2
e . Let us

recall, see [12], that every time-like split-quaternion p = p0 + p1i + p2j ∈ S0 with a space-like
vector part can be written as:

p = N(p)U(p) = N(p)(coshϑ+ up sinhϑ), (19)

where coshϑ = p0
N(p) and sinhϑ =

√
p21+p

2
2

N(p) , up being the following unit space-like split-quaternion:

up =
p1i+ p2j√
p21 + p22

. (20)

Using this polar form it is easy to check that such a split-quaternion p admits a unique square
root, see [19], given by

p1/2 =
√
N(p)(cosh(ϑ/2) + up sinh(ϑ/2)). (21)

In our case, since pe = ζ−1(ηe) = e0 + e1i + e2j, p
1/2
e can be easily calculated knowing the

coordinates of e, in fact:√
N(pe) = 4

√
e20 − e21 − e22, ϑe = arctanh ||ve||, upe =

e1i+ e2j√
e21 + e22

. (22)

3.4 A sandwich without conjugate

In this paragraph we are going to provide an explanation of the lack of conjugation in the split-
quaternion sandwich formula of eq. (18). To do so we start by recalling the geometric interpreta-
tion of the classic quaternion and split-quaternion conjugation formula used to obtain respectively
classic rotations and Lorentz boosts.

It is well known that in classic quaternions the action of conjugation by a unit quaternion α,
i.e. q 7→ αqα∗ for any q ∈ H, is an efficient way of encoding rotations of R3, [15]. Let us start by
recalling that any rotation R in R3 is fully determined by a rotation angle ϑ and a rotation axis
v ∈ R3. Moreover, when written with respect to the orthogonal splitting of R3 given by v, v⊥, its
matrix is

R =

(
1 0
0 Rϑ

)
, with Rϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)
. (23)

Let us now identify H with R4 as follows:

ι : H −→ R4

q0 + q1i+ q2j + q3k 7−→ (q0, q1, q2, q3)t.
(24)
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Any unit quaternion α can be written in the following form:

α = cos(ϑ/2) + u sin(ϑ/2), (25)

with u being a unit quaternion in span(i, j, k), [12]. We want to show that the conjugation action
by α of a quaternion q, i.e. q 7→ αqα∗, corresponds, to a rotation of axis v = ι(u) and angle ϑ in
the three-dimensional vector subspace V = ι(span(i, j, k)) of R4.

Writing the elements of H w.r.t. the basis 1, u, u⊥, after straightforward computations, one
can see that the left multiplication by α of a quaternion q in R4 corresponds to:

ι(αq) =

(
Rϑ/2 O2

O2 Rϑ/2

)
ι(q), (26)

where O2 refers to the 2×2 null matrix. Analogously, the right multiplication of q by its conjugate
α∗ = α−1, gives:

ι(qα∗) =

(
R−ϑ/2 O2

O2 Rϑ/2

)
ι(q). (27)

Combining eq. (26) and (27), one obtains the following matrix:

ι(αqα∗) =

(
Id2 O2

O2 Rϑ

)
ι(q). (28)

Comparing the latter expression with eq. (23) it is clear that ι(αqα∗)|V = Rι(q), hence we can
conclude that the conjugation action corresponds to a rotation in V .

Let us consider now the case of split-quaternions and Lorentz boosts. Let us interpret R3 as
the 3-dimensional Minkowski space-time and express it using the basis x, y, t, in which the first
two elements are the spatial dimensions and the latter represents the temporal one. A Lorentz
boost H in R3 is determined by an axis of fixed points v ∈ span(x, y) and an angle of hyperbolic
rotation ϑ, called boost rapidity. Let us indicate with z the orthogonal vector to v in span(x, y),
sometimes in the literature z is called boost direction. Expressing the boost matrix w.r.t. the
basis v, z, t, one obtains the following analogue of eq. (23), with a hyperbolic rotation instead of
a rotation:

H =

(
1 0
0 Hϑ

)
, with Hϑ =

(
coshϑ sinhϑ
sinhϑ coshϑ

)
. (29)

Notice that the hyperbolic rotation Hϑ occurs on the vector subspace span(z, t) involving the
boost direction and the time axis. Moreover H−1ϑ = H−ϑ and Hϑ1

Hϑ2
= Hϑ1+ϑ2

.
Now let us identify the split-quaternion algebra S with R4 via the function ι of eq. (24),

ι : S −→ R4. As before, we define the vector subspace V = ι(span(i, j, k)). Our aim is to
show that the conjugation action by α corresponds to a Lorentz boost in V . Notice that, in this
identification, ι(k) = t plays the role of the time axis, while ι(span(i, j)) = span(x, y) represents
the 2-dimensional space.

Let us consider a unit time-like split-quaternion α with space-like vector part. By eq. (19), α
can be written as follows:

α = cosh(ϑ/2) + u sinh(ϑ/2), (30)

with u = u1i + u2j, being a unit split-quaternion. Let w = −u2i + u1j be the vector orthogonal
to u in span(i, j). As before, expressing the split-quaternions of S w.r.t. the basis 1, u, w, k
and recalling the split-quaternion multiplication of eq. (9), we obtain that the left and right
multiplication, respectively, of any q ∈ S by α in R4 are given by:

ι(αq) =

(
Hϑ/2 O2

O2 H−ϑ/2

)
ι(q), ι(qα) =

(
Hϑ/2 O2

O2 Hϑ/2

)
ι(q). (31)
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Since α is not a light-like split-quaternion, it admits a multiplicative inverse, and since we have
supposed it to be a unit split quaternion, α−1 = α∗, see e.g. [12]. Thus the left multiplication by
α∗ is given by:

ι(α∗q) =

(
H−ϑ/2 O2

O2 Hϑ/2

)
ι(q). (32)

Similarly to what was done in eq. (28), we can combine eqs. (31) and (32) obtaining:

ι(α∗qα) =

(
Id2 O2

O2 Hϑ

)
ι(q). (33)

Comparing the last equation with eq. (29) one can see that ι(α∗qα)|V = Hι(q), thus the conjuga-
tion action q 7→ α∗qα corresponds to a Lorentz boost in V of axis ι(u), direction ι(w) and rapidity
ϑ. We must stress that the most commonly used formula (e.g. for the change of reference frames
in relativity), is actually the inverse of the previous one, i.e. q 7→ αqα∗ obtained changing the sign
of the rapidity.

We have just seen how the conjugation action α 7→ α∗qα corresponds to a boost in the vector
subspace V = ι(span(i, j, k)) = ι(span(u,w, k)), in which the time coordinate is associated to the
split-quaternion k via ι. However, as discussed in the previous paragraphs, we are interested in
the sub-algebra S0 of split-quaternions having q3 = 0 in which, recalling the isomorphism ω of eq.
(14), time is associated to 1 instead of k.

It is convenient to introduce the vector subspace W = ι(S0) = ι(span(1, i, j)). For coherence
with the relativistic interpretation of the model, we would like a split-quaternion sandwich formula
corresponding to a Lorentz boost in W , instead of V .

Let us finally analyze the sandwich formula q 7→ αqα, which is the one that will be used to
implement the colorimetric transformations that will be discussed in the following section. Using
the expressions in eq. (18) one obtains that this sandwich without conjugate, in R4, corresponds
to:

ι(αqα) =

(
Hϑ O2

O2 Id2

)
ι(q), (34)

where the matrix above is written w.r.t. the basis ι(1), ι(u), ι(w), ι(k), hence it represents a boost
in W of axis ι(w), direction ι(u) and rapidity ϑ.

Notice that this is different from the case of eq. (33), in which ι(u) was the boost axis and
ι(w) its direction. Nevertheless, in both cases α is parameterized by u, thus we must stress that
when using eq. (34) we pass as parameters, contained in α, the information associated to the
boost direction and rapidity. This will be useful in the following section, since we associate the
information of the illuminant vector to the boost direction and rapidity, that will be given directly
as input parameters contained in α.

Note that ι(αqα)|W corresponds to the matrix in eq. (7) after a suitable change of basis.

Finally, let us recall that p
1/2
e in eq. (18) is not a unit split-quaternion, hence, to use eq. (34),

one must identify α = U(p
1/2
e ), and multiply eq. (34) by N(pe).

4 Application to white balance

In this section we use the color measurements modeled in the context of split-quaternions to
implement a novel chromatic adaptation transform (CAT) for the automatic white balance (AWB)
of digital images. AWB is a classic color processing meant to let the camera mimic the adaptation of
the human visual system to the chromaticity of the illumination condition, often called illuminant.
It consists of two steps: an illuminant estimation part, which identifies the illuminant(s) present
in the visual scene, associating to them a 3-dimensional vector L, and a CAT, parametrized by L,
returning an image representing how the scene would appear to an observer fully adapted to the
illuminant. Several CATs have been proposed in the literature, see e.g. [1] for an overview, the

8



most widely used for applications is the von Kries CAT, see [22]. We propose a perceptual CAT,
called split-CAT from now on, based on color measurements expressed using split-quaternions. A
preliminary version of the algorithm, using simple Lorentz boosts, has been proposed in [14], a
more complete version, using normalized Lorentz boosts, can be found in chap. 7 of [21]. We refer
also the reader to [3], for a recent work using split-quaternions to perform Fourier analysis in the
HSV color domain2.

Let us start by representing the input image in the split-quaternion domain S+0 . We consider
an input image I with spatial domain denoted with I, represented in the HCV color solid, thus
I(x) = (H(x), C(x), V (x)), ∀x ∈ I. To every pixel x ∈ I, we associate the following split-

quaternion q(x) of S+0 :

q(x) = V (x) + C(x) cos(H(x))i+ C(x) sin(H(x))j. (35)

Given the output L of an illuminant estimation algorithm, expressed in HCV color coordinates
(HL, CL, VL), we associate to it the effect e = (e0, e1, e2) = (VL, CL cosHL, CL sinHL). Then, the

white balanced image q′ represented in S+0 is obtained using the split-quaternion multiplication as
follows:

q′(x) = p−1/2e q(x)p−1/2e , ∀x ∈ I, (36)

in which p
−1/2
e is given by

p−1/2e =
1√

N(pe))
(cosh(ϑe/2)− upe sinh(ϑe/2)), (37)

where
√
N(pe), ϑe and upe are calculated from e using eq. (22). Finally, we convert the image

from S+0 back to the HCV color space. Some examples of outputs, obtained by processing images
from the NUS Indoor Dataset [11], are depicted in Figure 1.

Figure 1: Left : input images. Center : output images after white balance using the von Kries
CAT. Right : output images after white balance using the split-CAT. The white balanced images
have been obtained using the same illuminant estimation. The illuminant vector is extracted
automatically from the white patch of the color checker present in each image. The input images
are taken from the open database [11].

The results of the von Kries CAT and those of the split-CAT look very similar at first glance.
This is already quite remarkable, because it gives a first concrete proof of the fact that a trans-
formation predicted solely by the rigorous mathematical interpretation of quantum measurement
within the quantum information model of color perception leads to a color transformation that

2Note that this latter, unlike the HCV color space that will be used in the sequel, it is typically not considered
a cone, but rather a cylinder.
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produces results that are very similar to those of the most standard CAT. However, some hue
shifts3 can be seen in the output of the split-CAT, as shown by the hat in the third picture, first
row, of Figure 1. In the following subsection we will stress that this is not an intrinsic feature of
the split-CAT, but it depends on the choice of the HCV color space and we will propose how to
reduce the hue shifts by modifying this color space.

4.1 Modification of HCV to encode Hering’s opponency

The classic HCV color solid seemed to be a convenient approximation of the closed cone S+0 because
of its conical shape. Nevertheless, HCV lacks of Hering’s opponency, which instead is an intrinsic
feature of the quantum information-based model of color perception. In fact, while blue and yellow
are diametrically opposed in its hue configuration, it is not the case for red and green4, as it can
be seen in the first picture from the left of Figure 2. Moreover, we were noticing that red objects
were slightly turning pinkish after applying the split-CAT in HCV. For these reasons, we propose
two modified versions of the HCV color domain, denoted with H1CV and H2CV, obtained from
HCV by modifying its H coordinate only. The objective is to modify the hue configuration on
the circle in order to approximately recover the, non necessarily orthogonal, Hering’s opponent
axes. We must stress that a more general open issue in colorimetry is to understand which are
the exact opponent unique hues and whether the opponent axes are orthogonal. Inter-observer
variability and dependence on the viewing conditions clearly contribute to make the problem
highly nontrivial.

The split-CAT implemented in H1CV or H2CV gives overall better qualitative and quantitative,
as we will see in the next paragraph, results. Figure 3 shows an example5 obtained processing
images from [11].

Let us explain a bit more in detail how the color solids H1CV and H2CV have been constructed.
We modified the H coordinate trying several functions, obtained using simple interpolation tech-
niques in 1-dimension and selected the two best performing ones on the images in the rendering of
the red hue, let us call them f1, f2. Both f1, f2 : [0, 2π]→ [0, 2π] are 2π-periodic and invertible6.
The coordinates Hi are obtained from H by Hi = f−1i (H), i = 1, 2. In particular:

1. f1 is obtained requiring the red to stay fixed, and the green to be diametrically opposed
to the red, hence it is obtained by quadratic interpolation of the points (0, 0), (2π/3, π),
(2π, 2π). It can be explicitly written as a parabola f1(x) = 1

4

(
7x− 3

2πx
2
)
. As depicted in

Figure 2 (Center), red and green are now opponent, but the blue is diametrically opposed
to an orangish yellow. Furthermore these opponent axes are not orthogonal, but separated
by an angle of 30◦.

2. f2 is obtained by fixing again the red and moving the green to be diametrically opposed to
it, then moving the yellow and the blue in order to have an angle of 60◦ between the two
opponent axes, as in Figure 2 (Right). f2 was obtained via quadratic piece-wise interpolation
of the points (0, 0), (π/3, 2π/3), (2π/3, π), (4π/3, 5π/3), (2π, 2π).

These simple interpolation techniques enabled us to define two color solid that incorporate, better
than HCV, Hering’s opponent mechanism. Clearly the fine-tuning procedure detailed in footnote 6

3The most visible case is the one of red objects shifting towards magenta.
4Note that by yellow, blue, red and green here we mean the representations in the HCV color solid of the RGB

vectors (255, 255, 0), (0, 0, 255), (255, 0, 0), (0, 255, 0). As remarked before there is no exact, nor clear, correspon-
dence between these vectors and Hering’s opponent hues, or unique hues.

5Notice that in particular does not produce a magenta shift of red objects, see e.g. the white-red box with a
flower depicted on it.

6Two options for the opponent axes were considered: red-green, yellow-blue and red-green, orange-blue, see
also footnote 4. Let us call them aY and aO, respectively. The adopted interpolation techniques were linear and
quadratic (piece-wise), let us denote them with l and q, respectively. Higher order interpolations (with polynomials
of degrees 3 and 4) were tested as well, but there was no visible difference w.r.t. the quadratic case, hence they
were not considered. Finally, 5 different angles between the opponent axes were taken into account: 30◦, 60◦, 90◦,
120◦, 150◦, for a total of 20 possible functions. The best performing ones, f1 and f2 correspond to the choices
(aO, q, 60◦) and (aY, q, 120◦) for the parameters defined above.
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Figure 2: Red, yellow, green and blue hue positions in the hue-chroma planes of the HCV, H1CV
and H2CV color spaces. The images have been generated by the authors for the purposes of the
present paper.

Figure 3: Left : output of the split-CAT in HCV. Center : output of the split-CAT in H1CV. Right :
output of the split-CAT in H2CV. These are there output pictures of an original image taken from
the open database [11].

could be iterated and improved. However, the meaningful information to stress out is the fact that
going in the direction of better integrating Hering’s opponent mechanism in a color solid provides
better results and it constitutes an appropriate context in which testing future applications of the
theoretical model summarized in section II, see section V for future research directions on this
topic.

4.2 Quantitative evaluation of the color checker rendering

We evaluated four CATs: the von Kries CAT, the split-CAT implemented in HCV, H1CV and
H2CV.

We started by generating linear PNG images applying linear demosaicing on the RAW RGB
images provided with the NUS Indoor dataset (Canon 1Ds Mark III, 105 images), [11]. We
automatically detected the color checker present in each image and extracted the nineteenth patch
(the white one) as ground truth illuminant vector. Using the extracted ground truths we corrected
the mentioned PNG images using the four different CATs.

Clipping cases were managed by dividing the image by its maximum. Then we detected all
the color checkers (a RGB vector corresponding to each patch) in the output images, still using
the automatic color checker detection functions.

For each CAT we considered the set of detected color checkers and calculated the distance
between each of them and the standard benchmark color checker, enlightened by the D65 illumi-
nant. As distance we used seven state-of-the art color metrics listed in table 1. This distance was
obtained by calculating, for each patch, its distance from the corresponding one in the benchmark
color checker and then averaging over the 24 patches. For each CAT we averaged the distances
of the color checkers over the 105 images of the dataset, obtaining the values reported by table 1.
Both the algorithm for the automatic detection of the color checker and the different color metrics
were used as implemented in the open-source Python package Colour7.

Lower values in this table mean that the color checker rendering of a certain CAT is closer to the
benchmark color checker. We can see that H1CV is better performing than H2CV. Furthermore,

7See https://colour.readthedocs.io/en/develop/.
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Metrics von Kries split HCV split H1CV split H2CV
CIE 1994 25.66 25.01 24.86 24.85
DIN99 26.25 25.48 25.28 25.39
CIEDE 2000 22.53 22.10 22.44 22.41
CAM02 UCS 25.99 25.31 25.31 25.34
CAM02 LCD 33.87 32.99 32.84 32.93
CAM16 UCS 26.01 25.28 25.31 25.35
CAM16 LCD 33.87 32.99 32.84 32.94

Table 1: Comparison between the von Kries CAT and split-CAT implemented in different HCV
spaces.

according to this evaluation, it is slightly better to use the implementation in H1CV than in HCV.
The value in bold highlights the smallest among the four values in the line in which it belongs, it
can be seen that the three split-CATs perform better than the von Kries CAT w.r.t. this criterion.

5 Conclusions and future perspectives

In this paper we have proposed and tested the first concrete application of a recently developed
quantum-like framework for color perception. This application consists at defining a theoretically-
based chromatic adaptation transform, the split-CAT, to perform the classic color processing task
of automatic white balance. To do so, we started by enriching the algebraic structure of the
quantum-like model by providing an alternative, isomorphic representation of the Jordan algebra

A, i.e. the sub-algebra S0 of the split-quaternion algebra S, with S+0 as domain of positivity.
In terms of split-quaternions, the fundamental measurement equation, eq. (3), used in [9, 7] to

define a perceived color as the outcome of a measurement procedure, is expressed by a so-called
sandwich formula, see eq. (18). This sandwich formula is different from the one usually used
classically, since none of the terms appears conjugated. We better clarified this peculiarity by
writing explicitly the action of the sandwich formula in R4.

Finally, we defined the split-CAT as the action of a sandwich, parametrized by the effect
associated to the illuminant. To do so, we associated the pixels of a digital image represented in

the HCV color solid to elements of S+0 .
Qualitative considerations about the color rendering of the output images led to the definitions

of two modified versions of the HCV color solid, H1CV and H2CV, obtained via simple interpolation
techniques meant to modify the hue configuration, making it approximately closer to having
Hering-like opponent axes. Then, we provided a quantitative evaluation of the performance of the
classic von Kries CAT, the split-CAT in HCV, H1CV and H2CV in the overall rendering of the
color checker patches. The results show that H1CV provides the best score.

Further evaluations of the performance of the proposed algorithm are clearly possible, e.g. one
could perform systematic comparisons with other state-of-the art CATs, using as a reference the
corresponding colors datasets, as in [1].

An important open question concerns the domain for the implementation. A possible approach
is to continue fine-tuning the HCV color domain, or use other existing color spaces, like CIELab
or IPT, keeping in mind that the algorithm is designed to preserve a conic shaped solid, hence
color solids having more irregular shapes will probably produce artifacts that should be treated
separately.

A different, interesting, perspective concerns the idea of studying alternative ways of integrating
Hering’s opponent mechanism in a color solid, which are more related to psychophysical data, see
e.g. [16, 17], rather than performing a purely engineering-oriented a posteriori manipulation of
existing color solids.
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[18] M Özdemir and Abdullah A Ergin. Rotations with unit timelike quaternions in minkowski
3-space. Journal of geometry and physics, 56(2):322–336, 2006.
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