
HAL Id: hal-04149117
https://hal.science/hal-04149117

Preprint submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network traffic classification using Unsupervised
Learning: a comparative analysis of clustering

algorithms
Helena Canever, Xihui Wang

To cite this version:
Helena Canever, Xihui Wang. Network traffic classification using Unsupervised Learning: a compar-
ative analysis of clustering algorithms. 2023. �hal-04149117�

https://hal.science/hal-04149117
https://hal.archives-ouvertes.fr


Network traffic classification using

Unsupervised Learning: a comparative

analysis of clustering algorithms

Helena Canever1 and Xihui Wang1

1Talan Research and Innovation Center.

Contributing authors: helena.canever@talan.com;
xihui.wang@talan.com;

Abstract

Network traffic classification plays a crucial role in various network
management tasks, such as resource allocation, intrusion detection, and
Quality Of Service (QOS) optimization. With the increasing complexity
and volume of network traffic, the need for efficient and accurate classi-
fication algorithms has become paramount. Traffic classification plays a
vital role in achieving QoS, but the task has become increasingly diffi-
cult due to evolving applications and growing network traffic. This article
focuses on leveraging machine learning techniques, particularly unsu-
pervised learning, for network traffic classification. The objective is to
replicate the work of Aouedi et al. and compare the performance of var-
ious clustering algorithms: k-means, DBSCAN, bisecting k-means, and
k-modes. A more refined experimental procedure is proposed, including
data preparation, feature selection, hyperparameter analysis, and clus-
ter analysis. This study contributes to the understanding of different
clustering algorithms’ performance for network traffic classification.

Keywords: Network traffic classification, Clustering, Unsupervised learning,
Machine learning

1



2 Network traffic classification using Unsupervised Learning

1 Introduction

The digitalization of businesses, public administrations, and individuals has
rapidly increased in recent years, fueled by growing trust in cloud infrastruc-
tures and 5G networks. This trend was further accelerated by the Covid-19
pandemic, which forced many employees to work remotely. However, this dig-
ital transformation has also introduced new challenges for network managers,
particularly with regards to security and supervision. In this context, ensur-
ing Quality of Service (QoS) in resource allocation has become a critical
issue, especially given the increased heterogeneity of connections and software
services.

Achieving QoS in a network necessitates the prioritization of certain traffic
types over others. This objective can be accomplished by judicious allocation
of bandwidth and other network resources, based on the distinct needs of
various applications and services. For instance, real-time applications like video
conferencing and online gaming demand low latency and high bandwidth, while
file downloads or software updates can accommodate higher latency and may
not necessitate as much bandwidth. Traffic classification plays a pivotal role
in realizing QoS in a network. It involves the process of identifying the diverse
traffic types coursing through the network, such as web traffic, email traffic,
or video streaming traffic.

However, the task of manually identifying and classifying network traffic
has become increasingly difficult. This is due to both the constantly evolving
nature of applications and the continual increase in the volume of network traf-
fic. In response to this challenge, there has been a growing interest in leveraging
machine learning techniques to address the problem of network traffic classifi-
cation. In particular, unsupervised learning methods have garnered attention
considering their ability to perform statistical analysis on attributes without
a priori labeling[1].

Unsupervised learning is a powerful technique that allows for the discovery
of relationships between inputs without any prior knowledge of the outputs[2].
Its main objective is to process data for knowledge discovery, which can be used
for reasoning and decision making. Clustering algorithms are one of the most
commonly used methods of unsupervised learning, which group input data
into distinct clusters based on similarities in the feature values. In particular,
the work of Aouedi et al.[3] proposed the implementation of k-means for net-
work traffic classification given its ease of implementation. To further test the
efficacy of their method, the authors recommend comparing the performance
of k-means with other clustering algorithms. The objective of this article is
thus to replicate the work of Aouedi et al.[3] and compare the performance of
various clustering algorithms for network traffic classification.

The rest of the paper is organized as follows: Section 2 focus on related work
in network traffic classification; the Clustering algorithms selected and the
dataset used for this study are described in Section 3 and 4; the experimental
results and their analysis are provided in Section 5, and finally the paper
concludes with Section 6.



Network traffic classification using Unsupervised Learning 3

2 Related Work

Network traffic, also referred to as data traffic or network data, represents the
amount of data traversing a computer network at a given moment and is used
for overall communication and information exchange between interconnected
devices within the network. The transmission of network data heavily relies on
the encapsulation process, where information is organized into network pack-
ets, serving as the fundamental units of network load. These packets consist
of a payload, representing the raw data being transmitted, and a header that
contains essential metadata such as the source and destination IP addresses.

Network traffic can be classified based on different criteria, including the
source and destination of the traffic, the protocols used, the content or payload
of the data, and the timing or behavior of the traffic. A well known classic
approach is to use port numbers for traffic classification. However, to avoid
detection by this method, P2P applications use dynamic port numbers and
disguise themselves by using the port numbers for common protocols such
as HTTP and FTP, thus rendering this approach obsolete[4]. An alternative
approach is the payload-based technique[5], which inspects packet payloads
for characteristic signatures of known applications, is more accurate than the
port-based technique. Nevertheless, it has limitations including privacy and
legal concerns with user data and the need to keep extensive knowledge of
application protocol semantics up to date, which impose significant complexity
and processing load on the traffic identification device.

Newer approaches to application identification rely on traffic’s statistical
characteristics, such as flow duration, packet inter-arrival time, and packet
lengths as unique properties for certain classes of applications, which has led to
the development of new classification techniques based on traffic flow statistical
properties, and the introduction of machine learning techniques to deal with
large datasets and multi-dimensional spaces of flow and packet attributes[6].
Most ML techniques used for traffic classification focus on the use of supervised
and unsupervised learning. There are various supervised learning classification
algorithms that have been applied to traffic classification, which differ in the
construction of classification models and the optimization algorithm used to
search for an effective model, such as Bayesian neural networks [7] and sup-
port vector machines[8]. However, the accuracy of supervised learning depends
entirely on the dataset being labelled. The reality is that it is very difficult
to manually label the data and there are always new arrivals of traffics that
may not belong to any of the predefined labels. Since the unsupervised clus-
tering approach does not have this limitation, it has attracted more attention
in recent years. Although it is not as rich as supervised learning algorithms, it
shows its applicability in constructing high-performance[9].

A series of works have exploited clustering algorithms on traffic data to
improve the classification of network data. Among all the clustering algorithms,
K-means[10], which aims to divide the data into K clusters, is the most popu-
lar thanks to its simplicity. Many works [11] [12] have verified the effectiveness
of K-means for classifying network traffic. However, the number of clusters K



4 Network traffic classification using Unsupervised Learning

has been the focus of debate, which not only seriously affects the classifica-
tion effectiveness performance of the algorithm, but also affects the algorithm’
complexity. Other different clustering algorithms have been used to compare
with K-means. For exemple, Erman et al.[13] compared the performances of
the k-means to DBSCAN[14] algorithms and AutoClass algorithm[15]. In their
experiments, for each different protocol (HTTP, P2P, etc.), the same number
of samples are used to avoid clustering bias. This preprocessing method does
not allow the identification of flows based on volume and necessary resources
and is therefore less effective for practical applications. Singh[16] compared
the accuracy of K-means and Expectation Maximization (EM)[17] clustering
algorithms in identifying network traffic based on extracting relevant features.
Unfortunately, their experimental processes such as feature processing, extrac-
tion, etc. were not described in detail, which makes it difficult to replicate their
experiments for comparison.

Expanding on prior research, Aouedi et al.[3] proposed a more refined
experimental procedure that includes the following two mains steps:

1. Data Preparation, involving data preprocessing and feature selection;
2. Experimental analysis, involving the analysis of hyperparameter values and

elucidation of the behavior of distinct clusters.

Regrettably, only a detailed description of the selection of parameters of the k-
means algorithm and the analysis of its clusters has been presented by Aouedi
et al. Therefore, the thrust of this paper is to extend their work by comparing
four different clustering algorithms(k-means, DBSCAN, bisecting k-means and
k-modes) and analyzing in detail the different clusters. Over and above, we
contend to provide a more rigorous approach to data preprocessing of the first
step and performed an internal validation of the clusters on the reprocessed
data to evaluate the optimal number of clusters.

3 Clustering algorithms

We have selected four clustering algorithms for comparative analysis, namely,
DBSCAN, k-means, and two variations of k-means, namely bisecting k-means
and k-modes.

3.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
clustering algorithm that groups data points into density-based clusters. It
does this by first identifying points in the dataset that are dense and form
a cluster, then expanding the cluster to include nearby points that are also
dense. Points that are not part of a dense cluster are considered noise and are
not included in the clusters.



Network traffic classification using Unsupervised Learning 5

3.2 k-means

K-means is a clustering algorithm that divides a group of data points into a
specified number of clusters (k) based on the means of the data in each cluster.
To do this, it first initializes k centroids, which are points representing the
center of each cluster. It then assigns each data point to the cluster whose
centroid is closest, based on some similarity metric. Once all points have been
assigned to a cluster, the centroids are updated to be the average of the points
in each cluster, and the process is repeated until the centroids converge and
the point assignments to clusters do not change.

3.3 Bisecting k-means

The k-means bisecting algorithm, as the name suggests, is based on the k-
means algorithm. The difference is that the k-means bisecting algorithm first
treats the entire data set as a single cluster. It then iteratively divides this clus-
ter into two sub-clusters using the k-means algorithm. This process is repeated
on each subcluster until a specified number of clusters (k) is reached. This
results in a hierarchical cluster structure, with each cluster being divided into
two sub-clusters at each iteration.

3.4 k-modes

k-modes is a clustering algorithm similar to k-means, but instead of using
means to define clusters, it uses modes, which are the most frequent values in
each cluster. This makes k-modes well suited to clustering categorical, rather
than numerical, data. Like k-means, k-modes starts by initializing k centroids,
then assigns each data point to the cluster whose centroid is closest. The
centroids are then updated to be the mode of the points in each cluster, and
the process is repeated until the centroids converge and the assignments of
points to clusters do not change.

4 Data Preparation

In our research, we employed the identical dataset utilized in the analysis con-
ducted by Aouedi et al. [3] to compare the four clustering algorithms selected.
Specifically, the dataset was derived from the ’IP Network Traffic Flows,
Labeled with 75 Apps’ dataset, which is publicly available on Kaggle. This
dataset was meticulously curated by collecting network data from the Univer-
sidad Del Cauca, Popayàn, Colombia, and consists of a substantial 3,577,296
instances.

4.1 Data preprocessing

We begin the data preprocessing by removing data duplicates in the dataset
in order to avoid a bias towards said duplicates. Next, we review the dataset’s
features. The vast majority of the features are numerical and as such do



6 Network traffic classification using Unsupervised Learning

not require preprocessing other than normalization. However, we identify
five features that are not numeric and require additional processing: Times-
tamp, Source.IP, Destination.IP, Source.Port, Destination.Port. Timestamp
instances can be converted to integers. IP addresses and ports are features
that are represented numerically but are not numeric. For example, port 80
is assigned to HTTP protocols, port 110 is assigned to POP3 protocols, and
port 443 is assigned to HTTPS protocols, but ports 80 and 110 are no closer
to each other than port 443. In other words, the numerical nomenclature does
not correspond to a correlation between ports. We have therefore opted for an
arbitrary grouping of ports into five categories: ”3128”, ”443”, ”80”, ”0” and
”other”. In the case of IP addresses, the dot-decimal notation, for example
192.0.2.1, represents a 32-bit notation, so we adopt the following conversion
formula 16777216 × 4thdecimal + 65536 × 3rddecimal + 256 × 2nddecimal +
1× 1stdecimal.

4.2 Features Selection

The dataset consists of 87 features. Such a number of features imposes the issue
of high dimensionality. The issue relates to the fact that with a high number
of features comes the risk of encountering redundancy between features or
features that do not provide information useful to the clustering, leading to an
overall reduction in the performance of the algorithm. In the work of Aoeudi et
al. they solve this issue by performing feature selection using Recursive Feature
Elimination (RFE).The result is a reduction of the dataset to 15 features. At
this phase we select features based on the work of Aouedi et al. reducing the
dataset from 87 features to 15. This choice was guided by the desire to maintain
a certain level of comparability between our work and that of Aouedi et al.
and to reduce computations. Finally, we normalize the remaining 15 features.

5 Experimentation Analysis

5.1 Hyperparameter Analysis

The number of clusters is a hyperparameter of the k-means, bisecting k-means,
and k-modes clustering algorithms. It must thus be chosen a priori. Different
metrics allow to evaluate the ideal number of clusters, whereby ideal we refer
to the best separation and definition of clusters with little overlap between
clusters and low dispersion within each cluster.

In this work, we decided to adopt the following methods:

• Elbow method: this method evaluates the intra-cluster variance. In other
words, the distance between data points within a cluster. The name of the
method refers to the search for the inflection point in the decrease of the
variance with the number of clusters. This finds the number of clusters at
which the rate of decrease in variance decreases.



Network traffic classification using Unsupervised Learning 7

Fig. 1 Silhouette scores for clusters by number of clusters generated by the k-means
algorithm.

Fig. 2 Davies-Bouldin scores for clusters by number of clusters generated by the k-means
algorithm.

• Silhouette score: measures the distance between clusters (and thus their
significance). The higher the silhouette score, the more distinct the clusters
are.

• Davies-Bouldin score: the score is defined as the average similarity measure
of each cluster with its most similar cluster, where similarity is the ratio of
intra-cluster distances to inter-cluster distances. Thus, more distant and less
dispersed clusters will get a better score. The lower the score, the better.

We have applied these methods to clusters generated by the k-means and
bisecting k-means algorithms. In executing the k-means algorithm the best
Silhouette and Davies-Bouldin scores are obtained for a number of clusters of 6
(Figures 1 and 2 ), whereas for the bisecting k-means algorithms the best scores
are obtained generating 5 clusters. We therefore decided to set the number of
clusters to 6. The Elbow method did not identify a very clear inflection point
and was therefore not taken into account when determining the ideal number
of clusters (See Appendix).



8 Network traffic classification using Unsupervised Learning

Fig. 3 Silhouette scores for clusters by number of clusters generated by the bisecting k-
means algorithm.

Fig. 4 Davies-Bouldin for clusters by number of clusters generated by the bisecting k-
means algorithm.

5.1.1 Selection of DBSCAN hyperparameters

The DBSCAN algorithm, because of the way it defines clusters, does not allow
the number of clusters to be defined a priori. Instead, the algorithm creates
clusters based on density and requires the parameters min_samples and eps

to be declared. min_samples defines the minimum number of neighbors for a
data point to be considered a central data point and eps defines the distance
between these neighbors and the central data point. The central points and
their neighbors constitute a cluster.

We chose to obtain the same number of clusters as for the other algorithms.
To do so, we performed a grid search of the parameters min_samples and eps.
With the number of clusters, we calculated the silhouette score and the Davies
Bouldin score for each iteration (see Table 1).

Based on the results of the grid search, we selected the DBSCAN hyperpa-
rameters min_samples = 5000 and eps = 1. This algorithm produces 6 clusters
plus outliers (number of clusters = 7).



Network traffic classification using Unsupervised Learning 9

Table 1 Grid search of DBSCAN hyperparameters and the resulting Davies-Bouldin and
Silhouette scores

min_samples eps Davies-Bouldin score Silhouette score Number of clusters

1000 0.75 1.43 0.09 16
1000 1 1.53 0.11 17
1000 1.5 2.16 0.11 16
2500 1 1.38 -0.03 16
2500 0.75 1.46 0.02 10
2500 1 1.58 0.11 11
2500 1.5 2.16 0.14 4
4000 1 1.53 0.07 11
4500 1 1.52 0.06 10
4750 1 1.51 0.07 9
4850 1 1.51 0.07 9
4900 1 1.51 0.07 9
4950 1 1.54 0.06 8
5000 0.5 1.32 -0.12 7
5000 0.75 1.42 -0.01 7
5000 1 1.54 0.05 7
5000 1.5 2.33 0.18 3

5.2 Clustering analysis

In analysing the clusters generated by the unsupervised machine learning algo-
rithms that we selected, we opted to generally reproduce the analysis of Aouedi
et al.[3] to ensure comparability of results. In the following section we outline
the most meaningful results for each algorithm and our analysis and interpre-
tation of their performance. The complete analysis of the results is available
as an annex.

5.2.1 DBSCAN

We begin the analysis from the clusters generated by the DBSCAN algorithm.
The algorithm produced six clusters which, in total, correspond to 40.2% of
the data points. The remaining 59.8% are classified as outliers.

The distribution of clusters across port numbers reveals that clusters 2 and
3 represent flows to port 3128, clusters 0 and 4 represent flows to port 443 and
clusters 1 and 5 represent flows to other ports. In other words, the destination
port number determines membership to one cluster or another, with no cluster
overlapping with more than one port type. The flows destined to ports 80 and
0 are classified as outliers.

Because of the two different clusters representing flows to ports 3128, 443,
and ”other”, we looked for other characteristics to distinguish membership to
one cluster or another. It is immediately obvious that the second characteristic
determining cluster membership is the date and time of the flow. For example,
among the clusters representing flows to port 3128, cluster 2 contains flows
dated April 28 and earlier and cluster 3 contains flows after this date. A similar
distinction separates clusters 0 and 4, and 1 and 5.



10 Network traffic classification using Unsupervised Learning

Fig. 5 Distribution of the datapoints across the clusters generated by DBSCAN.

Fig. 6 Distribution of DBSCAN generated clusters across destination ports.

Fig. 7 Distribution of DBSCAN generated clusters across timepoints.



Network traffic classification using Unsupervised Learning 11

Fig. 8 Distribution of the datapoints across the clusters generated by k-modes.

We can therefore conclude that the algorithm focused only on the Desti-
nation.Port and Timestamp features to classify the data points, completely
ignoring all other features. This is evidenced by the distribution of data points
across all other features: the clusters are similarly distributed across all values
of the remaining features.

5.2.2 k-modes

The k-modes algorithm divides the data points into 6 clusters representing
32.7%, 18.7%, 16.3%, 16.2%, 10.1%, and 6.01% of the total sample respectively.

The k-modes algorithm is better suited for handling one-hot encoded
categorical variables. Therefore, we first analyzed how cluster membership
was distributed between destination and source ports, which constitute the
categorical variables of the dataset.

Flows to port 3128 appear to belong exclusively to clusters 0 and 5. Flows
to port 443 belong primarily to clusters 4 and 1, with a small percentage (1.5%
of flows to port 443) belonging to cluster 0. Flows to port 80 are assigned to
clusters 0, 1, and 4. Finally, the flows to the other ports belong to clusters 2
and 3 and, in a small part to cluster 0 and 5 (0.7% and 0.2% of flows to other
ports 443).

Flows from ports 443 and 80 belong mostly to cluster 2 (99.9% and 98.3%).
Cluster 3 constains flows from port 3128 and consists of the vast majority
of flows from this port (97%). Finally, flows to other ports belong mostly to
clusters 0, 1, 4 and 5 (99.7%).

Therefore the algorithm identifies a group of flows from port 3128 to other
ports (cluster 3), another group of flows from port 443 and 80 to other ports
(cluster 2), two clusters destined to port 3128 (clusters 0 and 5), and two other
going to port 443 (clusters 1 and 4).

An analysis of the partition of the clusters across applications confirms
that datapoints of cluster 3 represent the majority of HTTP and HTTP Proxy
applications. Cluster 2 mostly represents Google and HTTP applications, but



12 Network traffic classification using Unsupervised Learning

Fig. 9 Distribution of k-modes generated clusters across destination ports.

Fig. 10 Distribution of k-modes generated clusters across source ports.

interestingly also the majority of Dropbox fluxes. Clusters 0 and clusters 5
together represent the majority of Google, HTTP Proxy, and HTTP connect
applications. Cluster 1 represents mostly SSL and Google fluxes.

5.2.3 k-means

The k-means algorithm divides the data points into seven clusters representing
respectively 43.3%, 26.6%, 21.8%, 6.26%, 3.54%, and 0.0064% of the total
sample.

We analyzed each cluster individually in order to better understand the
clustering trends by k-means.

Clusters 2 and 4 together represent 66.5% of the flows and share similar
characteristics. They both represent short and medium flows sending short
and medium packets. Packets in the forward direction are small. The back-
wards packets are short and medium. These characteristics are compatible with



Network traffic classification using Unsupervised Learning 13

Fig. 11 Distribution of k-modes generated clusters across applications.

browser applications like Google, Amazon, etc. We expect browsing traffic to
constitute a large portion of the flows in the sample.

Clusters 1 and 3 constitute 9.5% of flows. They are both characterized by
long and medium flows with high maximum inter-packet arrival time (IAT) and
large packets in the forward direction. This traffic could correspond to data-
intensive applications such as file transfers, backups, or large data downloads.

Cluster 0 (21.8% of flows) contains the majority of the long flows and
exclusively flows with a large maximum IAT. The length of packets in both
backwards and forwards directions is short and medium. The fact that the
cluster contains the majority of flows to applications like Dropbox suggests
that this type of cluster contains at least some download traffic. This type of
traffic is also typical of streaming applications

Cluster 5 is a very small cluster (0.0064% of flows) that contains medium
and long forward flows. This cluster is also characterized by a large maximum
IAT and large forward packet lengths. Like for clusters 1 and 3 this type of
flow may correspond to data-intensive applications.

We can conclude that this clustering algorithm did not rely too heavily
on categorical features such as port class and was successful in capturing the
differences in flow type in the sample.

5.2.4 Bisecting k-means

The bisecting k-means algorithm divides the data points into six clusters rep-
resenting respectively 28.5%, 25.3%, 21.6%, 20.2%, 2.54%, and 1.88% of the
total sample.

Cluster 0, the largest cluster with 28.5% of flows, represents flows mostly
destined to port 3128. The flows are short and medium in duration with no
other distinctive pattern in maximum IAT, packet length and bytes sent in
the initial window. It represents a large portion of HTTP and Google traffic
and it can be assumed to represent browsing traffic.



14 Network traffic classification using Unsupervised Learning

Fig. 12 Distribution of the datapoints across the clusters generated by k-means.

Clusters 1 and 2 (45.5% of flows) contain similar flows: in both, flows are
short and medium in duration and are directed to ports in class 443, 80 and
”other”. These flows are classified as SSL, HTTP and Google applications sug-
gesting mostly browsing activity like for cluster 0. The feature distinguishing
flows in the two clusters is the timestamp: cluster 1 contains flows dating 09/05
and after, while cluster contains flows dating before such date. Therefore, the
algorithm has used this feature to bisect flows in the two clusters.

Cluster 5 (21.6% of flows) contains Google and HTTP Proxy flows destined
to all ports. These flows have a long duration and a high maximum IAT sending
short and medium packets. This cluster is similar to cluster 0 generated by
k-means and may contain streaming applications flows.

Clusters 3 and 4 together represent a small portion of the sample (4.42%).
Both clusters contain long flows with a high maximum IAT. Flows in cluster
3 are mostly destined to ports classified as ”other” while flows in cluster 4
are destined mostly to ports 3128, 443, and 80. The two clusters also differ in
packet length, both forward and backward: cluster 3 contains smaller backward
and longer forward packets while cluster 4 shows the opposite trend. Both
clusters don’t display belonging to a particular type of applications but are
likely to characterize data transfer flows.

6 Discussion

In this work we compared the performance of four clustering algorithms on
network flows data to establish which algorithm is best suited for network splic-
ing. We found that the four algorithms can classify the same network flow data
with very different results. Two clustering algorithms, DBSCAN and k-mode,
give more importance to categorical data to separate the flows into clusters.
The k-mode clustering algorithm focuses solely on port classes to group data.
This algorithm, which is designed to handle ”one-hot encoded” categorical
data, appears to prioritize this type of data over numerical data in mixed type



Network traffic classification using Unsupervised Learning 15

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13 (a) Distribution of k-means generated clusters across applications. (b) Distribution
of k-means generated clusters across destination ports. (c) Distribution of k-means generated
clusters across flow durations. (d) Distribution of k-means generated clusters as a function of
maximum inter-arrival time (IAT) duration. (e) Distribution of k-means generated clusters as
a function of the maximum backwards packet length. (f) Distribution of k-means generated
clusters as a function of the maximum forward packet length. (g) Distribution of k-means
generated clusters as a function of the total number of bytes sent in initial window in the
backwards direction. (h) Distribution of k-means generated clusters as a function of the total
number of bytes sent in initial window in the forward direction.



16 Network traffic classification using Unsupervised Learning

Fig. 14 Distribution of the datapoints across the clusters generated by bisecting k-means.

Fig. 15 Distribution of bisecting k-means generated clusters across timepoints.

datasets. We therefore conclude that the algorithm is not suitable for clus-
tering network data. The DBSCAN algorithm, on the other hand, focused on
port number classes and flow timestamps to separate the data into clusters,
while the rest of the data variance is still represented by the outliers in the
dataset (about 60% of the total sample). In general, the DBSCAN algorithm
can be challenging to optimize and, of all the algorithms applied in this work,
it is the most computationally intensive. We do not entirely reject the use of
this algorithm, but we advise using it with some caveats. For example, we sug-
gest excluding or penalizing categorical data. Also, temporal data should be
excluded or preprocessed to capture the daily and weekly periodicity of some
network flow events.

The k-means and bisecting k-means algorithms perform best in our com-
parison. The two algorithms are closely related and we detected similarities
between the clusters generated by the two algorithms. We tried to interpret
their clustering results to detect application patterns (like browsing and data



Network traffic classification using Unsupervised Learning 17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 16 (a) Distribution of bisecting k-means generated clusters across applications. (b)
Distribution of bisecting k-means generated clusters across destination ports. (c) Distribu-
tion of bisecting k-means generated clusters across flow duration. (d) Distribution of bisecting
k-means generated clusters as a function of maximum inter-arrival time (IAT) duration. (e)
Distribution of bisecting k-means generated clusters as a function of the maximum back-
wards packet length. (f) Distribution of bisecting k-means generated clusters as a function
of the maximum forward packet length. (g) Distribution of bisecting k-means generated
clusters as a function of the total number of bytes sent in initial window in the backwards
direction. (h) Distribution of bisecting k-means generated clusters as a function of the total
number of bytes sent in initial window in the forward direction.



18 Network traffic classification using Unsupervised Learning

transfers). The goal is not to understand the nature of the clustering in detail,
but to be able to conclude whether the patterns detected by the algorithms
are similar to actual patterns of network usage. These two algorithms not
only produced more meaningful clusters, but they are also the least computa-
tionally intensive and can more easily scale to datasets containing millions of
streams. Finally, both algorithms allow the number of clusters to be defined a
priori. This is advantageous when the number of slices in a network needs to
be predefined or the number of available slices is less than the optimal number
defined by the Silhouette score or other metrics.

One difference between the two is that the bisecting k-means algorithm
seems to place more importance on the timestamp information in the dataset
than k-means and splits otherwise similar streams on their timestamp only.
As in the use of the DBSCAN algorithm, a better way to handle timestamp
information would be to extract the day of the week or time of day rather
than directly converting timestamps into a numeric variable. Because of this
last observation, we conclude that the k-means algorithm is the best clustering
algorithm for network data.

7 Conclusion

The aim of this work was to establish a comparison between clustering algo-
rithms for network slicing applications. We were able to confirm that the
k-means algorithm is the better suited among the ones we tested for clustering
network flow data. In the process, we were also able to improve the preprocess-
ing of the data compared to previous work and we identified good practices
that can be applied in future works. Among these is the careful preprocessing
of temporal information as it can heavily bias clustering without contributing
to a meaningful clustering of flows. For future work, our observations should be
tested against different data originating from different networks. Our working
dataset captured the activity in a university network, whose usage patterns
may not be reflected in different networks such as public networks or private
company networks. A comparison between the clustering performances of the
k-means algorithm in the presence and absence of categorical features, like the
port number, should be conducted to assess the utility of this information and
to evaluate alternative preprocessing practices for this type of features. Finally,
network slicing based on unsupervised machine learning techniques should be
implemented to validate the efficacy of this approach.

Supplementary information. Supplementary information is available as
an appendix.

References

[1] Ayoubi, S., Limam, N., Salahuddin, M.A., Shahriar, N., Boutaba, R.,
Estrada-Solano, F., Caicedo, O.M.: Machine learning for cognitive net-
work management. IEEE Communications Magazine 56(1), 158–165



Network traffic classification using Unsupervised Learning 19

(2018)

[2] Barlow, H.B.: Unsupervised learning. Neural computation 1(3), 295–311
(1989)

[3] Aouedi, O., Piamrat, K., Hamma, S., Perera, J.M.: Network traffic analy-
sis using machine learning: an unsupervised approach to understand and
slice your network. Annals of Telecommunications, 1–13 (2021)

[4] Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer
identification of p2p traffic. In: Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, pp. 121–134 (2004)

[5] Moore, A.W., Papagiannaki, K.: Toward the accurate identification of
network applications. In: Passive and Active Network Measurement: 6th
International Workshop, PAM 2005, Boston, MA, USA, March 31-April
1, 2005. Proceedings 6, pp. 41–54 (2005). Springer

[6] Nguyen, T.T., Armitage, G.: A survey of techniques for internet traffic
classification using machine learning. IEEE communications surveys &
tutorials 10(4), 56–76 (2008)

[7] Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet
traffic classification. IEEE Transactions on neural networks 18(1), 223–
239 (2007)

[8] Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for tcp traffic
classification. Computer Networks 53(14), 2476–2490 (2009)

[9] Azab, A., Khasawneh, M., Alrabaee, S., Choo, K.-K.R., Sarsour, M.: Net-
work traffic classification: Techniques, datasets, and challenges. Digital
Communications and Networks (2022)

[10] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall,
Inc., ??? (1988)

[11] Wang, Y., Xiang, Y., Zhang, J., Yu, S.: A novel semi-supervised approach
for network traffic clustering. In: 2011 5th International Conference on
Network and System Security, pp. 169–175 (2011). IEEE

[12] Du, Y., Zhang, R.: Design of a method for encrypted p2p traffic identifi-
cation using k-means algorithm. Telecommunication Systems 53, 163–168
(2013)

[13] Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering
algorithms. In: Proceedings of the 2006 SIGCOMM Workshop on Mining
Network Data, pp. 281–286 (2006)



20 Network traffic classification using Unsupervised Learning

[14] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In:
Kdd, vol. 96, pp. 226–231 (1996)

[15] Cheeseman, P.C., Stutz, J.C., et al.: Bayesian classification (autoclass):
theory and results. Advances in knowledge discovery and data mining
180, 153–180 (1996)

[16] Singh, H.: Performance analysis of unsupervised machine learning tech-
niques for network traffic classification. In: 2015 Fifth International
Conference on Advanced Computing & Communication Technologies, pp.
401–404 (2015). IEEE

[17] Moon, T.K.: The expectation-maximization algorithm. IEEE Signal pro-
cessing magazine 13(6), 47–60 (1996)



Network traffic classification using Unsupervised Learning 21

A Appendix

Fig. A.1 Inertia scores by number of clusters generated by the k-means algorithm.

Fig. A.2 Inertia scores by number of clusters generated by the bisecting k-means algo-
rithm.



22 Network traffic classification using Unsupervised Learning

A B

CC D

E F

G H

I J

Fig. A.3 (a) Distribution of the datapoints across the clusters generated by DBSCAN.
(b) Distribution of DBSCAN generated clusters across applications. (c) Distribution of
DBSCAN generated clusters across destination ports. (d) Distribution of DBSCAN gener-
ated clusters across timepoints. (e) Distribution of DBSCAN generated clusters across flow
duration. (f) Distribution of DBSCAN generated clusters as a function of maximum inter-
arrival time (IAT) duration. (g) Distribution of DBSCAN generated clusters as a function of
the maximum backwards packet length. (h) Distribution of DBSCAN generated clusters as
a function of the maximum forward packet length. (i) Distribution of DBSCAN generated
clusters as a function of the total number of bytes sent in initial window in the backwards
direction. (j) Distribution of DBSCAN generated clusters as a function of the total number
of bytes sent in initial window in the forward direction.



Network traffic classification using Unsupervised Learning 23

A B

CC D

E F

G H

I J

Fig. A.4 (a) Distribution of the datapoints across the clusters generated by k-modes. (b)
Distribution of k-modes generated clusters across applications. (c) Distribution of k-modes
generated clusters across destination ports. (d) Distribution of k-modes generated clusters
across timepoints. (e) Distribution of k-modes generated clusters across flow duration. (f)
Distribution of k-modes generated clusters as a function of maximum inter-arrival time
(IAT) duration. (g) Distribution of k-modes generated clusters as a function of the maximum
backwards packet length. (h) Distribution of k-modes generated clusters as a function of
the maximum forward packet length. (i) Distribution of k-modes generated clusters as a
function of the total number of bytes sent in initial window in the backwards direction. (j)
Distribution of k-modes generated clusters as a function of the total number of bytes sent
in initial window in the forward direction.



24 Network traffic classification using Unsupervised Learning

A B

CC D

E F

G H

I J

Fig. A.5 (a) Distribution of the datapoints across the clusters generated by k-means. (b)
Distribution of k-means generated clusters across applications. (c) Distribution of k-means
generated clusters across destination ports. (d) Distribution of k-means generated clusters
across timepoints. (e) Distribution of k-means generated clusters across flow duration. (f)
Distribution of k-means generated clusters as a function of maximum inter-arrival time
(IAT) duration. (g) Distribution of k-means generated clusters as a function of the maximum
backwards packet length. (h) Distribution of k-means generated clusters as a function of
the maximum forward packet length. (i) Distribution of k-means generated clusters as a
function of the total number of bytes sent in initial window in the backwards direction. (j)
Distribution of k-means generated clusters as a function of the total number of bytes sent
in initial window in the forward direction.



Network traffic classification using Unsupervised Learning 25

A B

CC D

E F

G H

I J

Fig. A.6 (a) Distribution of the datapoints across the clusters generated by bisecting
k-means. (b) Distribution of bisecting k-means generated clusters across applications. (c)
Distribution of bisecting k-means generated clusters across destination ports. (d) Distribu-
tion of bisecting k-means generated clusters across timepoints. (e) Distribution of bisecting
k-means generated clusters across flow duration. (f) Distribution of bisecting k-means gen-
erated clusters as a function of maximum inter-arrival time (IAT) duration. (g) Distribution
of bisecting k-means generated clusters as a function of the maximum backwards packet
length. (h) Distribution of bisecting k-means generated clusters as a function of the max-
imum forward packet length. (i) Distribution of bisecting k-means generated clusters as a
function of the total number of bytes sent in initial window in the backwards direction. (j)
Distribution of bisecting k-means generated clusters as a function of the total number of
bytes sent in initial window in the forward direction.


	Introduction
	Related Work
	Clustering algorithms
	DBSCAN
	k-means
	Bisecting k-means
	k-modes

	Data Preparation
	Data preprocessing
	Features Selection

	Experimentation Analysis
	Hyperparameter Analysis
	Selection of DBSCAN hyperparameters 

	Clustering analysis
	DBSCAN
	k-modes
	k-means
	Bisecting k-means


	Discussion
	Conclusion
	Supplementary information

	Appendix

