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acoustical source with asynchronous arrays

Gilles Chardon

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

The performances of source localization using a microphone array can be improved by repeating the experiment with different array
placements, assuming that the source position remains constant. In this article, two types of theoretical results on this setting are
presented. The Maximum Likelihood Estimator (MLE) is derived, and Cramér-Rao bounds are computed, both for a strict model,
where the power of the source is constant, and a relaxed model where the power of the source is allowed to change. Cramér-Rao
bounds show that the performances (in terms of mean squared error of the estimation of the position and power of the source) of
asynchronous arrays for the estimation of the position are, in some settings, significantly degraded compared to synchronous arrays.
A particular example of such a setting is the case of two parallel arrays around the source. In contrast, the performances of power
estimation are, in most cases, close to the performances of synchronous arrays. The obtained MLEs are compared to the state of the
art in asynchronous array source localization using simulations, showing that the MLE for the strict model outperforms the state of
the art. Experimental results illustrate the theoretical and numerical findings.
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1. Introduction

Beamforming is a popular method for source localization,
owing to its simplicity of use [1, 2]. In the case of the local-
ization of a unique Gaussian source and Gaussian noise, it has
been shown that, with appropriate choices of steering vectors,
beamforming is the Maximum Likelihood Estimator (MLE) for
the parameters of the source (position and power) [3]. As a con-
sequence, beamforming is an efficient method, in the sense that,
when the duration of the measurement increases, estimations of
the power and position are unbiased, and their variances reach
the Cramér-Rao bounds (CRBs) [4].

Nevertheless, performances of beamforming are limited by
the layout of the array. In particular, for planar arrays, estima-
tion of the perpendicular distance from the array to the source
is in general inaccurate [5]. Larger arrays yield more accurate
results, but are costly and complex to implement.

As an alternative, asynchronous measurements can be used,
where the same experiment is repeated, changing the position
of the microphone array between each measurement. Under the
assumption that the sources have not moved between the ex-
periments, the asynchronous data can be combined to improve
the estimation of the parameters of the source. However, in this
case, the spatial covariance matrix of the measurements (SCM),
or cross-spectral matrix, is not completely known, as coeffi-
cients related to the covariance between microphones from dif-
ferent arrays cannot be estimated.
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Several methods have been proposed to process asyn-
chronous acoustical data. A first methodology is to process
the asynchronous data independently, e.g. by computing beam-
forming maps for each array, and then combine them in a global
beamforming map [5–9]. Another approach is to first estimate
a complete SCM, as if the data were collected synchronously,
and compute a beamforming map from this completed SCM
[10–14].

The goal of this paper is to provide theoretical results on
source localization with asynchronous measurements, in the
case of a unique source. This limited scope enables to obtain
easily interpretable and implementable results. A similar ap-
proach was recently used to elucidate the question of steering
vectors normalization in beamforming [3]. The MLE for the
estimation of the parameters of the source (position and power)
is derived, yielding an original source localization method for
asynchronous arrays. CRBs, lower bounds on the variance of
unbiased estimators, are computed. The CRBs can help to com-
pare the performances of synchronous arrays and asynchronous
arrays. The MLE and CRBs are also given for a relaxed model,
where the power of the source is allowed to vary between mea-
surements. MLE, in this case, is shown to be similar to combin-
ing asynchronous beamforming maps by arithmetic averaging.
The proposed methods are compared to the state of the art for
varied array configurations, number of snapshots, source posi-
tions and frequencies using simulations. The results are also
illustrated using experimental meausurements.

The paper is structured as follows. Section 2 introduces the
model and recalls the state of the art. The MLE for the strict and
relaxed models is derived in section 3, and section 4 provides
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the CRBs for the two models. Simulation results, with compar-
ison to the state of the art, are given in section 5. Illustrative
experimental results are given in section 6. Section 7 concludes
the paper. The code necessary to reproduce the presented sim-
ulation results is available online [15].

1.1. Some notations
An estimator of a parameter θ is denoted as θ̂. The Mean

Squared Error (MSE) for an estimator p̂ of the power p is
E

(
|p − p̂|2

)
, where E(·) is the mathematical expectation. The

MSE for an estimator x̂ of the position x is E
(
‖x − x̂‖2

)
. Her-

mitian conjugation is denoted by ·H , the trace of a matrix by tr ·.
Superscripts ·r, ·s, ·a, ·g, ·c and ·m indicate a type of estimator or
model. The probability density of the circular complex normal
multivariate distribution CN(0,Σ) in dimension N is [16]

f (z) =
1

πN det Σ
exp

(
−zHΣ−1z

)
. (1)

2. Model and state of the art

Acoustical data are collected on J arrays A1, . . . , A j, . . . , AJ

at a given frequency f . For each array, S j snapshots are mea-
sured. With a js the amplitude of the source at the s-th snapshot
for the j-th array, g j(x) the vector modeling the propagation be-
tween the source point x and the microphones of the array A j,
the vector m js of the measured complex amplitudes is

m js = a jsg j(x) + n js (2)

where n js is a noise term, assumed to be temporally and spa-
tially white. In the particular case of free-field propagation, the
vector g j(x) is given by its coefficients

g jm(x) =
exp

(
−iκ‖x − y jm‖2

)
‖x − y jm‖2

, (3)

where κ is the wavenumber, and y jm is the position of the m-th
microphone of the j-th array. This expression will be used for
the numerical experiments, but the theoretical results hold for
general propagation models.

Under the assumption that the amplitudes a js are Gaussian,
independent and identically distributed (i.i.d), of zero mean and
variance p (the power of the source), and the noises n js are
Gaussian i.i.d. with covariance matrix σ2I, the measurements
m js are independent and distributed according to

m js ∼ CN(0,Σ j,p,x) (4)

with
Σ j,p,x = pg j(x)g j(x)H + σ2I. (5)

Beamforming maps are computed from the estimated covari-
ance matrix of the measurements. Here, for each array A j, the
estimated covariance matrix Σ̂ j is obtained by

Σ̂ j =
1
S j

S j∑
s=1

m jsmH
js (6)

We note that we do not make any assumption of the number of
snapshots S j. In other words the duration of each asynchronous
measurement do not need to be equal.

2.1. Beamforming fusion

In beamforming fusion methods [6, 9], beamforming maps
B j(x) are first computed for each array. Then, the beamforming
maps are combined according to the following possible rules :

• arithmetic mean [7]: Ba(x) = 1
J
∑J

j=1 B j(x)

• geometric mean [8]: Bg(x) = J

√∏J
j=1 B j(x)

• minimum [5]: Bm(x) = min j=1...J B j(x)

The beamforming criterion with formulation IV of steering
vectors (following the nomenclature introduced in [17]) is used
to estimate the position, i.e.

B j(x) =
g j(x)HΣ̂ jg j(x)

‖g j(x)‖22
, (7)

as its maximum is known to be an unbiased estimate of the
position, with smaller MSE than formulation I [3]. Then for-
mulation III is used to estimate the power of the source for each
asynchronous array, with

p̂ j =
1

‖g j(x̂)‖22

g j(x̂)HΣ̂ jg j(x̂)

‖g j(x̂)‖22
− σ2

 . (8)

The power is then estimated by averaging, or taking the mini-
mum of, the estimates p̂ j, according to the chosen rule.

2.2. Matrix completion

In matrix completion methods, a complete SCM is estimated.
In [10], a Bayesian method based on the expansion of the
distribution of the sources to be estimated is proposed. In
[11, 12, 18], methods based on rank minimization and spatial
continuity of the acoustical field are proposed. In [14], the con-
tinuity condition is dropped, and a simpler algorithm is intro-
duced. After completion of the matrix, beamforming can be
applied as if synchronous measurements have been obtained.
Here, we will make no assumption on the relative positions
of the arrays, and spatial continuity cannot be exploited. Only
the latter method will be considered here. Moreover, methods
based on spatial continuity of the measurements necessitates
the setting of several parameters (dimension of a subspace, reg-
ularization parameters, etc.). Likewise, the method proposed in
[10], based on the expansion of the distribution of sources in a
basis, cannot be applied for the case of a unique source.

3. Maximum likelihood estimators for two asynchronous
source models

In this section, we derive the MLE for source localization
with asynchronous arrays. Two models will be considered: the
strict model, where the power of the source is constant between
the measurements, and the relaxed model, where the power is
allow to vary. In both models, the position of the source is
assumed to be constant.
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3.1. Strict model

As the measurements m js are independent, the joint proba-
bility density of the measurements M = ((m js)s=1...S j ) j=1...J is
the product

fx,p(M) =

J∏
j=1

S j∏
s=1

1
πN j det(Σ j,p,x)

exp
(
−mH

jsΣ
−1
j,p,xm js

)
(9)

Following [3] Appendix C.2, the log-likelihood L(x, p) is
given by

L(x, p) = log fx,p(M) (10)

= −

J∑
j=1

S j tr(Σ−1
j,p,xΣ̂ j) − S j log det(Σ j,p,x) − N jS j log π

(11)

and the MLE (x̂s, p̂s) for the position and power is

(x̂s, p̂s) = argmin
x∈Ω,p∈R+

J∑
j=1

S j

− pg j(x)HΣ̂ jg j(x)
σ2(σ2 + p‖g j(x)‖2)

+ log(σ2 + p‖g j(x)‖2)


(12)
where Ω is the spatial domain where the source is assumed to
be located.

In the standard case of a unique array (J = 1), the optimiza-
tion problem can be solved for fixed position x, allowing to
estimate the position by maximizing the beamforming criterion

B(x) =
g(x)HΣ̂g(x)
‖g(x)‖2σ2 − log

g(x)HΣ̂g(x)
‖g(x)‖2σ2 (13)

which depends on the position only. The log term is usually
removed, which does not change the location of the maximum
of B(x) [3]. Such a simple form cannot be obtained for the
asynchronous array case, and the problem (12) has to be solved
for position and power jointly.

3.2. Relaxed model
A simpler estimator is obtained by relaxing the model, allow-

ing the powers to differ between the measurements. In that case,
the MLE for the position x and the powers p = (p1, . . . , pJ) is
given by

(x̂r, p̂r) = argmin
x∈Ω,p∈RJ

+

J∑
j=1

S j

− p jg j(x)HΣ̂ jg j(x)
σ2(σ2 + p j‖g j(x)‖2)

+ log(σ2 + p j‖g j(x)‖2)


(14)
Here, the problem can be solved for the powers p j at fixed posi-
tion, as in the unique array case, and the beamforming criterion
for the position is

B(x) =

J∑
j=1

S j

g j(x)HΣ̂ jg j(x)
‖g j(x)‖2σ2 − log

g j(x)HΣ̂ jg j(x)
‖g j(x)‖2σ2

 (15)

We recognize the sum of the beamforming criteria for each
array. Here, the log term cannot be removed without, slightly,
changing the location of the maximum. Nevertheless, neglect-
ing the log terms and with constant number of snapshots, the

beamforming fusion by arithmetic averaging can be interpreted
as an approximation of the MLE for the relaxed model. As
such, it is expected to be not as accurate as the MLE for the
strict model, which take advantage of the additional prior infor-
mation that the power of the source is constant. We note that the
beamforming criteria are weighted by the number of snapshots
S j for each array. The estimated powers p̂ j are

p̂ j =
1

‖g j(x̂r)‖22

g j(x̂r)HΣ̂ jg j(x̂r)

‖g j(x̂r)‖22
− σ2

 , (16)

and a natural estimator for the power of the source is to average
the estimated powers p̂ j, using the same weights as in Eq. (15):

p̂r =

∑J
j=1 S j p̂ j∑J

j=1 S j
. (17)

In addition to its simplicity compared to the strict model, the
relaxed model can also take into account sources that have non-
isotropic directivity patterns, assuming that the directivity dia-
gram remains approximately constant when restricted to an ar-
ray.

4. Cramér-Rao bounds

Cramér-Rao bounds are lower bounds to the variance of un-
biased estimators. Moreover, the performances of the MLE
reach the CRBs at increasing number of snapshots. CRBs are
obtained by inverting the Fisher Information Matrix (FIM), a
square matrix of dimension the number of parameters to be es-
timated [19]. In cases where the data are modeled as complex
circular normal centered variables with covariance matrix Σθ
depending on the vector θ of parameters to be estimated, the
FIM is easily obtained by its coefficients [19, 20]

Fuv = S tr
(
Σ−1
θ

∂Σθ

∂θu
Σ−1
θ

∂Σθ

∂θv

)
. (18)

Here, for a synchronous array, the parameters to be estimated
are the power p and the coordinates x, y, z, and the FIM is

F =


Fxx Fxy Fxz Fxp

Fyx Fyy Fyz Fyp

Fzx Fzy Fzz Fzp

Fpx Fpy Fpz Fpp

 =

(
Fxx fxp

fH
xp Fpp

)
(19)

The inverse and partial derivatives of Σp,x = pg(x)g(x)H +σ2I
are

Σ−1
p,x =

1
σ2

(
1 −

pg(x)g(x)H

σ2 + p‖g(x)‖2

)
(20)

∂Σp,x

∂p
= g(x)g(x)H (21)

∂Σp,x

∂x
= p

(
∂g(x)
∂x

g(x)H + g(x)
∂g(x)
∂x

H)
(22)

and likewise for y and z. The CRB are then given by the inverse
of the FIM:

C = F−1 (23)
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By decomposing C as

C =

(
Cxx cxp

cH
xp Cpp

)
(24)

a lower bound for the variance (and the MSE) of an unbiased
estimator of the power of the source is Bc

p = Cpp, and a lower
bound of the variance (and the MSE) of an unbiased estimator
of the position is Bc

x = tr Cxx.

4.1. Application to asynchronous arrays
For the strict model of asynchronous arrays, the measure-

ments are assumed to be independent, and the FIM of the com-
plete set of measurements is obtained by summing the FIMs F j

of the arrays [21]:

Fs =

J∑
j=1

F j (25)

The FIMs F j are obtained by replacing g(x) by g j(x) in Eqs.
(20), (21) and (22). The lower bounds on the variance in the
strict model are Bs

p = C s
pp and Bs

x = tr Cs
xx, with C s

pp and Cs
xx

defined as above, for the FIM Fs.
In the relaxed model, a power for each array is to be esti-

mated. The position is common, and the FIM coefficients re-
lated to the position are summed. The FIM for the parameters
(x, y, z, p1, . . . , p j, . . . pJ) is in this case

Fr =


∑J

j=1 F j,xx f1,px · · · fJ,px

fH
1,px F1,pp
...

. . .

fH
J,px FJ,pp

 (26)

The CRB matrix is here structured as

Cr =

(
Cr

xx Cr
px

CrH
px Cr

pp

)
(27)

As above, a lower bound of the variance of the estimator of
the position is Br

x = tr Cr
xx. A lower bound Br

p of the variance
of the estimator p̂r of the power in Eq. (17) is

Var( p̂r) ≥ wHCr
ppw = Br

p (28)

where w j =
S j∑
S j

.

4.2. Examples
CRBs can be used to compare the expected performances of

source localization, given the array shape, frequency, position
of the source, number of snapshots, and the model used. CRBs
are here given for three particular examples, comparing a syn-
chronous array, and asynchronous arrays with the strict and re-
laxed models. The number of snapshots for the synchronous ar-
ray is the sum of the number of snapshots for the asynchronous
arrays, keeping the total duration of the measurement constant.
The three tested configurations are shown on Fig. 1.

The influence of the existence of reference microphones,
common to the arrays, is also investigated.
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Figure 1: Array configurations used in the simulations: (a) opposite arrays, (b)
L-configuration, (c) three arrays. In (a), the cross indicates the position of the
source in Fig. 2

Opposite arrays. The CRBs for two arrays placed at opposite
position with respect to the domain of interest are given on fig-
ures 2 and 3. Two regular square arrays of 25 microphones are
used, with aperture 0.5m, placed at y = 2m and y = −2m. The
power of the acoustical field generated by the source at a dis-
tance of one meter is p = 1 Pa2, and the noise level σ2 = 0.5
Pa2. 100 snapshots are used on each array.

On figure 2 the CRBs for the position (a), and power (b), are
given in function of the frequency for a source at (0.1, 0.2, 0.0).
The figure also shows the ratios between the CRBs for syn-
chronous arrays and asynchronous arrays with the strict model,
as well as the ratio between the bounds for the strict and relaxed
asynchronous models, for position (c) and power (d). CRBs are
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Figure 2: CRBs for the case of opposite arrays, in function of the frequency, for
a source at (0.1, 0.2, 0.0). Top row: position. Bottom row: power. Left column:
CRBs of synchronous arrays, asynchronous arrays with strict and relaxed mod-
els. Right column: ratio between the CRBs of the strict model of asynchronous
arrays, and CRBs of synchronous arrays, and ratio between the CRBs of the
relaxed and strict models.
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Figure 3: CRBs for the case of opposite arrays, κ = 10m−1. Top row: position.
Bottom row: power. Left column: CRBs of synchronous arrays. Middle: ratio
between the CRBs of the strict model of asynchronous arrays, and CRBs of
synchronous arrays. Right: ratio between the CRBs of the relaxed and strict
models. Positions of the microphones are indicated by circles and crosses.

decreasing with increasing frequency. The CRBs in position for
the strict model are close to the CRBs of synchronous arrays at
low frequencies. Indeed, at low frequencies, most of the infor-
mation is given by the amplitude of the measurements, and not
the phase. As the relaxed model cannot take into account the
relative amplitudes of the measurements, its CRB is higher. At
high frequencies, where most of the information is carried by
the phase, the amplitude become less important, and the gap
of performance between the relaxed and the strict models de-
creases, while the gap between synchronous and asynchronous
arrays widens.

While the ratio between the CRBs in position between syn-
chronous arrays and asynchronous arrays is large, the perfor-
mance in power estimation are similar, except for the relaxed
model at lower frequencies.

The CRBs are given on figure 3 for a fixed wave number
κ = 10m−1 and varying positions, in position (a) and power
(b). The ratio between the CRBs for the strict model and syn-
chronous arrays are given in (c) and (d). It is shown that de-
pending on the position, the loss in performance can range from
negligible to substantial, in particular for position estimation.
Using the relaxed model instead of the strict model decreases
the performances in position, in particular near the center of
the domain as shown on panel (e) showing the ratio between
the CRBs for the strict and relaxed models. This is explained
by the fact that the ratio between the powers received by each
array is indicative of the position of the source between the ar-
rays. This ratio cannot be exploited by the asynchronous model,
where the power is allowed to change between measurements.
The degradation of performances for the estimation of power is
moderate, as seen on panel (f).

L configuration. CRBs in function of the position is shown on
figure 4 for two regular square arrays looking at the domain
of interest from orthogonal directions, in an L shape, with 16
microphones each, and an aperture of 1m, identical frequency,
source power and noise level. To explore their effect on the per-
formances, the numbers of snapshots are here 50 and 200 for
the arrays along the X axis, and the Y axis respectively. Al-
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Figure 4: CRBs for the L configuration, κ = 10m−1. Top row: position. Bot-
tom row: power. Left column: CRBs of synchronous arrays. Middle: ratio
between the CRBs of the strict model of asynchronous arrays, and CRBs of
synchronous arrays. Right: ratio between the CRBs of the relaxed and strict
models. Positions of the microphones are indicated by circles and crosses.
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Figure 5: CRBs for the case of three arrays, κ = 10m−1. Top row: position.
Bottom row: power. Left column: CRBs of synchronous arrays. Middle: ratio
between the CRBs of the strict model of asynchronous arrays, and CRBs of
synchronous arrays. Right: ratio between the CRBs of the relaxed and strict
models. Positions of the microphones are indicated by circles and crosses.

though the array configuration is symmetric along the X = Y
line, the CRBs are not. This is caused by the different number
of snapshots used for the two arrays. Performances are here
slightly better in front of the Y array than the X array.

The loss in performance of position estimation is large in re-
gions between the arrays (around (−1,−1, 0)), that is, as in the
previous case, where the directions of arrival are not sufficient
for an accurate estimation of the position. Here also, the degra-
dation in performances is amplified by using the relaxed model.

Performances in power estimation remain close to asyn-
chronous arrays in both models.

Three arrays. Finally, the case of three arrays is considered.
The array configuration and other parameters are identical to
the previous case, with constant number of snapshots 100, and
the arrays are regularly placed around the domain of interest.
Bounds are given in figure 5. Similar conclusions as in the pre-
vious cases are reached, with a large degradation of the perfor-
mances in position, but similar performances in power estima-
tion.
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Reference microphones. The use of reference microphones is
now investigated, using perpendicular arrays shown on Fig. 6.
In the first configuration, four microphone positions are com-
mon to both array, while in the second configuration, the ref-
erence microphones are slightly shifted so that no position is
shared.

In the formulation of the MLE criterion (9), as well as in
the computation of the CRBs, the existence of common micro-
phones has no particular impact. It is therefore expected that
having reference microphones do not have a particular influ-
ence on the attainable performance of source localization. This
is confirmed by the CRBs for the two configurations shown on
Fig. 7, with the CRBs for the configuration with reference mi-
crophones shown on the left panels, and the the CRBs with no
reference microphone on the middle panels. The right panels
show the ratio between the CRBs for the configuration with-
out reference microphones, over the CRB for the configuration
with reference microphones. CRBs are similar, and even better
in position for the configuration without reference. This shows
that having reference microphones has no impact on the per-
formances, the difference in CRBs being caused by the slightly
different placement of the microphones.

5. Simulations

Simulations are used to compare the performances (MSE in
position and power) of the proposed estimators compared to
the state of the art. Results for the opposite arrays, L configu-
ration, and three arrays are given, for two source position each,
in function of the frequency, on figures 8-10 respectively.

The following estimators are tested:

• MLE with a synchronous array, i.e. beamforming (MLE
sync)

• MLE with the strict model (MLEs)

• MLE with the relaxed model (MLEr)

• arithmetic averaging (arithm.)
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Figure 7: CRBs for arrays with and without reference, κ = 10m−1. Top row:
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Figure 8: Mean squared errors for the position (top) and power (bottom) in
function of the frequency, for opposite arrays. Left: source at (0.1, 0, 0.2).
Right: source at (−1, 0,−1).

• geometric averaging (geom.)

• minimum (min)

• matrix completion (compl.)

In general, the simulations confirm the theoretical findings.
MLE for synchronous arrays, the strict and the relaxed asyn-
chronous models, follows the corresponding CRBs. Cases
where the MLE MSE does not follows the CRBs are either due
to box constraints on the position, or the fact that the plotted
MSEs are an estimation of the theoretical MSE, obtained by
Monte-Carlo simulations with 2000 samples.

The relaxed MLE outperforms the average mean. This im-
provement is negligible in cases where the number of snapshots
are equal, where it is explained by the log term in Eq. (15). The
improvement is more easily seen in the L configuration case,
where the number of snapshots are different for the two arrays.
Indeed, weighting the beamforming criterion by the number of
snapshots, as in (15), gives more importance to the measure-
ments obtained with a larger number of snapshots, which are
expected to be more accurate. Similarly, geometric averaging
is not capable of weighting the beamforming criteria.
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Figure 9: Mean squared errors for the position (top) and power (bottom)
in function of the frequency, for the L configuration. Left: source at
(−1.35, 0.0,−0.2). Right: source at (−0.43, 0.0, 0.14).
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Figure 10: Mean squared errors for the position (top) and power (bottom) in
function of the frequency, for three arrays. Left: source at (0.1, 0, 0.2). Right:
source at (−1, 0,−1).

The gap in performances between the strict and relaxed mod-
els range from substantial (opposite arrays at low frequency for
the position, L configuration for the power) to negligible (three
arrays configuration).

Performances of minimum and matrix completion are
mediocre, with markers above the top boundary of the plots for
some of the configurations. For the minimum rule, this is ex-
plained by the fact that, in general, the beamforming criteria B j

do not have the same order of magnitude. As a consequence,
only the smallest B j is taken into account, which implies that
only one array is used to estimate the position of the source.
Numerical tests showed that using formulation III, which is an
estimation of the power of the source, and should have sim-
ilar values at the source location for the sub-arrays, does not
improve the results. Indeed, estimation of the position of the
source with formulation III is biased [3]. For matrix complex-
ion, the algorithm in [14] is unable to recover the appropriate
phase relationships between the arrays [11].

6. Experimental validation

In this section, experimental results are given to illustrate the
results of the theoretical and numerical analysis of the problem.
The setting of the experiment is as follows: a source is localized
in a plane using two linear arrays of 8 microphones, with a step
of 10cm. For each array configuration, two source positions
were tested. The two configurations used are the localization
of a source between two parallel arrays, and localization of a
source between two perpendicular arrays, which were identi-
fied as cases where the gap in performance between the strict
and relaxed MLE was the largest. The microphones are MEMS
microphones (INVENSENSE - INMP441), and the source is a
baffled Visaton-BF32 loudspeaker. Unwanted reflections in the
room were treated by absorbing material (polyurethane foam)
behind the arrays and on the floor. The sampling frequency
is 20kHz, the length of each measurement is 2s, divided in 80
segments of 500 samples. The spatial covariance matrix is es-
timated after a Fourier analysis of the segments. Asynchronous
measurements are simulated by processing the two halves of
the signals separately.

The configuration of the arrays and the sources are shown on
Fig. 11. The positions of the source obtained by synchronous
beamforming, relaxed and strict asynchronous beamforming,
for 100 trials, are shown on Fig. 12 for the four cases, at
f = 1000 Hz for the opposite arrays and f = 800 Hz for the L
configuration.

The estimation errors averaged over 100 realizations and 50
frequencies ranging from 400 Hz to 2360 Hz are plotted on Fig-
ure 13. We note that these errors are not only caused by mea-
surement noise, but also by modeling errors (calibration errors,
microphone positioning, non-anechoic room, etc.). Such mod-
eling errors are not taken into account by the analysis proposed
here.

In particular, in the case of source 1 of the opposite configu-
ration, strict MLE with asynchronous arrays has better perfor-
mances than synchronous arrays. This surprising result can be
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Figure 11: Experimental setups. Left: opposite arrays. Right: L configuration.
Source 1 is indicated by a circle, source 2 by a square.

Figure 12: Scatter plots of estimated source positions. Left: opposite arrays.
Right: L configuration. Top: source 1. Bottom: source 2. Note the non square
axes for the opposite arrays.

explained by inspecting the behavior of the beamforming crite-
rion in the asynchronous case. Fig. 14 shows the beamforming
criterion, divided by its maximal value, at 880 Hz and 1200 Hz,
for X = 0.35m and varying Y . The actual source is at Y = 0m.
In both cases, the beamforming criterion has a local maximum
close to the actual position of the source. However, because of
noise, modeling errors, etc., a higher lobe is visible at Y = 0.2m
at 880Hz, implying a large estimation error for the position of
the source. Cramér-Rao bounds, which are sensitive to the lo-
cal behavior of the model around the actual position, cannot
explain this phenomenon.

Hermitian completion has similar performances as syn-
chronous beamforming and the strict model in three cases, but
has a larger error for the L configuration with source 2, where
it is unable to recover the actual phase relationship between the
measurements. As expected from the CRBs, the relaxed MLE
has significantly larger errors than the strict MLE for the con-
figurations where the source is between the arrays. Geometric
averaging has similar performances as relaxed MLE, and fusion
by miniming has the worst performances in all cases.

In conclusion, the best performances for asynchronous arrays
are obtained by the MLE with the strict model.
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Figure 13: MSEs averaged over 100 trials and 50 frequencies.
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Figure 14: Bemaforming criterion for opposite arrays with source 1, in function
of the Y coordinate, at 800 Hz and 1200 Hz.
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7. Conclusion

Two models for source localization with asynchronous arrays
were introduced, one assuming that the power of the source re-
mains constant between the experiments, the other leaving the
power free to change between experiments.

Two types of theoretical results were derived for these mod-
els. The CRBs for the estimation of the position and the power
of a source were computed for several particular cases of array
configurations, for synchronous arrays and the asynchronous
arrays, with the two models. MLE estimators were also com-
puted. Maximizing the MLE criterion for the strict model ne-
cessitates to maximize the criterion jointly with respect to the
position and the power. In contrast, the MLE for the relaxed
model can be obtained in two steps. The position is first esti-
mated by maximizing a spatial criterion, and the power is then
estimated.

The theoretical results and simulations obtained here have
several practical implications. Analyzing the CRBs, it was
found that the performances in position estimation were de-
graded by the loss of synchronicity between the arrays, and that
using the relaxed model degrades the performance further, in
particular at low frequencies. However, for power estimation,
performances were not found to degrade significantly, except
for the relaxed model at low frequencies, or varying numbers
of snapshots. The MLE for the strict model have been found
to yield the best performances among the tested methods. The
simpler relaxed model, less accurate in general, reaches the per-
formances of the strict model in some cases. Computing the
CRBs can help identify such cases.

Simulations showed that other methods, such as geometric
averaging, minimum, and matrix completion, are less accurate.
Geometric averaging, as well as unweighted arithmetic averag-
ing, cannot take into account the relative accuracy of the asyn-
chronous beamforming maps. Fusion by minimum was found
to have mediocre performances, as in general, its maximum
only depends on one of the beamforming maps. The matrix
completion method used here, which is not based on the con-
tinuity of the measured sound field as the arrays are spatially
separated, cannot recover the phase relationship between the
arrays, limiting its performances.

The conclusions differ from previous benchmarking between
fusion methods [6, 9], where the fusion by minimum was found
to be the most appropriate. This is explained by the different
metrics used in these benchmarks, which mostly considered
sidelobe levels and beamwidth, instead of the accuracy of the
estimation of the parameters of the source. Geometric averag-
ing was found to be the most accurate of the methods tested
in [22]. However, geometric averaging was here shown to be
less accurate in cases where the number of snapshots differs be-
tween the measurements, and less accurate that MLE with the
strict model in all cases.

Experimental results confirm the superiority of the strict
model compared to the relaxed model, as its performances in
source localization are consistently better than that of the re-
laxed model. Beamforming using asynchronous arrays was
found to be sensible to the experimental conditions, as high

sidelobes can be source of large estimation errors, which cannot
be explained by the analysis used here.
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