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Abstract

When dealing with panel data, considering the variation over time of the variable of interest

allows to get rid of potential individual effects. Even though the outcome variable has a con-

tinuous distribution, its variation over time can be equal to zero with a strictly positive proba-

bility and thus its distribution is a mixture of a mass at zero and a continuous distribution. We

introduce a parametric statistical model based on conditional mixtures, build estimators for

the parameters related to the conditional probability of no variation and to the conditional

expectation related to the continuous part of the distribution and derive their asymptotic

consistency and normality under a specific conditional independence assumption. Consistent

confidence intervals are built via an empirical bootstrap approach. In the framework of policy

evaluation, we study estimates of treatment effects based on difference-in-differences under the

same zero inflation phenomenon and propose estimators of the average treatment effect that

are proven to be consistent and asymptotically Gaussian. A small Monte Carlo simulation

study assesses the good behavior of the estimators for finite samples and highlights that miss

specified models that do not take account of the zero inflation may have a substantial bias.

Empirical illustrations based on long time difference for the Mincer wage equation as well as

the evaluation of European rural development policies based on the difference-in-differences

approach confirm the interest of the proposed statistical modeling, bringing new insights on

the size of the bias in commonly used regression models.

JEL classification: C21; C23; C25.

Keywords: Bootstrap; Heterogeneous Treatment Effects; Mixture of Distributions; Panel Data;

Policy Evaluation, Zero Inflation;
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1 Introduction

In econometric specifications, the dependent variable is often expressed in terms of variation over

time. A relevant example includes commonly adopted unobserved effects panel data models,

where the typical approach to estimating the parameters of interest consists of adopting a trans-

formation, such as individual differencing over time or within transformation, to eliminate the

unobserved component. This is followed by the application of ordinary least squares (OLS) (see,

for example, Wooldridge, 2010).

A similar strategy is employed in program evaluation within a difference-in-differences (DID)

framework. For identification purposes and to address the issue of selection on unobservables, it

is commonly assumed that the conditional independence assumption holds for the difference in

the outcome before and after the beginning of the policy. Subsequently, a before-after approach

is adopted (Heckman and Hotz, 1989; Lechner, 2011, 2015).

Differencing over time is also employed in many time series models to achieve stationarity.

Additionally, it is used in cross-sectional data models when the interest lies in directly modeling

outcome variation over time. A typical example is when studying economic growth or employment

dynamics as a function of some explanatory variables observed at a given point in time (Sala-i

Martin, 1997).

However, while most economic variables such as employment, wages, production, investments,

consumption, etc., typically assume non-negative values, modeling the individual deviations of

the outcome variable over time has a crucial consequence: these deviations can take either positive

or negative values. Importantly, especially at a micro-data level, for a non-negligible fraction of

the statistical units under investigation, the variable of interest may not vary over time. Thus,

we encounter a partially time-invariant regression model.

Relevant examples of such a phenomenon include nominal prices and wages, which exhibit

what is generally called nominal rigidity—a resistance to change in response to fluctuations in

supply and demand or changes in economic conditions. Another important example is found in

employment, especially when focusing on disaggregated units such as municipalities. In these

cases, the zero-inflated phenomenon addressed in the paper has been empirically documented

(Kahn, 1997; Arulampalam et al., 2004; Álvarez et al., 2006; Cardot and Musolesi, 2020). How-

ever, to the best of our knowledge, it has never been fully considered in econometric panel data

models.

With this scenario, common zero-inflated approaches, which are based on negative binomial

or Poisson distributions and can only deal with non-negative count data, are not appropriate.

The data generating process (DGP) under study is also different from the corner solution model,
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which arises when the response variable has a continuous distribution over strictly positive values

and there is a mass at zero with non-null probability.

This paper aims to provide a mathematical formalization of the zero-inflated empirical phe-

nomenon and present new evidence based on both simulated and real data.

We first consider standard unobserved effects panel data models and propose a statistical

parametric model for the long time difference based on a conditional mixture of a continuous

linear regression model and a mass at zero. Given a set of covariates, estimators of the parameters

modeling the conditional probability of occurence of the zero variation phenomenon and the

continuous linear part are obtained as the minimizers of a contrast function. We prove that

under a specific conditional independence assumption the proposed estimators are consistent and

asymptotically Gaussian. Additionally, we prove that empirical paired bootstrap approaches can

be employed to obtain consistent approximations of the distribution of the unknown parameters

and to build confidence intervals for prediction with a given asymptotic confidence level when

the conditional probability of observing zero can be expressed as a probit or logit model. It is

known, in case of equi-tailed confidence intervals, that bootstrap percentile confidence intervals are

superior to the plug in Gaussian asymptotic approximation in the sense that they are second order

accurate (see for example Davison and Hinkley, 1997, Chapter 5). Furthermore, we extend the

theoretical framework by studying DID estimation under zero inflation and propose an estimator

of the average treatment effect (ATE) that is proven to be consistent and asymptotically Gaussian.

A Simulated data example is studied to illustrate the effect of zero inflation on the expected

value of the response variable and to check the ability of paired bootstrap procedures to produce

reliable confidence intervals. We remark that the zero-inflated phenomenon can produce very

different functional relations depending on the underlying parameters and that the linear model

provides misleading results. In particular, when the underlying relation is non-monotonic it

clearly provides a senseless fit. In contrast, the proposed estimator, which handles the zero-

inflation, provides a very faithful description of the underlying DGP. Our simulation also offers

evidence of the validity of the non-parametric bootstrap in the proposed zero-inflated framework,

even in the case of small samples.

Finally, we illustrate the usefulness of our methodology with two real data examples, providing

new insights into the size of the bias in commonly used regression models that assume the variation

in the response variable over time has a continuous distribution. By using the data from Baltagi

and Khanti-Akom (1990), we initially revisit a classical Mincer wage equation, where the response

variable is nominal wage. Additionally, we address the challenge of estimating the ATE of two

distinct public policies aimed at boosting local employment in France, based on data from Cardot

and Musolesi (2020).
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The paper is organized as follows. Section 2 introduces the zero-inflated model within an

unobserved effects panel data framework and addresses the problem of estimation. Section 3

extends the previous results by considering DID estimation under zero inflation. Sections 4 and 5

provide a small simulation study and two illustrative examples, respectively. Finally, concluding

remarks are given in Section 6 whereas proofs, additional details and information are gathered in

an Appendix.

2 Partially time invariant panel data model

2.1 Model and assumptions

We introduce the following panel data model, allowing the value of the outcome to stay constant at

two successive instants. We suppose that we have, for i = 1, . . . , n, a sample (Yi,0, Yi,1, . . . , Yi,T ,xi,0, . . . ,xi,T )

of n independent realizations of (Y0, . . . , YT ,x0, . . . ,xT ). For each statistical unit i, we suppose

that at time t = 0, that hereafter will be noted t0,

Yi,0 = θ>xi,0 + ci + εi,0 (1)

and, at time t = 1, . . . , T ,

Yi,t =

 Yi,0 with probability 1− πi,t

θ>xi,t + ci + εi,t with probability πi,t
(2)

where εi,0, . . . , εi,T are noise components, satisfying E(εi,t|xi,t) = 0 and E(ε2i,t|xi,t) = σ2 almost

surely. Each individual effect ci is supposed to be centered, E(ci) = 0 but may be not independent

of the regressors, that is to say E(ci|xi,t) 6= 0 in general.

Model (2), which is central in this work, indicates that, at each instant, two regimes are

possible. With probability πi,t, there is a non null variation of the outcome between t and t0 = 0

which can be described by the values of some regressors and a noise component. In the second

regime, which occurs with probability 1− πi,t, there is no variation of the outcome Y between t

and t0. We introduce the sequence of Bernoulli variables Zi,t, taking values in {0, 1}, and defined

by Zi,t = 0 if Yi,t = Yi,0 and Zi,t = 1 else, for t = 1, . . . , T . Taking the difference to eliminate the

unobserved individual effect ci, we get with (1) and (2),

Yi,t − Yi,0 = Zi,t ×
[
θ> (xi,t − xi,0) + εi,t − εi,0

]
+ (1− Zi,t)× 0. (3)

The distribution of ∆Yi,t = Yi,t − Yi,0 is thus a mixture of a continuous distribution and a

Dirac at zero.

We denote by

∆cYi,t = θ> (xi,t − xi,0) + εi,t − εi,0, (4)
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the potential continuous variation of Yi between t and t0. We suppose furthermore that the

probability of variation can be expressed, given xi,t, via a parametric model,

πi,t = π(xi,t,βt). (5)

for some known link function π(., .) but unknown parameter βt which is allowed to vary with t.

This includes logistic and probit regression. For example, log(πi,t/(1−πi,t)) = β>t xi,t corresponds

to logistic regression and πi,t = Φ(β>t xi,t) corresponds to probit regression when Φ(w) = P(W ≤

w), W being a centered Gaussian random variable with unit variance. The parameters to be

estimated are βt, t = 1, . . . , T and θ.

We assume that the following conditional independence assumptions hold for t = 1, . . . , T ,

(H1,t) ∆cYt ⊥⊥ Zt | xt,x0

Assumption (H1,t) ensures that we have at hand a sufficient rich set of variables xt and x0 such

that ∆cYt and Zt can be supposed to be conditionally independent. It is similar to assumption

(17.38) in Wooldridge (2010) for the Hurdle model in which Y only takes positive values. Note

that with (4), assumption (H1,t), can be rewritten

(H1,t) εt − ε0 ⊥⊥ Zt | xt,x0 (6)

We directly get, with (3), (5) and assumption (H1,t) that

E [Yt − Y0 | xt,x0] = π(xt,βt) θ> (xt − x0) , t = 1, . . . , T. (7)

If, furthermore, π(x,β) is differentiable with respect to x,

∂E[Yt − Y0|xt,x0]

∂xt
= π(xt,βt)θ + θ> (xt − x0)

∂π(xt,βt)

∂xt
, (8)

meaning that the sign and the amplitude of the effects of a variation of xt on Yt − Y0 depend on

θ but also on ∂π
∂xt

, the variation of the probability of observing no change in time.

Remark 1. Note that if we do not take account of the zero inflation phenomenon the best linear

approximation, in the mean squared error sense, to the conditional expectation of E [Yt − Y0 | xt,x0]

given in (7), is equal to θ̃
>

(xt − x0), with

θ̃ =
(
E
[
(Xt −X0)(Xt −X0)>

])−1
E [(Xt −X0)∆Yt] (9)

where ∆Yt = Zt
(
θ>(Xt −X0) + εt − ε0

)
. Thus, considering that the noise components are i.i.d,

we have

E [(Xt −X0)∆Yt] = E
[
Zt(Xt −X0)(Xt −X0)>

]
θ
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Unless Zt = 1 almost surely, meaning that there is no zero inflation phenomenon, we have that

θ̃
>

(xt− x0) 6= θ>(xt− x0). Note that in the particular case in which the random binary variable

Zt is independent of Xt, meaning that π(xt,β) = πt, we have E
[
Zt(Xt −X0)(Xt −X0)>

]
=

E [Zt]E
[
(Xt −X0)(Xt −X0)>

]
and θ̃

>
(xt − x0) = πtθ

> (xt − x0) = E [Yt − Y0 | xt,x0]. In the

general case in which Zt does depend on the covariates, the estimation of conditional expectation

given by θ̃
>

(xt − x0) will be biased.

Remark 2. Note that the within transform, which is widely used in panel data to remove the in-

dividual effects ci, i = 1, . . . , n would also provide estimators which are biased and not consistent.

Indeed, we get with (3)

Y i = Yi,0 + θ>
(
Zixi − Zixi,0

)
+ Ziεi − Ziεi,0 (10)

where Y i = (T + 1)−1
∑T

t=0 Yi,t, Zi = (T + 1)−1
∑T

t=0 Zi,t and Zixi = (T + 1)−1
∑T

t=0 Zi,txi,t and

Ziεi = (T + 1)−1
∑T

t=0 Zi,tεi,t and the convention Zi,0 = 1. Thus, the within transform can be

expanded as follows,

Yi,t − Y i = Zi,t

[
θ> (xi,t − xi,0) + εi,t − εi,0

]
− θ>

(
Zixi − Zixi,0

)
−
(
Ziεi − Ziεi,0

)
= θ>

[
Zi,t (xi,t − xi,0)−

(
Zixi − Zixi,0

)]
+ Zi,t (εi,t − εi,0)−

(
Ziεi − Ziεi,0

)
. (11)

We first remark that if Zi,t = 1, t = 1, . . . , T , we get back to the classical Within transform

regression equation. If Zi,t is supposed to be independent of xi = (xi,0, . . . ,xi,T ), with E[Zi,t] = πt,

then taking the expectation at both sides of (11), we get

E
[
Yi,t − Y i|xi

]
= θ> [πt (xi,t − xi,0)− π (xi − xi,0)] , (12)

with π = (T+1)−1
∑T

t=0 πt and xi = (T+1)−1
∑T

t=0 xi,t. The first moment equality (12) confirms

that, even when Zi,t is independent of the covariates in the model, a linear regression model for

Yi,t − Y i based on xi,t − xi will generally lead to biased estimators of θ.

2.2 Empirical example: Mincer wage equation

Nominal wage holds significant importance in economic theory (Friedman, 1971; Brenner, 1980)

and has been extensively employed as a dependent variable in various research streams. Impor-

tantly, it is well-established that nominal wage is partially time-invariant. The phenomenon of

wage stickiness, which refers to the fact that workers’ earnings do not adjust quickly to changes

in labor market conditions, is a notable economic characteristic. This aspect is not attributable

to measurement errors or missing data but represents a salient feature in economic dynamics.

The literature on this subject is extensive, covering both theoretical and empirical perspectives.

6



Haley (1990) conducted a survey of different theoretical explanations for sticky wages, including

efficiency wage models (Stiglitz, 1984), insider-outsider theories (Lindbeck et al., 1989), implicit

contracts, unions’ behavior (Calmfors and Driffill, 1988), and social and psychological factors

(Akerlof and Yellen, 1990). Moreover, empirical studies have already documented that the zero-

inflated phenomenon addressed in the paper applies for nominal wages (Kahn, 1997; Arulampalam

et al., 2004).

A significant area of research where the nominal wage typically serves as a response variable

is the classical Mincer wage equation (Mincer, 1974). For illustrative purposes, we employ the

dataset described in Baltagi and Khanti-Akom (1990), which consists of a panel of 595 individuals

observed from 1976 to 1982 and is drawn from the Panel Study of Income Dynamics. In Baltagi

and Khanti-Akom (1990) among others, the Mincer wage equation is fitted, with the logarithm

of earnings in nominal terms, denoted as Yi,t = log(WAGEi,t), which is modeled as the sum of a

linear function of years of education (edui,t) and a quadratic function of full-time work experience

(expi,t). The model is also extended by incorporating additional socio-economic variables x∗i,t,

thus xi,t =
[
edui,t, expi,t, exp2

i,t,x
∗>
i,t

]>
.

These data are consistent with the DGP that is described in the previous section. First note

that the response variable in levels, log (WAGEi,t), can be supposed to be continuous. How-

ever, due to wage stickiness or nominal rigidities, the long-differenced variable log (WAGEi,t)−

log (WAGEi,0) can no longer be treated as a continuous variable. When looking for instance at

the difference log (WAGEi,1)− log (WAGEi,0) between time t = 1 (corresponding to year 1977)

and time t0 (year 1976), we observe that for around 18.5% of the observations the variation in

time of the wages is equal to zero. The fraction of zeros varies between 18.5% for t = 1 and 0% for

t = T , and it is equals to 3.5% when considering all observations, for t = 1, ..., T (detailed results

are available upon request). As displayed in Figure 1, taking the difference over time induces a

zero-inflated phenomenon that cannot be dealt properly by a standard continuous distribution

model, while a mixture distribution combining a mass at zero and a continuous distribution, as

in (3), seems to be more relevant.

===== Figure 1 =====

Second, consistently with (5), the probability πi,t of observing a non-null variation in log (WAGEi,t)

between t and t0, is significantly affected by (some of) the explanatory variables xi,t. This is con-

sistent with the literature focusing on the key factors that contribute to wage rigidity, a subject

extensively explored by seminal works (Blanchard and Katz, 1991; Blanchard and Gali, 1992;

Pissarides, 2009; Druant et al., 2012). These determinants span a spectrum of dimensions: i)
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industry-specific factors, encompassing labor demand, supply dynamics, and cyclical sensitivity;

ii) occupational factors, with a particular focus on unionization; iii) employee characteristics,

including education, experience, and skill levels; iv) firm-specific considerations, especially the

size of the organization; and v) geographical factors.

Finally, as far assumption (H1,t) is concerned, note that despite this assumption is not directly

testable from data, it is a rather weak assumption that is likely to be fulfilled in many empirical

applications. In the Mincer wage equation, while it seems rather unlikely that the probability

of the event WAGEi,t = WAGEi,0 does not depend on any characteristic of individual i, i.e.

∆cYt ⊥⊥ Zt, assuming that exists some contemporaneous and lagged variables xt and x0 such

that ∆cYt and Zt are conditionally independent is a much more credible situation, as lagged and

contemporaneous levels of education and experience (among others) could explain Zt and this

could make Zt conditionally independent to ∆cYt.

2.3 Definition of the estimators

We define, for i = 1, . . . , n and t = 1, . . . , T ,

∆Yi,t = Yi,t − Yi,0 (13)

The estimation of θ and β1, . . . ,βT can be performed by minimizing the functional

Ψn(θ,β1, . . . ,βT ) =
T∑
t=1

Ψ1n,t(βt) + Ψ2n(θ), (14)

with

Ψ1n,t(βt) = − 1

n

n∑
i=1

(
Zi,t ln

(
π(xi,t,βt)

1− π(xi,t,βt)

)
+ ln (1− π(xi,t,βt))

)
(15)

and

Ψ2n(θ) =
1

n

n∑
i=1

T∑
t=1

Zi,t

(
∆Yi,t − θ> (xi,t − xi,0)

)2
. (16)

Note that Ψ1n,t(βt) is simply the opposite of the likelihood criterion for βt and Ψ2n(θ) is a

least squares criterion defined over the subsample of varying outcomes. We define the estimators

θ̂ and β̂t, t = 1, . . . , T as follows

θ̂ = arg min
θ∈Rp

Ψ2n(θ) (17)

β̂t = arg min
β∈Rp

Ψ1n,t(βt) (18)

Identification of parameter θ is ensured with the following assumption,

(H2) Qπ = E

[
T∑
t=1

Zt (xt − x0) (xt − x0)>
]

exists and is a full rank matrix.
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Assumption H2 is a classical assumption required to get the identifiability of the regression

parameter θ, in the specific subpopulation in which the variation in time of Y is not equal to

zero. Assumption (H2) is similar to assumption FD.2 in Wooldridge (2010) (Chapter 10) but

also takes into account the zero-inflation phenomenon.

When this assumption is fulfilled, we have that for large n, the estimator of parameter θ is

uniquely defined as follows,

θ̂ =

(
n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x>i,t

)−1( n∑
i=1

T∑
t=1

Zi,t∆Yi,t∆xi,t

)
, (19)

where ∆xi,t = xi,t − xi,0.

Then, using (7), estimates of the expected variation of the outcome can be derived as follows,

Ê [Yt − Y0 | xt,x0] = π(xt, β̂t) θ̂
>

(xt − x0) , t = 1, . . . , T. (20)

If, furthermore, π(x, β̂t) is differentiable with respect to x, we can define with (8), an estimate

of the effect of a variation of xt on the variation of the outcome,

∂Ê[Yt − Y0|xt,x0]

∂xt
= π(xt, β̂t)θ̂ + θ̂

>
(xt − x0)

∂π(xt, β̂t)

∂xt
. (21)

2.4 Some asymptotic properties

Our notations are borrowed from van der Vaart (1998), and we denote by Un = op(1) the fact that

the sequence (Un)n≥1 of random variables (vectors or matrices) converges to zero in probability

when n tends to infinity, whereas the convergence in distribution of the sequence towards a Gaus-

sian random vector with expectation µ and covariance matrix Γ is denoted by Un  N (µ,Γ).

It can be proven under hypotheses (H1,t) and (H2) that θ̂ is a consistent estimator of θ that

is asymptotically Gaussian as n tends to infinity, as shown in the following proposition.

Proposition 2.1. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) are fulfilled. Then as n tends to infinity,

θ̂ − θ = op(1)

and

√
n
(
θ̂ − θ

)
 N

(
0,Q−1

π QZ,εQ
−1
π

)
,

where QZ,ε is the covariance matrix of
∑T

t=1 Zt (εt − ε0) ∆xt.

Remark 3. If we suppose furthermore that the increments of the residuals (εi,t − εi,0) are inde-

pendent of Zt and xt, and are i.i.d, with common variance σ2, then the covariance matrix QZ,ε

satisfies QZ,ε = σ2Qπ, and under the the assumptions of Proposition 2.1,

√
n
(
θ̂ − θ

)
 N

(
0, σ2Q−1

π

)
.
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If π(x,β) is of a logit or probit shape and if the set of assumptions

(H3,t) E
[
xtx
>
t

]
is a full rank matrix

hold for t = 1, . . . , T , the parameters βt can be estimated efficiently with maximum likelihood

approaches (see Newey and McFadden (1994) for probit regression and Hjort and Pollard (2011)

for logistic regression) and that maximum likelihood estimators β̂1, . . . , β̂T are consistent and

asymptotically Gaussian as n tends to infinity, with limiting covariance matrix denoted by Γβ.

Note that there is no need to impose that β belongs to some compact space, thanks to the

concavity in the parameters of the log likelihood for probit (see Newey and McFadden, 1994) and

logistic (see Hjort and Pollard, 2011) regression models.

Proposition 2.2. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) and (H3,t), t = 1, . . . , T are fulfilled. Suppose also that π(βt, .) is a logit or

probit link function for t = 1, . . . , T . Then as n tends to infinity,

√
n

θ̂

β̂

−
θ

β

 N
0

0

 ,

Q−1
π QZ,εQ

−1
π 0

0 Γβ

 ,

where β = (β1, . . . ,βT ) and β̂ = (β̂1, . . . , β̂T ).

2.5 Bootstrap confidence intervals

We are now interested in computing confidence intervals for the expected effect E[Yt−Y0|xt,x0] =

π(xt,βt)θ
> (xt − x0) as well as the partial effects ∂E[Yt−Y0|xt,x0]

∂xt
. Note first that under previous

hypotheses, we directly get with the help of the continuous mapping theorem (see van der Vaart

(1998), Theorem 2.3), that, given xt and x0, Ê [Yt − Y0 | xt,x0] defined in (20) converges in

probability to E [Yt − Y0 | xt,x0] and ∂Ê[Yt−Y0|xt,x0]
∂xt

defined in (21) converges in probability to

∂E[Yt−Y0|xt,x0]
∂xt

as n tends to infinity.

With Proposition 2.2 and the use of the Delta method, it is possible to build confidence

intervals for E[Yt − Y0|xt,x0] and the partial effects ∂E[Yt−Y0|xt,x0]
∂xt

. However, this approach relies

on the estimation of the asymptotic variance which has a complicated expression and is not so

simple to implement in statistical softwares.

The percentile method based on paired bootstrap which is simple to implement and reasonably

time-consuming in our parametric framework, may be preferred for at least two reasons. On the

one hand, it is theoretically superior to the normal approximation limits for equi-tailed confidence

intervals in the sense that it is second order accurate whereas confidence intervals based on

asymptotic normal approximations are only first order accurate (see Chapter 5 in Davison and
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Hinkley, 1997). On the other hand it does not require to compute estimates of the asymptotic

variance.

Recall that a sample is made of (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T ), i = 1, . . . , n, which are supposed

to be n independent realizations of (Y0, . . . , YT ,x0, . . . ,xT ). Consider a paired bootstrap sample(
Y ∗i,0, . . . , Y

∗
i,T ,x

∗
i,0, . . . ,x

∗
i,T

)
, i = 1, . . . , n drawn independently and with equal probability from

the empirical distribution of (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T ), i = 1, . . . , n. We denote by (θ̂
∗
, β̂
∗
) the

bootstrap estimate of (θ,β) defined as the minimizer of Ψn(θ,β) evaluated over the bootstrap

sample. For u1 ∈ Rp and u2 ∈ RTp, we denote by Fn,B(u1,u2) the conditional joint cumulative

distribution function of the bootstrap estimator, given the data:

Fn,B(u1,u2) = P
[√

n
(

(θ̂
∗
, β̂
∗
)− (θ̂, β̂)

)
≤ (u1,u2) | (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )ni=1

]
where the inequality should be understood component-wise.

We denote by Fn(u1,u2) = P
[√

n
(

(θ̂, β̂)− (θ,β)
)
≤ (u1,u2)

]
the joint cumulative distribu-

tion function corresponding to the multivariate Gaussian distribution given in Proposition 2.2.

We can state the following proposition, which ensures that the bootstrap procedures provide con-

sistent approximation to the distribution of (θ̂, β̂) and can be useful to build consistent confidence

intervals for E[Yt − Y0|xt,x0] and ∂E[Yt−Y0|xt,x0]
∂xt

with a given asymptotic confidence level.

Proposition 2.3. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) and (H3,t), t = 1, . . . , T are fulfilled. Suppose also that π(βt, .) is a logit or

probit link function for t = 1, . . . , T . Then as n tends to infinity,

sup
u1∈Rp,u2∈RTp

|Fn,B(u1,u2)− Fn(u1,u2)| = op(1).

Given xt and x0, we also have

sup
u∈R

∣∣∣P [√n(Ê [Yt − Y0|xt,x0]− E [Yt − Y0|xt,x0]
)
≤ u

]
−P
[√

n
(
Ê∗ [Yt − Y0|xt,x0]− Ê [Yt − Y0|xt,x0]

)
≤ u | (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )ni=1

]∣∣∣ = op(1).

and

sup
u∈Rp

∣∣∣∣∣P
[
√
n

(
∂Ê[Yt − Y0|xt,x0]

∂xt
− ∂E[Yt − Y0|xt,x0]

∂xt

)
≤ u

]

−P

[
√
n

(
∂Ê∗[Yt − Y0|xt,x0]

∂xt
− ∂Ê[Yt − Y0|xt,x0]

∂xt

)
≤ u | (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )ni=1

]∣∣∣∣∣ = op(1).

where Ê∗ [Yt − Y0|xt,x0] = π(xt, β̂
∗
t )θ̂
∗>(xt − x0) and

∂Ê∗[Yt − Y0|xt,x0]

∂xt
= π(xt, β̂

∗
t )θ̂
∗

+ θ̂∗
>

(xt − x0)
∂π(xt, β̂

∗
t )

∂xt
.
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The first part of this Proposition is a consequence of Theorem 2.4 in Bose and Chatterjee

(2003), which heavily relies on the fact that the estimators are defined as the minimizers of a

convex objective function Ψn(θ,β) that is a twice differentiable in θ and β. We could consider

other sufficiently smooth link functions to model the Bernoulli variable Z and Proposition 2.3

would remain true provided that the criterion Ψ1n(.) is a twice differentiable convex function

of β. The second part of Proposition 2.3 is based on an application of the Delta method for

bootstrapped estimates (see Theorem 23.9 in van der Vaart, 1998).

A direct consequence of Proposition 2.3 is that percentile bootstrap confidence intervals for

π(xt,βt)θ
>(xt − x0) and ∂

∂xt

(
π(xt,βt)θ

>(xt − x0)
)

are consistent, with second order accuracy

when considering equi-tail intervals (for instance with confidence 90%, based on the 5% and 95%

quantiles).

3 Program evaluation with difference-in-differences

In the last decades, there has been a huge amount of literature on DID estimation and on its rela-

tion with standard unobserved effects panel data models (Heckman and Hotz, 1989; Wooldridge,

2005; Abadie, 2005; Lechner, 2015; Lee and Kang, 2006; Heckman et al., 1997, 1998). Recent

works have provided further insights. Some of them have investigated the assumptions that

are needed to yield estimated coefficients having a causal interpretation and, in particular, have

considered various settings such as allowing for heterogeneous treatment effects, variation in

treatment timing, and dynamic treatment effects (De Chaisemartin and d’Haultfoeuille, 2020;

Goodman-Bacon, 2021; Han, 2021; Sun and Abraham, 2021).

We explore another direction and show that the presence of a zero inflation phenomenon when

considering the difference-in-differences approach gives rise to heterogenous nonlinear treatment

effects.

3.1 Model, assumptions and estimand

We suppose now that we aim at evaluating a treatment effect, among R − 1 possible exclusive

treatments, set up at time tτ , on an outcome Yt at time t > tτ . The value of Yt is made at discrete

instants in time, t = 0, . . . , tτ , . . . , T . We suppose that at time t0, we have for i = 1, . . . , n,

Yi,0 = θ>0,0xi + ci + εi,0

where θ0,0 is an unknown vector of regression coefficients, ci is an unobserved individual effect

and εi,0 is a noise component satisfying E(εi,0|xi) = 0 and E(ε2i,0|xi) = σ2
0 almost surely. We

denote by Dr
i , for r ∈ {0, 1, . . . , R − 1}, the binary treatment indicator variable that takes value

12



1 if treatment r has been applied to statistical unit i and 0 otherwise, with the convention that

r = 0 corresponds to no treatment. The R − 1 possible treatments are supposed to be mutually

exclusive, so that by definition
∑R−1

r=0 D
r
i = 1. We suppose that the potential outcome at time

t ≥ tτ , under treatment r, can be expressed as follows

Y r
i,t =

 Yi,0 with probability 1− πri,t
θ>r,txi + ci + εri,t with probability πri,t

(22)

Note that it is only possible to observe one value of Y r
i,t, which is equal to Yi,t =

∑R−1
r=0 D

r
i Y

r
i,t,

among the R potential outcomes Y 0
i,t, . . . , Y

R−1
i,t . The potential outcome difference between time

t = 0 and time t ≥ tτ , under treatment r, is thus equal to

Y r
i,t − Yi,0 = Zri,t

(
(θr,t − θ0,0)> xi + εri,t − εi,0

)
+
(
1− Zri,t

)
0, (23)

where Zri,t is a (counterfactual) binary variable indicating which regime governs the evolution of

the outcome between t ≥ tτ and time 0, with Zri,t = 0 if there is no variation of the outcome and

Zri,t = 1 otherwise.

Our aim is to estimate, given xi, the average treatment effect at time t under treatment r

compared to no treatment,

ATEr(t,x) = E
(
Y r
t − Y 0

t | x
)
. (24)

We assume that, for r = 0, . . . , R − 1 and t ≥ tτ , the set of confounding variables x ensures

that

(Hr
4,t) εrt − ε0 ⊥⊥ Zrt | x.

Assumption (Hr
4,t) is similar to assumption (H1,t) discussed in Section 2.

We also assume that, for some known parametric model and unknown parameter βrt, we have

P [Zrt = 1 | xi] = π(xi,βr,t). (25)

Then, hypotheses (Hr
4,t) and (H0

4,t) allow to get the following decomposition for the conditional

average treatment effect, for treatment r 6= 0.

Proposition 3.1. If assumption (Hr
4,t) and (H0

4,t) are in force for r 6= 0, and models (23) and

(25) are true, then

ATEr(t,x) =
(
π(x,βr,t)θ̃r,t − π(x,β0,t)θ̃0,t

)>
x.

where θ̃r,t = θr,t − θ0,0.

13



Note that if there is no zero-inflation phenomenon, we get the classical result, ATEr(t,x) =

(θr,t − θ0,t)
> x. The proof of Proposition 3.1 is direct and thus omitted.

We also deduce directly from Proposition 3.1 that the marginal effect of a variation of x is

equal to

∂ATEr(t,x)

∂x
=
(
π(x,βr,t)θ̃r,t − π(x,β0,t)θ̃0,t

)
+
∂π(x,βr,t)

∂x
θ̃
>
r,tx−

∂π(x,β0,t)

∂x
θ̃
>
0,tx. (26)

The presence of the terms π(x,βr,t) and π(x,β0,t) in the expression of ATEr(t,x) induces a non

linear effect of the set of covariates xt on the average effect of treatment r.

3.2 Empirical example: local employment evolution and rural policies

We exploit the French data set used by Cardot and Musolesi (2020), which covered 25, 593

municipalities over the period 1993-2002. Employment variation over time was modeled as a

function of local development policies and of some confounding (pre-treatment) covariates that are

indicated as relevant by the related literature on local employment growth, such as demographics,

education, work qualifications, land use and the initial level of employment.

Figure 2 depicts the estimated distribution of the variation of employment in time EMPi,1 −

EMPi,0, EMPi,t being the employment level in French municipalities with time t = 1 correspond-

ing to year 1994 and time t0 to year 1993.

===== Figure 2 =====

Also in that case, the distribution of the variation in time of the dependent variable can be

approximated by a mixture of a mass at 0 (0 representing more than 25 % of the municipalities)

and a continuous density function, whose support is defined over both positive and negative

values.

Moreover, consistently with (25), the probability of observing a non-null variation of EMPi,t

overtime is significantly affected by (some of) the explanatory variables x (detailed results are

available upon request). Since Zri,t is largely explained by the size of the municipality, and by

other socio-economic characteristics, so that introducing these variables in the regression function

could make εrt−ε0 conditionally independent to Zrt , as stated in the identification condition (H4,t).

3.3 Estimation of the conditional average treatment effect

Suppose we have a sample (Yi,t, Yi,0, D
0
i , . . . , D

R−1
i ,xi) for i = 1, . . . , n. The observed value of the

outcome Yi,t can be written as follows

Yi,t =
R−1∑
r=0

Dr
i Y

r
i,t. (27)
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We define the binary variable Zi,t as Zi,t = 1 if (Yi,t − Yi,0) 6= 0 and Zi,t = 0 otherwise.

For treatment r and time t, the vectors of parameters βr,t and θ̃r,t = θr,t − θ0,0 can be

estimated by minimizing the function Ψr
n,t(θ,β) = Ψr

1,n,t(β) + Ψr
2,n,t(θ), where

Ψr
1,n,t(β) = − 1

n

n∑
i=1

Dr
i

[
Zi,t ln

(
π(xi,β)

1− π(xi,β)

)
+ ln (1− π(xi,β))

]
(28)

is the opposite of the log likelihood and where, as in Section 2.5, the conditional probability

π
(
βr,t,x

)
= P[Zrt = 1|x] is supposed to be of a probit or logit shape.

Function Ψr
2,n,t(θ) to be minimized is a least squares criterion

Ψr
2,n,t(θ) =

1

n

n∑
i=1

Zi,tD
r
i

(
(Yi,t − Yi,0)− x>i θ

)2
. (29)

Assuming that
∑n

i=1D
r
iZi,txix

>
i is a full rank matrix (which is true with high probability, as

seen in Section 3.4 under hypothesis (Hr
6,t)), function Ψr

2,n,t has a unique minimizer,

̂̃
θr,t =

(
n∑
i=1

Dr
iZi,txix

>
i

)−1( n∑
i=1

Dr
iZi,txi(Yi,t − Yi,0)

)
. (30)

Replacing the unknown parameters in the expression of ATEr(t,x) given in Proposition 3.1

by their estimators, we get the estimate

ÂTE
r
(t,x) =

(
π(x, β̂r,t)

̂̃
θr,t − π(x, β̂0,t)

̂̃
θ0,t

)>
x (31)

for the conditional average treatment effect at time t for treatment r.

3.4 Consistency of the estimated conditional treatment effect

We assume in the following that, for t ≥ tτ ,

(H5,t)
(
Y 0
t − Y0, . . . , Y

R−1
t − Y0

)
⊥⊥
(
D0, . . . , DR−1

)
| x.

Condition (H5,t) is a classical conditional independence assumption in the econometric lit-

erature on policy evaluation and multiple treatment effects. With (23) and (Hr
4,t), it implies

that

(ε0,t − ε0, . . . , εR−1,t − ε0) ⊥⊥
(
D0, . . . , DR−1

)
| x (32)

and

(Z0
t , . . . , Z

R−1
t ) ⊥⊥

(
D0, . . . , DR−1

)
| x. (33)

We denote by πrt (x) = P [DrZrt = 1|x] the probability of receiving treatment r and that Y r
t −Y0

is different from zero, given x. Note that if Dr
i = 1, we only observe Zri,t and Y r

i,t − Yi,0 for the

unit i in the sample. Hypothesis (H5,t) implies that the distribution of Zrt given x is independent
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on Dj , for j ∈ {0, . . . , R − 1}. Note that when (H5,t) holds and model (23) is true, we have

πrt (x) = π(x,βrt)P [Dr = 1|x].

We also assume that the following assumption holds,

(H6,t) E
(
πrt (x)xx>

)
= Qr

t where Qr
t is a non-singular matrix, r = 0, . . . , R− 1.

Condition (H6,t) is fulfilled under the classical assumption that E
(
xx>

)
is a full rank matrix

and πrt (x) > 0 almost surely. This identifiability condition ensures the existence of a unique

estimator
̂̃
θr,t when the sample size n is large enough. It also implies that P[Dr = 1] > 0, for

r = 0, 1, . . . , R− 1.

We can now state the consistency and asymptotic normality of the estimators of the param-

eters defined in models (23) and (25).

Proposition 3.2. Suppose that model (22) holds. Assume also that hypotheses (H4,t), (H5,t),

and (H6,t) are fulfilled. Then as n tends to infinity,

̂̃
θr,t − θ̃r,t = op(1).

If P[Zrt = 1|x] = π (x,βrt) is of a probit or logit shape, we have, as n tends to infinity,

β̂r,t − βr,t = op(1).

and

√
n





̂̃
θ0,t̂̃
θr,t

β̂0,t

β̂r,t

−

θ̃0,t

θ̃r,t

β0,t

βr,t



 N
0,

Γrθ,t 0

0 Γrβ,t

 ,

where Γrθ,t is the block diagonal asymptotic covariance matrix of
√
n(
̂̃
θ0,t − θ̃0,t,

̂̃
θr,t − θ̃r,t) and

Γrθ,t is the asymptotic covariance matrix of
√
n(β̂0,t − β0,t, β̂r,t − βr,t).

We deduce the following corollary from previous Proposition.

Corollary 3.3. Under the assumptions of Proposition 3.2 as n tends to infinity and for all x ∈ Rp

we have

ÂTE
r
(t,x)−ATEr(t,x) = op(1).

Furthermore, if (βr,t, θ̃r,t) 6= (β0,t, θ̃0,t),

√
n
(

ÂTE
r
(t,x)−ATEr(t,x)

)
 N (0,∆r

t (x))

for some covariance matrix ∆r
t (x).
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The proof of Corollary 3.3 is a direct consequence of the continuous mapping theorem and

the Delta method. It is thus omitted.

The expression for the asymptotic variance ∆r
t (x) of ÂTE

r
(t,x) can be derived with the delta

method. It is complicated and not given here. As in Section 2.5, paired bootstrap approaches are

not difficult to employ and give reliable (and consistent) confidence intervals since the estimators

are obtained as minimizers of Ψr
n,t(β,θ), which is a twice differentiable convex functional.

4 A simulation study

To illustrate with a very simple example the effect of zero inflation on the expected value of

the response variable and to check the ability of paired bootstrap procedures to produce reliable

confidence intervals, we consider the following toy model. A time t0, we suppose that the outcome

variable satisfies, for i = 1, . . . , n,

Yi,0 = θ0 + θxi,0 + ci + εi,0,

whereas at time t1 > t0, we observe

Yi,1 =

 Yi,0 with probability 1− π(xi,1 − xi,0, β0, β)

θ1 + θxi,1 + ci + εi,1 with probability π(xi,1 − xi,0, β0, β)

We thus have that

E [Yi,1 − Yi,0|xi,0, xi,1] = π(xi,1 − xi,0, β0, β)× (θ1 − θ0 + θ (xi,1 − xi,0)) (34)

We generate artificial data as follows. The variation xi,1−xi,0 are independent and uniformly

distributed in the interval [−2, 2]. The error terms εi,1−εi,0 are independent normally distributed

random variables with mean 0 and variance σ2
ε = 0.5. The probability of variation is described

by the following probit model :

π(xi,1 − xi,0, β0, β) = P [β0 + β(xi,1 − xi,0) + ν > 0]

where the distribution of ν is a standard Gaussian, independent of ε. The constant terms θ̃0 =

θ1 − θ0 and β0 are both equal to 1, while the slope parameters θ and β take different values

corresponding to different scenarios. Hypothesis (H1t), for t = 1, as well as hypothesis (H2) are

satisfied, noting that

Qπ = E

π(x1 − x0, β0, β)

1 0

0 (x1 − x0)2


is a definite positive matrix.
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We generate data considering different values for θ, with θ ∈ {2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2},

while β = 2 and draw, in Figure 3, the expected variation of the outcome given in (34), non linear

estimates obtained with (20), as well as linear estimates based on the empirical version of (9)1.

Pointwise confidence intervals, with 95% confidence, built via the bootstrap procedure described

below (see also Section 2.5) are also drawn in Figure 3.

The algorithm is the following, based on B = 1000 bootstrap replications:

• Repeat for b = 1 to b = B

– Draw from the initial sample a paired bootstrap sample,

(Y ∗1,0, Y
∗

1,1, x
∗
1,1−x∗1,0), . . . , (Y ∗n,0, Y

∗
n,1, x

∗
n,1−x∗n,0) with equal probability sampling with

replacement.

– Estimate, with probit and OLS, the conditional probability of not observing zero and

the continuous part of the zero-inflated model, respectively, and then compute, as

in (20), the estimated expected value ∆̂Y
b

= π(x, β̂
b
)(θ̂

b
)>x.

Then, non-parametric bootstrap confidence intervals with confidence α are built by considering

the quantiles of order α/2 and 1− α/2 for the estimated expected value.

===== Figure 3 =====

It clearly appears from the plots in Figure 3 that the zero-inflated phenomenon can produce

very different functional relations depending on the parameters β and θ. When β and θ have

the same sign the relation is monotonic, otherwise, when they have opposite signs, the resulting

relation can also be non-monotonic. Clearly, as β (resp. θ) gets closer to 0 the resulting relation

approaches linearity (resp. a probit shape).

As far as the estimation is concerned, the proposed estimator, which handles the zero inflation,

provides a very faithful description of the underlying DGP. Additionally, the true underlying

relation is always within the bootstrapped bands, which closely follow the DGP. In contrast, the

linear model always provides misleading results, and in particular, when the underlying relation

is non-monotonic it clearly provides a senseless fit.

By considering samples with moderate sizes, n = 200, we also evaluate the ability of the

bootstrap procedure to build reliable confidence intervals. Results are plotted in Figure 4, for a

nominal level of 1− α = 0.95. We note that irrespective of the values of the parameters β and θ,

1Additional results obtained by considering other values for β, are available upon request.
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the empirical coverages are most often very close to the nominal ones. The only exception is when

X is in the range between −2 and −1, where the empirical coverage is about 0.9. Overall, these

results offer evidence of the validity of the non-parametric bootstrap in the proposed zero-inflated

framework even in the case of a small sample size.

===== Figure 4 =====

5 Empirical illustrations

5.1 Mincer wage equation

We reexamine the classical problem of estimating a wage equation using panel data and present

evidence that standard approaches, which rely on OLS estimation techniques after consideration of

individual differencing over time, such as long difference (LD) and first difference (FD) estimators,

are prone to bias in the presence of the zero-inflated phenomenon described earlier. We find that

this bias is sizeable, even when the fraction of observations equal to zero is relatively small.

5.1.1 Overview of the model and data

We employ the dataset detailed in Baltagi and Khanti-Akom (1990), as discussed in Section

2, where the long-differenced dependent variable, log (WAGEi,t) − log (WAGEi,0) , exhibits a

distribution that can be approximated by a mixture of a mass at 0 and a continuous density

function, with a support defined over both positive and negative values. As far as the explanatory

variables are concerned, in addition to years of education (edu) and full-time work experience

(exp), the dataset also contains the number of weeks worked (wks) and some dummy variables:

occupation (occ = 1 if the individual is a blue-collar worker), industry (ind = 1 if the individual

works in manufacturing), geographical location (south = 1 and smsa = 1 if the individual resides

in the south and in a metropolitan area, respectively), marital status (ms = 1 if the individual

is married), union coverage (union = 1), sex (fem = 1 if the individual is female), and race

(blk = 1 if the individual is black).

The Mincer wage equation, derived from a theoretical model of schooling choice and post-

schooling training decisions, serves as the cornerstone of a vast literature in empirical economics.

Its simplicity and ability to accurately depict reality make it a prominent topic of study (Card,

1999). Numerous studies have delved into the empirical validity of this specification and its impli-

cations (Heckman et al., 2006). A notable debate revolves around the functional form, particularly

the adoption of a quadratic form for experience. According to Murphy and Welch (1990), the

19



quadratic specification tends to provide a poor approximation of the underlying concave func-

tion. It tends to overstate initial earnings, overstate earnings at mid-career, and understate

earnings at retirement. Subsequent proposals suggested the use of higher-order polynomial func-

tions (Lemieux, 2006). More recently, studies employing non-parametric regression models have

offered additional insights. For example, Henderson and Souto (2018) presented evidence of a

concave but monotonic relation, aligning with the primary findings of Murphy and Welch (1990).

In this paper, we opt for a log-log specification, which offers several advantages. Firstly,

it allows for the identification of the parameter of work experience when time dummies are

incorporated into the model, a feature that the log-level specification lacks.2 Second, the log-log

specification also encompasses a variety of non-linear relations between WAGE and exp, and in

particular, it may allow for a decreasing marginal return of experience. We are not claiming that

the log-log model offers the most accurate approximation to the underlying function. However,

we choose it because it aligns with a concave and monotonic relation between wage and work

experience, as suggested by the literature discussed earlier, and it is straightforward for the

purposes of our illustration. Additionally, it is important to note that within the proposed

framework, it is not possible to identify the effect of education and other time-invariant variables.

Consequently, as an illustrative example, we concentrate on examining the impact of experience.

5.1.2 Continuous response model

In column (i) of Table 1, for the sake of comparison with our proposal, we present the estimated

values of the parameters obtained using the standard LD estimator, which involves applying

OLS to the regression model expressed in long differences (i.e., the difference between time t

and t0). This estimator, with a long tradition in panel data econometrics, was initially proposed

to address the errors-in-variables problem (Griliches and Hausman, 1986) and has since been

applied in various contexts (Hahn et al., 2007; Hanlon and Miscio, 2017; Behaghel et al., 2014;

Segú, 2020). However, it assumes a continuous density function and, in the presence of the zero-

inflated phenomenon described by Equations (1), (2), and (3), it is generally a biased estimator

of πθ unless π(xt,βt) = π does not depend on xt. Below, we will provide evidence that in this

empirical application, the conditional probability of observing zero is significantly affected by

some of the explanatory variables that are considered in the continuous part of the model.

The results are as follows. When considering the standard LD estimator, the estimated

coefficient of log(expi,t) is .183 (s.e.=0.037), suggesting a concave monotonic wage–experience

relation (i.e., diminishing returns to experience). This result is close to what is obtained by

2Indeed, while expi,t = ai + t is perfectly collinear with respect to the time dummies, log(expi,t) is not as

log(ai + t) 6= log(ai) + log(t).
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employing the FD estimator, which is equal to 0.191 (s.e.=0.036) and is broadly consistent with

the above-cited literature, which mainly exploits cross-sectional data. Comparing this result with

that obtained without including the time dummies may provide some interesting insight into

the possible bias that arises because of the omission of time-related factors. In that case, the

estimated coefficient of log(expi,t) increases up to 0.817 (0.822 for the FD estimator) indicating

an almost linear wage–experience relation and suggesting a sizeable omitted common factors bias.

When the model does not contain time effects, we can also apply the long difference estimator to

a typical Mincer log-level equation that contains experience and its square as regressors instead of

the logarithm of experience. In this case, the LD estimator provides estimates of the coefficients

of experience and of its square equal to 0.118 and −0.0005, respectively (0.116 and −0.0005, for

the FD), which suggests an unsatisfactorily increasing exponential relation between wage and

experience, thus reinforcing the idea that including time effects in the econometric specification

is of crucial empirical relevance.

Nevertheless, even with the inclusion of time dummies, the standard LD estimator, assuming

an underlying continuous response, may suffer from bias due to the zero-inflation phenomenon.

Empirical evidence supporting this claim is discussed below.

5.1.3 Conditional mixture model

The objective now is to recover partial effects (PEs, see (8)) and average partial effects (APEs)

of the underlying zero-inflated model, which is inherently non-linear. To achieve this, the vector

of unknown parameters θ is estimated using the estimator described in (19), referred to as the

subset estimator. The estimation results are presented in Table 1, column (ii). The conditional

probability π(xt,βt) and the partial effects from the binary model ∂π(xt,βt)
∂xt

are obtained through

a probit regression model. For simplicity, we assume that the probit regression coefficient is

constant in time, that is ∀t, βt = β.3

===== Table 1 =====

From the probit regression model, in column (iii), it emerges that log(expi,t) has a negative

and significant effect on the conditional probability π(x,β), i.e., the conditional probability of

observing zero (i.e., a null variation in wages). From the probit model, we can also observe that

other factors have a significant effect. These factors are south, union, both positively affecting the

3We considered a standard probit model supplemented with time averages of the continuous explanatory vari-

ables; refer to Wooldridge (2010) for a thorough discussion.
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conditional probability, and edu, which instead has a negative effect. Estimating Probit Model

(iii) not only provides the basis for computing the PEs of the zero-inflated model but also offers

valuable insights from an economic perspective. However, due to the specific focus of this work,

we refrain from entering into a detailed discussion of the economic interpretation of these results.

We finally compute, using (8), the individual estimated values of the PE related to log(exp)

based on the zero-inflated approach. The proposed mixture model yields a highly heterogeneous

PE of log(exp) across cross-sectional units, ranging from -1.073 to 0.191. The estimated APE

is 0.039, notably different from the value of 0.183 obtained with the standard LD estimator.

The kernel density estimate of the distribution of the individual PEs (see Figure 5) reveals an

asymmetric distribution with a mode around 0.169. We also note that approximately 25% of the

PEs exhibit negative values, and that the fourth quartile is concentrated in a dense portion of

the domain, specifically between 0.190 and 0.191.

===== Figure 5 =====

These results reveal two significant findings: i) a considerable overestimation of the APE

when standard approaches, relying on OLS estimators applied after individual differencing over

time (FD and LD), are erroneously employed, and ii) the assumption of an underlying continuous

response fails to capture the heterogeneity of the PE induced by zero inflation.

5.2 Program evaluation of rural development policies in France

5.2.1 Description of the programs, variables, and ATEs of interest

We exploit the dataset compiled by Cardot et al. (2019), which contains comprehensive infor-

mation on French rural policies, employment, and other socio-economic variables. In France,

enterprise-zone programs have been implemented to stimulate job creation. These policies of-

fer fiscal incentives to firms situated in economically disadvantaged areas. Specifically aimed at

bolstering employment in rural regions, the Zones de Revitalisation Rurale (ZRR) program com-

menced on September 1, 1996, covering the period from 1996 to 2004. At a broader, supranational

level, the European Union pursues objectives of territorial cohesion, convergence, and harmonious

development across regions through structural funds. Within this framework, the Objective 5B

programs (1991–1993 and 1994–1999) allocated financial subsidies to firms and public entities

situated in designated “rural areas in decline”. A notable feature of both programs is that the

selection process of the treated units was clearly not random, and sources of selection on both

observables and unobservables are expected to be relevant.
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Municipalities serve as the statistical units of analysis, with the dependent variable Yi,t rep-

resenting the number of employees at time t. This variable has been observed over a decade,

from 1993 to 2002. Policy variables include ZRR zoning during the period and 5B zoning from

1994 to 1999. Confounding variables are sourced from the French census of 1990, encompassing

demographics, education, and work qualifications aggregated at the municipality level. Addition-

ally, satellite images from 1990 provide data on land use, deemed relevant by literature on local

employment growth. Pre-treatment covariates are employed to ensure that D causes x and Y

causes x do not occur (Lechner, 2011; Lee, 2005). Noteworthy is the inclusion of the initial level

of employment as a regressor, which implies assuming unconfoundedness given a lagged outcome.

This inclusion avoids an omitted variable bias, which would be particularly relevant if the aver-

age outcome of the treated and control groups differ substantially in the first period (Imbens and

Wooldridge, 2009), as in this case.

We focus on the assessment of ZRR and 5B as well as their joint effect and thus adopt

a framework with R = 4 multiple potential outcomes. These potential outcomes are associated

with the potential treatments {0, ZRR, 5B,ZRR&5B} indicating the program in which each mu-

nicipality actually participated. The modality 0 indicates that the municipality was not endowed

with either policy measure, whereas ZRR (respectively, 5B) indicates that the municipality re-

ceived incentives only from the ZRR initiative (respectively, only from the 5B initiative) and

ZRR&5B indicates that the municipality received incentives from both ZRR and 5B. Specifi-

cally, we focus on the estimation of the following ATEs: ATE5B(t,x) = E
(
Y 5B
t − Y 0

t |xi
)

and

ATEZRR&5B(t,x) = E
(
Y ZRR&5B
t − Y 0

t |xi
)
. As for the effect of ZRR, it is notable that only a

few municipalities (specifically 722) are treated. Consequently, we focus our attention on the

7014 municipalities that received incentives from both 5B and ZRR. We calculate the differential

effect denoted by ATEZRR(t,x) = E
(
Y ZRR&5B
t − Y 5B

t |xi
)
, representing the expected difference

in outcomes between municipalities participating in both the ZRR and 5B programs and those

participating only in the 5B program, conditioned on the covariates xi.

As for the pre-treatment period t0, we set t0 = 1993, which is before the introduction of

both policies. When setting t, in principle we could use all of the available information in the

data. In particular, by setting t = 1994, 1995 we could conduct placebo tests on ZRR, which

was introduced in 1996, and use the remaining time periods, t = 1996, ..., 2002, to estimate the

temporal treatment effects for ZRR and 5B as well as their interaction, as in Cardot and Musolesi

(2020). With the aim of providing an illustration of the proposed approach, we set t = 1999,

which is the last time period under the 5B program.
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5.2.2 Estimation results and comparison with the continuous response model

In this subsection, we compare the estimated values of the ATEs defined in (31) obtained with

the proposed mixture approach with those obtained using a naive method that does not account

for the mass at zero and only assumes a continuous response model (Imbens and Wooldridge,

2009). This comparison may offer valuable insights into the magnitude of bias when neglecting

the zero-inflation feature of the data. We consider alternative specifications for the regression

function (22), which are detailed below. The estimation results are presented in Table 2.

We begin by adopting a common practice in the econometric literature, which involves using

a linear specification for the confounding variables and assuming that only the intercept varies

between treated groups, while the slope parameters remain constant (Model (i)). This approach

extends the DID estimator to account for temporal policy effects and considers linear effects

of the initial conditions (Abadie, 2005). We use the same set of variables as in Cardot and

Musolesi (2020). Next, we consider more flexible models. In the second model (Model (ii)), due

to the strong linearity assumption and the potential for misspecification in the relation between

Y r(t) for r ∈ {0, ZRR, 5B,ZRR&5B} and the regressors, we allow for non-linear effects of

the confounding variables. This is achieved by adopting natural cubic regression splines, i.e.,

piecewise-cubic splines with the constraint that they are linear in their tails beyond the boundary

knots. Natural cubic splines are generally preferred to cubic splines because they exhibit fewer

edge effects (Harrell Jr, 2015). This also makes the underlying identification conditions less

restrictive (Lechner, 2011). Finally, in the third model (Model (iii)), we rely on a linear regression

model but assume that both the intercepts and the slope parameters of some confounding variables

vary between treated groups (see, for example, Heckman and Hotz, 1989, Eq. 3.9). Following

Cardot and Musolesi (2020), we retain only two significant interactions of the policy variable: the

first one with the initial level of employment (variable size) in the municipality and the second

one with its population density (variable density).

In order to build confidence intervals, we consider the non-parametric bootstrap approach

to approximate the distribution of the conditional counterfactual outcome of each municipality

i having the characteristic xi. We draw B = 1000 bootstrap samples, and for each bootstrap

sample b, with b = 1, . . . B, we make the following estimation of the ATE (see (31)):

ÂTE
r,b

(t,x) =

(
π(x, β̂

b

r,t)
̂̃
θ
b

r,t − π(x, β̂
b

0,t)
̂̃
θ
b

0,t

)>
x

Bootstrap confidence intervals are then deduced using the percentile method.
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Average treatment effects When comparing the proposed conditional mixture model with

the naive DID model, it it becomes evident from Table 2 that accounting for a mass of observations

at zero leads to an increase in the estimated ATEs by approximately 5%–10%. This finding

holds true for all three specifications considered (Models (i), (ii), and (iii)), providing robust

evidence that accounting for the mass of observations at zero is crucial to prevent a significant

underestimation of the average effect of the policies.

===== Table 2 =====

Distributional treatment effects The results discussed above conceal another crucial aspect

of the proposed mixture model. Despite assuming that only the intercept varies between treated

groups, while the slope parameters remain constant, as in Models (i) and (ii), the resulting treat-

ment effects exhibit heterogeneity across individuals according to (26). Distributional treatment

effects are reported in Table 3.

===== Table 3 =====

First, concentrating on Models (i) and (ii) reveals significant variation in estimated treatment

effects across units when addressing the zero-inflated phenomenon. Specifically, treatment effects

for the 99th percentile are often more than twice those of the 1st percentile, contrasting with the

estimated treatment effects derived from a continuous response model, which do not vary across

units. When examining Model (iii), it becomes apparent that the estimated treatment effects

exhibit even greater variation across units compared to Models (i) and (ii). When focusing on

Model (iii), it is also interesting to observe a similarity in the distributional treatment effects, as

reported in Table 3, when comparing the two estimators: the naive continuous response estimator

and our proposal. However, this similarity does not ensure that the two estimators provide similar

estimates at the individual (municipal) level.

To illustrate the differences at an individual level between the estimates obtained with the

two methods, we construct a new variable defined as the relative change between the treatment

effect obtained from the zero-inflated approach (t̂ezri ) and that obtained from the naive estimator

(t̂enri ). This variable is defined as r̂cri =
(
t̂ezri − t̂enri

)
/t̂enri . The estimated density functions

of r̂cri , with bandwidths selected using biased cross-validation, are depicted in Figure 6. For
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Models (i) and (ii), all the estimated densities exhibit left-skewed distributions, with the mode

around 0.15–0.2. In contrast, for Model (iii), the estimated densities are relatively symmetric,

with bimodal shapes observed in two out of three cases. These results underscore that when

examining distributional treatment effects, rather than solely focusing on the mean effect, the

naive estimator is subject to a considerable bias, the direction of which can be either positive or

negative.

===== Figure 6 =====

6 Conclusion

In this paper, we introduce a statistical formalization that combines a continuous response re-

gression model with a mass at zero. This framework is designed to address the zero-inflation

phenomenon, which may arise when differences over time of the outcome variable are considered.

This occurs, for instance, when getting rid of individual effects in panel data or for identification

purposes in program evaluation, as well as when directly modeling outcome variation over time

for economic reasons.

We first focus attention on unobserved effects panel data models and we provide a mathemati-

cal approximation by means of conditional mixtures. Our estimators of the regression coefficients

are based on the subset on the subsample of units for which the dependent variable has non-

null variations and we derive its asymptotic properties under a specific conditional independence

assumption, which is likely to be satisfied in many empirical circumstances. The probability

of having no variation over time can be estimated thanks to usual binary regression models,

such as probit or logistic regression. We prove the asymptotic normality of the estimator that

combines both effects as well as consistency of the empirical bootstrap. We then study difference-

in-differences estimation under zero inflation and propose an estimator of the average treatment

effect that is proven to be consistent.

We also bring new evidence based both on simulated and real data. The simulated example

illustrates the effect of zero inflation on the expected value of the variation of the response variable,

and it clearly shows that the zero-inflated phenomenon can produce very different functional

relations that depend on the underlying parameters, whereas the linear model fails to provide a
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faithful description of the underlying DGP. The simulation study also provides evidence of the

effectiveness of non-parametric paired bootstrapping with small samples.

Finally, we revisit two real data examples and apply our statistical methodology to analyze

a classical Mincer wage equation, as well as to estimate the ATE of two distinct public policies

aimed at boosting rural development in France. In both cases, the estimation results provide

additional insights into the effectiveness of our proposed estimator. They also indicate that

commonly used regression models, which assume that the response variable is continuous, may

introduce a significant bias in average effects. Moreover, assuming an underlying continuous

density function fails to capture the heterogeneity of PEs arising from the non-linear nature of

the zero-inflation model.

The present work could be extended in many directions. For instance, further studies could

explore instrumental variables estimation techniques tailored specifically for situations involving

zero inflation. or may focus on more flexible non-parametric regression models. These extensions

lie beyond the scope of the present paper and deserve further investigation.
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A Proofs

Proof. of Proposition 2.1
First note that, with (3),

θ̂ = θ +

(
1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x>i,t

)−1(
1

n

n∑
i=1

T∑
t=1

Zi,t(εi,t − εi,0)∆xi,t

)
. (35)

Under assumption (H2), (
∑T

t=1 Zi,t∆xi,t∆x>i,t), i = 1, . . . , n, are i.i.d with expectation Qπ. The
Khintchine’s weak law of large numbers gives us, as n tends to infinity,(

1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x>i,t

)
−Qπ = op(1). (36)

The application of the continuous mapping theorem (see van der Vaart (1998), Theorem 2.3),
together with assumption (H2) which implies that inversion is continuous in a neighborhood of
Qπ, gives us (

1

n

T∑
t=1

Zi,t∆xi,t∆x>i,t

)−1

−Q−1
π = op(1). (37)

We also have that, with the set of assumptions (H1,t), t = 1, . . . , T ,

E [Zi,t(εi,t − εi,0)∆xi,t] = E
(
E [Zi,t|xi,t,xi,0]E [εi,t − εi,0|xi,t,xi,0] ∆xi,t

)
= 0 (38)

and with the Khintchine’s weak law of large numbers, as n tends to infinity,

1

n

n∑
i=1

T∑
t=1

Zi,t(εi,t − εi,0)∆xi,t = op(1). (39)

We deduce, using the continuous mapping theorem, (37) and (39) that(
1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x>i,t

)−1(
1

n

n∑
i=1

T∑
t=1

Zi,t(εi,t − εi,0)∆xi,t

)
= op(1)

which proves, with decomposition (35), the first point of the proposition.

To get the asymptotic normality of θ̂, note that the random vectors
(∑T

t=1 Zi,t(εi,t − εi,0)∆xi,t

)
,

i = 1, . . . , n are i.i.d, with expectation 0 and variance-covariance matrix QZ,ε. We deduce from
the central limit theorem that

√
n

(
1

n

n∑
i=1

T∑
t=1

Zi,t(εi,t − εi,0)∆xi,t

)
 N (0,QZ,ε) (40)

and with (35), (37) and Slutsky’s Lemma (see van der Vaart (1998), Proposition 2.8),

√
n
(
θ̂ − θ

)
 N

(
0,Q−1

π QZ,εQ
−1
π

)
.
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Proof. of Proposition 2.2 The proof is based on classical arguments (see Newey and McFadden
(1994), Theorem 3.1), and relies on a Taylor expansion of the gradient of the objective function
Ψn as well as the conditional independence assumptions (H1,t), t = 1, . . . , T . We clearly have,
with the additive structure of Ψn given in (14), that the Hessian matrix is block diagonal, since,
for t = 1, . . . , T , and ν 6= t,

∂2Ψn

∂βt∂θ
= 0

∂2Ψn

∂βt∂βν
= 0.

The gradient of Ψn being equal to zero at (θ̂, β̂1, . . . , β̂T ), we thus have

0 =


∂Ψn
∂θ
∂Ψn
∂β1

...
∂Ψn
∂βT

+


∂2Ψn

∂θ>∂θ
0 · · · 0

0 ∂2Ψn

∂β>
1 ∂β1

· · · 0

... 0
. . . 0

0 0 0 ∂2Ψn

∂β>
T ∂βT




θ̂ − θ

β̂1 − β1
...

β̂T − βT

 (41)

where the second order partial derivatives are evaluated componentwise, at points between (θ̂, β̂1, . . . , β̂T )
and (θ,β1, . . . ,βT ). On the other hand, we have with (4),

∂Ψn

∂θ
= − 2

n

n∑
i=1

T∑
t=1

Zi,t

(
∆cYi,t (xi,t − xi,0)− (xi,t − xi,0) (xi,t − xi,0)> θ

)
= − 2

n

n∑
i=1

T∑
t=1

Zi,t (εi,t − εi,0) (xi,t − xi,0) (42)

and, with (15),

∂Ψn

∂βt
= − 1

n

n∑
i=1

(Zi,tφ1(xi,t,βt) + φ2(xi,t,βt)) xi,t (43)

for some known continuous functions φ1(., .) and φ2(., .). At the true value (θ,β), we have

E
[
∂Ψn
∂θ

]
= 0 and E

[
∂Ψn
∂β

]
= 0, so that the covariance matrix of ∂Ψn

∂θ and ∂Ψn
∂β is equal to

E
[
∂Ψn
∂θ

∂Ψn

∂β>

]
. Conditioning on xt and Zt, for t = 1, . . . , T , we get

E
[
∂Ψn

∂θ

∂Ψn

∂β>
|xt, Zt, t = 1, . . . , T

]
= E

[
∂Ψn

∂θ
|xt, Zt, t = 1, . . . , T

]
E
[
∂Ψn

∂β>
|xt, Zt, t = 1, . . . , T

]
= 0 (44)

almost surely. Indeed, under assumption (H1,t) and decomposition (42), we have

E[Zt (εt − ε0) (xt − x0) |xt,x0, Zt] = Zt (xt − x0)E[εt − ε0|xt,x0, Zt]

= 0 almost surely.

Thus

E
[
∂Ψn

∂θ

∂Ψn

∂β>

]
= E

(
E
[
∂Ψn

∂θ

∂Ψn

∂β>
|xt, Zt, t = 1, . . . , T

])
= 0.

Consequently, the covariance matrix of the score vector is block diagonal and the asymptotic
covariance matrix of the estimators is also block diagonal.
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Proof. of Proposition 2.3.
The first part of the Proposition is a direct consequence of Theorem 2.1 and Theorem 2.4 in
Bose and Chatterjee (2003), remarking that if we assume that the link function for π(x,β) has a
logit or probit shape, the objective function Ψn

(
θ,β; (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )ni=1

)
is a convex

function, in (θ,β) that is also twice differentiable. The Hessian matrix is positive definite at the
true value of the parameter (θ,β) thanks to hypotheses (H2) and (H3,t) t = 1, . . . , T .

The second part of the proof is a direct consequence of the delta method for bootstrapped
estimates (see Theorem 23.9 in van der Vaart (1998)) considering the functions π(x,β)θ>x and
∂
∂xπ(x,β)θ>x, which are differentiable with respect to (θ,β).

Proof. of Proposition 3.2.
We follow the same lines as the proof of Proposition 2.1 and thus omit some details. First note

that our estimators (
̂̃
θ0,t,

̂̃
θr,t, β̂0,t, β̂r,t) are defined as the minimizers of the functional

Ψn(θ0,θr,β0,βr) = Ψ0
1,n,t(β0) + Ψr

1,n,t(βr) + Ψ0
2,n,t(θ0) + Ψr

2,n,t(θr).

It is thus straightforward, under hypotheses (H4,t), (H5,t), and (H6,t) to get that the regression

parameters are consistent. As n tends to infinity,
̂̃
θ0,t − θ̃0,t = op(1) and

̂̃
θr,t − θ̃r,t = op(1).

As far as β0,t and βr,t are concerned, their maximum likelihood estimators do not come from
a standard maximum likelihood framework because the number of observations (the sample size),
nr(n) =

∑n
i=1D

r
i is not deterministic. If nr was not random, we would directly get under previ-

ous assumptions that the maximum likelihood estimator of βr,t is consistent and asymptotically
Gaussian. Note that in our random number of observations case, we have, with expression (28),
that for all βr ∈ Rp,

E
[
Ψr

1,n,t(βr)
]

= −E
(
Zrt ln

(
π(x,βr)

1− π(x,βr)

)
+ ln (1− π(x,βr)) |Dr

t = 1

)
P[Dr

t = 1]. (45)

By assumption H5,t we have, given Dr
t = 1,

P [Zrt = 1|x] = π(x,βr,t)

so that, with assumption (H6,t),

E
[
Ψr

1,n,t(βr)
]

= −E
(
π(x,βr,t) ln

(
π(x,βr)

1− π(x,βr)

)
+ ln (1− π(x,βr)) |Dr = 1

)
P[Dr = 1]

> E
[
Ψr

1,n,t(βr,t)
]
,

for all βr 6= βr,t (see e.g Lemma 2.2 in Newey and McFadden (1994)). We also get, with the
strong law of large numbers that for all βr ∈ Rp,

Ψr
1,n,t(βr)− E

[
Ψr

1,n,t(βr)
]
→ 0, almost surely

and we can deduce, by Theorem 2.7 in Newey and McFadden (1994) that the sequence β̂r,t of
minimizers of Ψr

1,n,t tends to βr,t almost surely.
For the asymptotic normality, first observe from (22) and (30) that(̂̃

θr,t − θ̃r,t̂̃
θ0,t − θ̃0,t

)
=

(
(Qr

n,t)
−1 0

0 (Q0
n,t)
−1

)( 1
n

∑n
i=1D

r
iZi,txi(ε

r
i,t − εi,0)

1
n

∑n
i=1D

0
iZi,txi(ε

0
i,t − εi,0)

)
(46)

with Qr
n,t = 1

n

∑n
i=1D

r
iZi,txix

>
i . The strong law of large numbers gives directly that Qr

n,t −
Qr
t = oP (1) as n tends to infinity. The random vectors (D0

iZi,txi(ε
0
i,t − εi,0), Dr

iZi,txi(ε
r
i,t − εi,0)),
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i = 1, . . . , n are i.i.d copies of (D0Ztx(ε0t − ε0), DrZtx(εrt − ε0)), and

E
(
D0Ztx(ε0t − ε0)

)
= E

[
E
(
D0Zt(ε

0
t − ε0)|x

)
x
]

= E
[
E
(
D0|x

)
E(Zt

(
ε0t − ε0)|x

)
x
]

with H5,t

= E
[
E(D0|x)E(Zt|x)E(ε0t − ε0)|x)x

]
with H4,t

= 0. (47)

For r 6= 0, we have

Cov
(
(D0Ztx(ε0t − ε0)x, DrZt(ε

r
t − ε0)x

)
= E

[
D0DrZt(ε

0
t − ε0)(εrt − ε0)xx>

]
= 0 (48)

because D0Dr = 0 almost surely. The Central Limit Theorem and Slutsky’s Lemma allow to
conclude that

√
n

((̂̃
θ0,t̂̃
θr,t

)
−

(
θ̃0,t

θ̃r,t

))
 N

(
0,Γrθ,t

)
,

with Γrθ,t a block diagonal covariance matrix.

Note that the asymptotic normality of
√
n
(
β̂r,t − βr,t

)
is based on an application of Theorem

3.3 in Newey and McFadden (1994) for probit regression, with asymptotic variance given by

Γrt =
1

P[Dr = 1]

[
E
(
λ(β>r,tx)λ(−β>r,tx)xx>|Dr = 1

)]−1

where λ(u) = Φ′(u)/Φ(u), u ∈ R. In case of logistic regression, it can be deduced from Theorem
5.1 in Hjort and Pollard (2011) that

Γrt =
1

P[Dr = 1]

[
E
(
π(x,βr,t)(1− π(x,βr,t))xx>|Dr = 1

)]−1
.

For the joint normality, we have, with (28), that

∂Ψr
1,n,t

∂βr
= − 1

n

n∑
i=1

Dr
i (Zi,tφ1(xi,βr) + φ2(xi,βr)) xi (49)

for some known continuous functions φ1(., .) and φ2(., .). We thus get, for r and κ in {0, 1, . . . , R−
1},

E
[
∂Ψr

1,n,t

∂βr

∂Ψκ
2,n,t

∂θ>κ

]
=

2

n
E
[
DrDκ (Ztφ1(x,βr) + φ2(x,βr))Zt

(
(Y κ
t − Y0)− x>θκ

)
xx>

]
(50)

Previous expression is clearly equal to 0 when r 6= κ since DrDκ = 0 for r 6= κ. When r = κ, the
covariance evaluated at the true value (θ̃r,t,βr,t) is equal

E
[
∂Ψr

1,n,t

∂βr

∂Ψr
2,n,t

∂θ>r

]
=

2

n
E
[
DrZt

(
Ztφ1(x,βr,t) + φ2(x,βr,t)

) (
(Y r
t − Y0)− x>θ̃r,t

)
xx>

]
=

2

n
E
[
DrZt (Ztφ1(x,βr) + φ2(x,βr)) (εrt − ε0) xx>

]
= 0, (51)

thanks to (23) and assumptions (H4,t) and (H5,t). This implies that the asymptotic covariance
matrix is block diagonal.
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B Appendix: description of the variables

We present here the variables that were considered in Section 5.2. A detailed description of the

definition of these variables as well as some descriptive statistics can be found in the Appendix

of Cardot and Musolesi (2020).

The dependent variable Yi,t corresponds to the number of employees at time t for municipality

i. The socio-economic and demographic variables come from standard INSEE sources while the

variables measuring land use have been obtained from the “Corine Land Cover” base. By starting

from a set of sixteen possible explanatory variables, the final set of variables, which were selected

by employing a backward variable selection procedure, contains the following eleven variables:

• size≡ Yt0 is the initial outcome, i.e the level of employment at t0, with t0 equals to 1993.

• density≡ (total population) /
(
total surface in terms of km2

)
;

• income≡ (net taxable income) / (total population) ;

• old≡ (population over 65 ) / (total population) ;

• fact≡ (number of factory workers) / (total population);

• bts≡ (number of people with a technical degree called “Brevet de Technicien Supérieur”)
(total population) ;

• agri≡ (farmland surface) / (total surface);

• cult≡ (cultivated land surface) / (total surface);

• urb≡ (urban surface) / (total surface);

• ind≡ (industrial surface) / (total surface);

• ara≡ (arable surface) / (total surface);

where the total surface and the total population should be understood within the considered

municipality.
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Figure 1: The estimated distribution of log (WAGEi,1) − log (WAGEi,0). The probability
of a mass at zero is estimated by the proportion of observations such that log (WAGEi,1) −
log (WAGEi,0) = 0 (indicated by the circle). We also consider a continuous density estimation of
log (WAGEi,1)− log (WAGEi,0) 6= 0 thanks to a kernel estimator; BCV: biased cross-validation
(see Sheather, 2004; Silverman, 1986).
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Figure 2: The estimated distribution of EMPi,1 − EMPi,0 with t0 = 1993. The probability
of observing no variation is estimated by the proportion of observations such that EMPi,1 −
EMPi,0 = 0. The vertical bars represent the probability of observing a given value when EMPi,1−
EMPi,0 6= 0. We also consider a continuous density estimation of EMPi,1 −EMPi,0 6= 0 thanks
to a kernel estimator; BCV: biased cross-validation (see Sheather, 2004; Silverman, 1986).
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Figure 3: Simulation. Sample size n = 200. The vertical axis represents the condi-
tional expected value E [Yi,1 − Yi,0|xi,0, xi,1] = π(xi,1 − xi,0, β0, β) × (θ1 − θ0 + θ (xi,1 − xi,0))
where π(xi,1 − xi,0, β0, β) = P [β0 + β(xi,1 − xi,0) + ν > 0] for different values for θ, with θ ∈
{2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2}, and β = 2. Bootstrap confidence intervals are built by consid-
ering the percentile approach over 1000 replications.
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Figure 4: Empirical coverage for the conditional expected value E [Yi,1 − Yi,0|xi,0, xi,1], with a
nominal level of 1−α = 0.95, for different values of θ, with θ ∈ {2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2},
and β = 2. The sample size is n = 200.
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Figure 5: The estimated distribution of the partial effect of log(EXP ) in the wage equation from
the zero-inflated model. Bandwidth selected using biased cross-validation.
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Figure 6: The estimated distribution of the relative change between the treatment effect obtained
using the zero-inflated approach and the one obtained adopting the naive estimator. Bandwidth
value selected using biased cross-validation.
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CONTINUOUS RESPONSE CONDITIONAL MIXTURE MODEL

(i) (ii) (iii)

Continuous part Discrete part

LD - whole sample LD - subset sample CRE Probit - Pooled MLE
Coefficient Coefficient Coefficient APE

log(exp) 0.183*** 0.191*** -4.708*** -0.270***
(0.037) (0.036) ( 1.111) (0.060)

log(wks) 0.026 0.027 -0.507 -0.029
(0.024) (0.024) (0.639) (0.036)

occ -0.017 -0.016 0.169 0.009
(0.022) (0.023) (0.122) (0.006)

ind 0.044* 0.045* 0. 111 0.006
(0.026) (0.026) (0.104) (0.005)

south -0.058 -0.060 0.454*** 0.0260***
(0.079) (0.080) (0.115) (0.006)

smsa -0.064 -0.066 -0.010 -0.010
(0.042) (0.042) (0.122) (0.006)

ms -0.056* -0.056* -0.394* -0.022*
(0.029) (0.029) (0.218) (0.012)

union 0.053** 0.051* 0.385*** 0.022***
(0.027) (0.027) ( 0.142) (0.008)

fem -0.300 -0.0172
(0.277) (0.016)

blk 0.076 0.004
(0.230) (0.013)

edu -0.061** - 0.003**
(0.024) (0.001)

All specifications include a full set of time dummies.
The standard errors of the estimated coefficients (in brackets) are robust to arbitrary serial correlation.
The standard errors of the APEs in the CRE probit model are obtained using the delta method.
***, **, *: significant at 1%, 5%, and 10% level, respectively.

Table 1: Wage equation
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CONTINUOUS RESPONSE MODEL CONDITIONAL MIXTURE MODEL

(i) (ii) (iii) (i) (ii) (iii)

ATEZRR&5B 2.021 3.001 2.955 2.110 3.134 3.016
[0.664-3.303] [1.688-4.358] [1.105-4.828] [0.710-3.401] [1.860-4.557] [1.160-4.941]

ATE5B 0.896 1.571 0.781 0.943 1.604 0.821
[-0.452-2.331] [0.213-2.981] [-0.530-2.144] [-0.400-2.356] [0.245-2.997] [-0.485-2.180]

ATEZRR 1.125 1.430 2.174 1.167 1.530 2.195
[-0.194-2.318] [0.173-2.785] [0.187- 4.140] [-0.154-2.387] [0.271-2.935] [0.205-4.201]

Model (i): DID with linear regression function.
Model (ii): DID with natural cubic regression splines.
Model (iii): DID with linear regression function and policy interaction with density and sie.
Between brackets: 95% confidence bands computed by nonparametric bootstrap (percentile method)

Table 2: Average treatment effects

CONTINUOUS RESPONSE MODEL

Model (i) (ii) (iii)
Percentile 1 25 50 75 99 1 25 50 75 99 1 25 50 75 99
ZRR&5B 2.021 2.021 2.021 2.021 2.021 3.001 3.001 3.001 3.001 3.001 -4.721 2.289 2.786 3.558 12.384

5B 0.896 0.896 0.896 0.896 0.896 1.571 1.571 1.571 1.571 1.571 -7.951 0.604 1.350 1.724 2.99
ZRR 1.125 1.125 1.125 1.125 1.125 1.430 1.430 1.430 1.430 1.430 -7.391 0.566 1.380 2.866 20.336

CONDITIONAL MIXTURE MODEL
ZRR&5B 1.576 1.916 2.148 2.349 2.368 1.382 3.142 3.371 3.470 3.524 -5.167 2.269 2.269 3.594 12.963

5B 0.628 0.889 0.987 1.011 1.101 0.683 1.605 1.724 1.774 1.800 -8.072 0.746 1.352 1.655 3.056
ZRR 0.782 1.036 1.180 1.338 1.357 0.683 1.536 1.646 1.696 1.724 -7.830 0.651 1.356 2.774 20.894

CONDITIONAL MIXTURE MODEL vs. CONTINUOUS RESPONSE MODEL
(Relative change in the treatment effect)

ZRR&5B -0.220 -0.052 0.063 0.162 0.172 -0.539 0.046 0.123 0.156 0.174 -0.356 -0.088 0.056 0.155 0.678
5B -0.299 -0.007 0.101 0.128 0.229 -0.564 0.022 0.097 0.130 0.146 -1.937 -0.077 0.022 0.104 2.135
ZRR -0.303 -0.078 0.049 0.190 0.206 -0.522 0.074 0.151 0.186 0.205 -2.279 -0.136 0.037 0.1431 2.831

Model (i): DID with linear regression function.
Model (ii): DID with cubic regression splines.
Model (iii): DID with linear regression function and policy interaction with density and size.

Table 3: Distributional treatment effects
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