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Abstract

When dealing with panel data, considering the variation over time of the variable of interest

allows to get rid of potential individual effects. Even though the outcome variable has a con-

tinuous distribution, its variation over time can be equal to zero with a strictly positive proba-

bility and thus its distribution is a mixture of a mass at zero and a continuous distribution. We

introduce a parametric statistical model based on conditional mixtures, build estimators for

the parameters related to the conditional probability of no variation and to the conditional

expectation related to the continuous part of the distribution and derive their asymptotic

consistency and normality under a specific conditional independence assumption. Consistent

confidence intervals are built via an empirical bootstrap approach. In the framework of policy

evaluation, we study estimates of treatment effects based on difference-in-differences under the

same zero inflation phenomenon and propose estimators of the average treatment effect that

are proven to be consistent and asymptotically Gaussian. A small Monte Carlo simulation

study assesses the good behavior of the estimators for finite samples and highlights that miss

specified models that do not take account of the zero inflation may have a substantial bias.

Empirical illustrations based on long time difference for the Mincer wage equation as well as

the evaluation of European rural development policies based on the difference-in-differences

approach confirm the interest of the proposed statistical modeling, bringing new insights on

the size of the bias in commonly used regression models.

JEL classification: C21; C23; C25.

Keywords: Bootstrap; Heterogeneous Treatment Effects; Mixture of Distributions; Panel Data;

Policy Evaluation, Zero Inflation;
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1 Introduction

In econometric specifications, the dependent variable is often expressed in terms of variation

over time. A prime example includes commonly adopted unobserved effects panel data mod-

els, where the typical approach to estimating the parameters of interest consists of adopting a

transformation, such as individual differencing over time or within transformation, to eliminate

the unobserved component and then applying ordinary least squares (OLS) (see, for example,

Wooldridge, 2010). A similar strategy is adopted in program evaluation within a difference-

in-differences (DID) framework, where for identification purposes and to address the issue of

selection on unobservables, it is commonly assumed that the conditional independence assump-

tion holds for the difference in the outcome before and after the beginning of the policy and then

a before–after approach is adopted (Heckman and Hotz, 1989; Lechner, 2011, 2015). Differencing

over time is also employed in many time series models, to achieve stationarity. Finally, another

relevant example is provided by cross-sectional data models when the interest lies in directly

modeling outcome variation over time, such as when studying economic growth or employment

dynamics as a function of some explanatory variables observed at a given point in time (Sala-i

Martin, 1997).

However, while most of the economic variables such as employment, wages, production, in-

vestments, consumption, etc. take non-negative values, a crucial consequence of modeling the

individual deviations of the outcome variable over time is that these deviations can take either

positive or negative values. Importantly, it may also be—especially at a micro-data level—that

for a non-negligible fraction of the statistical units under investigation the variable of interest

does not vary over time, so that we have to face a partially time-invariant regression model.

With this scenario, common zero-inflated approaches, which are based on negative binomial

or Poisson distributions and can only deal with non-negative count data, are not appropriate.

The data generating process (DGP) under study is also different from the corner solution model,

which arises when the response variable has a continuous distribution over strictly positive values

and there is a mass at zero with non-null probability.

This paper aims to provide a mathematical formalization to such a zero-inflated empirical

phenomenon and bring new evidence based both on simulated and real data.

We first consider standard unobserved effects panel data models and propose a statistical

parametric model for the long time difference based on a conditional mixture of a continuous

linear regression model and a mass at zero. Given a set of covariates, estimators of the parameters

modeling the conditional probability of occurence of the zero variation phenomenon and the

continuous linear part of the are obtained as the minimizers of a contrast function. We prove
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that under a specific conditional independence assumption the proposed estimators are consistent

and asymptotically Gaussian. We also prove that empirical paired bootstrap procedures can be

employed to obtain consistent approximations of the distribution of the unknown parameters and

to build confidence intervals for prediction with a given asymptotic confidence level when the

conditional probability of observing zero can be expressed as a probit or logit model.

We extend the theoretical work by studying DID estimation under zero inflation and pro-

pose an estimator of the average treatment effect (ATE) that is proven to be consistent and

asymptotically Gaussian.

A Simulated data example is studied to illustrate the effect of zero inflation on the expected

value of the response variable and to check the ability of paired bootstrap procedures to produce

reliable confidence intervals. We remark that the zero-inflated phenomenon can produce very

different functional relations depending on the underlying parameters and that the linear model

provides misleading results. In particular, when the underlying relation is non-monotonic it

clearly provides a senseless fit. In contrast, the proposed estimator, which handles the zero-

inflation, provides a very faithful description of the underlying DGP. Our simulation also offers

evidence of the validity of the non-parametric bootstrap in the proposed zero-inflated framework,

even in the case of small samples.

Finally, the usefulness of our methodology is illustrated on two real data examples, bringing

new insights into the size of the bias of commonly used regression models, which are based on the

assumption that the variation in time of the response variable has a continuous distribution. We

first revisit a classical Mincer wage equation with zero-inflated data and exploit the panel data

of Baltagi and Khanti-Akom (1990). We also consider the problem of estimating the ATE of two

distinct public policies that were devoted to boosting rural development in France and have been

recently investigated in Cardot and Musolesi (2020).

The paper is organized as follows. Section 2 introduces the zero-inflated model within an

unobserved effects panel data framework and addresses the problem of estimation. Section 3

extends the previous results by considering DID estimation under zero inflation. Sections 4 and 5

provide a small simulation study and two illustrative examples, respectively. Finally, concluding

remarks are given in Section 6 whereas proofs, additional details and information are gathered in

an Appendix.
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2 Partially time invariant panel data model

2.1 Model and assumptions

We introduce the following panel data model, allowing the value of the outcome to stay constant at

two successive instants. We suppose that we have, for i = 1, . . . , n, a sample (Yi,0, Yi,1, . . . , Yi,T ,xi,0, . . . ,xi,T )

of n independent realizations of (Y0, . . . , YT ,x0, . . . ,xT ). For each statistical unit i, we suppose

that at time t = 0, that hereafter will be noted t0,

Yi,0 = θ⊤xi,0 + ci + ϵi,0 (1)

and, at time t = 1, . . . , T ,

Yi,t =

 Yi,0 with probability 1− πi,t

θ⊤xi,t + ci + ϵi,t with probability πi,t
(2)

where ϵi,0, . . . , ϵi,T are noise components, satisfying E(ϵi,t|xi,t) = 0 and E(ϵ2i,t|xi,t) = σ2 almost

surely. Each individual effect ci is supposed to be centered, E(ci) = 0 but may be not independent

of the regressors, that is to say E(ci|xi,t) ̸= 0 in general.

Model (2), which is central in this work, indicates that, at each instant, two regimes are

possible. With probability πi,t, there is a non null variation of the outcome between t and t0 = 0

which can be described by the values of some regressors and a noise component. In the second

regime, which occurs with probability 1− πi,t, there is no variation of the outcome Y between t

and t0. We introduce the sequence of Bernoulli variables Zi,t, taking values in {0, 1}, and defined

by Zi,t = 0 if Yi,t = Yi,0 and Zi,t = 1 else, for t = 1, . . . , T . Taking the difference to eliminate the

unobserved individual effect ci, we get with (1) and (2),

Yi,t − Yi,0 = Zi,t ×
[
θ⊤ (xi,t − xi,0) + ϵi,t − ϵi,0

]
+ (1− Zi,t)× 0. (3)

The distribution of ∆Yi,t = Yi,t − Yi,0 is thus a mixture of a continuous distribution and a

Dirac at zero.

We denote by

∆cYi,t = θ⊤ (xi,t − xi,0) + ϵi,t − ϵi,0, (4)

the potential continuous variation of Yi between t and t0. We suppose furthermore that the

probability of variation can be expressed, given xi,t, via a parametric model,

πi,t = π(xi,t,βt). (5)

for some known link function π(., .) but unknown parameter βt which is allowed to vary with t.

This includes logistic and probit regression. For example, log(πi,t/(1−πi,t)) = β⊤
t xi,t corresponds
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to logistic regression and πi,t = Φ(β⊤
t xi,t) corresponds to probit regression when Φ(w) = P(W ≤

w), W being a centered Gaussian random variable with unit variance. The parameters to be

estimated are βt, t = 1, . . . , T and θ.

We assume that the following conditional independence assumptions hold for t = 1, . . . , T ,

(H1,t) ∆cYt ⊥⊥ Zt | xt,x0

Assumption (H1,t) ensures that we have at hand a sufficient rich set of variables xt and x0 such

that ∆cYt and Zt can be supposed to be conditionally independent. It is similar to assumption

(17.38) in Wooldridge (2010) for the Hurdle model in which Y only takes positive values. Note

that with (4), assumption (H1,t), can be rewritten

(H1,t) ϵt − ϵ0 ⊥⊥ Zt | xt,x0 (6)

We directly get, with (3), (5) and assumption (H1,t) that

E [Yt − Y0 | xt,x0] = π(xt,βt) θ
⊤ (xt − x0) , t = 1, . . . , T. (7)

If, furthermore, π(x,β) is differentiable with respect to x,

∂E[Yt − Y0|xt,x0]

∂xt
= π(xt,βt)θ + θ⊤ (xt − x0)

∂π(xt,βt)

∂xt
, (8)

meaning that the sign and the amplitude of the effects of a variation of xt on Yt − Y0 depend on

θ but also on ∂π
∂xt

, the variation of the probability of observing no change in time.

Remark 1. Note that if we do not take account of the zero inflation phenomenon the best linear

approximation, in the mean squared error sense, to the conditional expectation of E [Yt − Y0 | xt,x0]

given in (7), is equal to θ̃
⊤
(xt − x0), with

θ̃ =
(
E
[
(Xt −X0)(Xt −X0)

⊤
])−1

E [(Xt −X0)∆Yt] (9)

where ∆Yt = Zt

(
θ⊤(Xt −X0) + ϵt − ϵ0

)
. Thus, considering that the noise components are i.i.d,

we have

E [(Xt −X0)∆Yt] = E
[
Zt(Xt −X0)(Xt −X0)

⊤
]
θ

Unless Zt = 1 almost surely, meaning that there is no zero inflation phenomenon, we have that

θ̃
⊤
(xt − x0) ̸= θ⊤(xt − x0). Note that in the particular case in which the random binary variable

Zt is independent of Xt, meaning that π(xt,β) = πt, we have E
[
Zt(Xt −X0)(Xt −X0)

⊤] =

E [Zt]E
[
(Xt −X0)(Xt −X0)

⊤] and θ̃
⊤
(xt − x0) = πtθ

⊤ (xt − x0) = E [Yt − Y0 | xt,x0]. In the

general case in which Zt does depend on the covariates, the estimation of conditional expectation

given by θ̃
⊤
(xt − x0) will be biased.

5



2.2 Empirical example: Mincer wage equation

We consider the problem of estimating a classical Mincer wage equation (Mincer, 1974) with panel

data and employ the dataset described in Baltagi and Khanti-Akom (1990), which corresponds

to a panel of 595 individuals observed over the 1976–1982, drawn from the Panel Study of Income

Dynamics. A Mincer wage equation is typically fitted, with the logarithm of earnings, Yi,t =

log(WAGEi,t), modeled as the sum of a linear function of years of education (edui,t) and a

quadratic function of full-time work experience (expi,t), and the model is often extended by

considering additional socio-economic variables zi,t, thus xi,t =
[
edui,t, expi,t, exp

2
i,t, z

⊤
i,t

]⊤
.

These data are consistent with the DGP that is described in the previous section. First note

that the response variable in levels, log (WAGEi,t), can be supposed to be continuous. However

the long-differenced variable log (WAGEi,t) − log (WAGEi,0) can no longer be considered to be

continuous. When looking for instance at the difference log (WAGEi,1)− log (WAGEi,0) between

time t = 1 (corresponding to year 1977) and time t0 (year 1976), we observe that for around

18.5% of the observations the variation in time of the wages is equal to zero. The fraction of zeros

varies between 18.5% for t = 1 and 0% for t = T , and it is equals to 3.5% when considering all

observations, for t = 1, ..., T (detailed results are available upon request). As displayed in Figure 1,

taking the difference over time induces a zero-inflated phenomenon that cannot be dealt properly

by a standard continuous distribution model, while a mixture distribution combining a mass at

zero and a continuous distribution, as in (3), seems to be appropriate.

===== Figure 1 =====

Second, consistently with (5), the probability πi,t of observing a non-null variation in log (WAGEi,t)

between t and t0, is significantly affected by (some of) the explanatory variables xi,t, (detailed

results are presented in a next section).

Finally, as far assumption (H1,t) is concerned, note that despite this assumption is not directly

testable from data, it is a rather weak assumption that is likely to be fulfilled in many empirical

applications. In the Mincer wage equation, while it seems rather unlikely that the probability

of the event WAGEi,t = WAGEi,0 does not depend on any characteristic of individual i, i.e.

∆cYt ⊥⊥ Zt, assuming that exists some contemporaneous and lagged variables xt and x0 such

that ∆cYt and Zt are conditionally independent is a much more credible situation, as lagged and

contemporaneous levels of education and experience (among others) could explain Zt and this

could make Zt conditionally independent to ∆cYt.
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2.3 Definition of the estimators

We define, for i = 1, . . . , n and t = 1, . . . , T ,

∆Yi,t = Yi,t − Yi,0 (10)

The estimation of θ and β1, . . . ,βT can be performed by minimizing the functional

Ψn(θ,β1, . . . ,βT ) =

T∑
t=1

Ψ1n,t(βt) + Ψ2n(θ), (11)

with

Ψ1n,t(βt) = − 1

n

n∑
i=1

(
Zi,t ln

(
π(xi,t,βt)

1− π(xi,t,βt)

)
+ ln (1− π(xi,t,βt))

)
(12)

and

Ψ2n(θ) =
1

n

n∑
i=1

T∑
t=1

Zi,t

(
∆Yi,t − θ⊤ (xi,t − xi,0)

)2
. (13)

Note that Ψ1n,t(βt) is simply the opposite of the likelihood criterion for βt and Ψ2n(θ) is a

least squares criterion defined over the subsample of varying outcomes. We define the estimators

θ̂ and β̂t, t = 1, . . . , T as follows

θ̂ = arg min
θ∈Rp

Ψ2n(θ) (14)

β̂t = arg min
β∈Rp

Ψ1n,t(βt) (15)

Identification of parameter θ is ensured with the following assumption,

(H2) Qπ = E

[
T∑
t=1

Zt (xt − x0) (xt − x0)
⊤

]
exists and is a full rank matrix.

Assumption H2 is a classical assumption required to get the identifiability of the regression

parameter θ, in the specific subpopulation in which the variation in time of Y is not equal to

zero. Assumption (H2) is similar to assumption FD.2 in Wooldridge (2010) (Chapter 10) but

also takes into account the zero-inflation phenomenon.

When this assumption is fulfilled, we have that for large n, the estimator of parameter θ is

uniquely defined as follows,

θ̂ =

(
n∑

i=1

T∑
t=1

Zi,t∆xi,t∆x⊤
i,t

)−1( n∑
i=1

T∑
t=1

Zi,t∆Yi,t∆xi,t

)
, (16)

where ∆xi,t = xi,t − xi,0.

Then, using (7), estimates of the expected variation of the outcome can be derived as follows,

Ê [Yt − Y0 | xt,x0] = π(xt, β̂t) θ̂
⊤
(xt − x0) , t = 1, . . . , T. (17)
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If, furthermore, π(x, β̂t) is differentiable with respect to x, we can define with (8), an estimate

of the effect of a variation of xt on the variation of the outcome,

∂Ê[Yt − Y0|xt,x0]

∂xt
= π(xt, β̂t)θ̂ + θ̂

⊤
(xt − x0)

∂π(xt, β̂t)

∂xt
. (18)

2.4 Some asymptotic properties

Our notations are borrowed from van der Vaart (1998), and we denote by Un = op(1) the fact that

the sequence (Un)n≥1 of random variables (vectors or matrices) converges to zero in probability

when n tends to infinity, whereas the convergence in distribution of the sequence towards a Gaus-

sian random vector with expectation µ and covariance matrix Γ is denoted by Un ⇝ N (µ,Γ).

It can be proven under hypotheses (H1,t) and (H2) that θ̂ is a consistent estimator of θ that

is asymptotically Gaussian as n tends to infinity, as shown in the following proposition.

Proposition 2.1. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) are fulfilled. Then as n tends to infinity,

θ̂ − θ = op(1)

and

√
n
(
θ̂ − θ

)
⇝ N

(
0,Q−1

π QZ,ϵQ
−1
π

)
,

where QZ,ϵ is the covariance matrix of
∑T

t=1 Zt (ϵt − ϵ0)∆xt.

Remark 2. If we suppose furthermore that the increments of the residuals (ϵi,t − ϵi,0) are inde-

pendent of Zt and xt, and are i.i.d, with common variance σ2, then the covariance matrix QZ,ϵ

satisfies QZ,ϵ = σ2Qπ, and under the the assumptions of Proposition 2.1,

√
n
(
θ̂ − θ

)
⇝ N

(
0, σ2Q−1

π

)
.

If π(x,β) is of a logit or probit shape and if the set of assumptions

(H3,t) E
[
xtx

⊤
t

]
is a full rank matrix

hold for t = 1, . . . , T , the parameters βt can be estimated efficiently with maximum likelihood

approaches (see Newey and McFadden (1994) for probit regression and Hjort and Pollard (2011)

for logistic regression) and that maximum likelihood estimators β̂1, . . . , β̂T are consistent and

asymptotically Gaussian as n tends to infinity. The limiting covariance matrix denoted by Γβ.

Note that there is no need to impose that β belongs to some compact space, thanks to the

concavity in the parameters of the log likelihood for probit (see Newey and McFadden, 1994) and

logistic (see Hjort and Pollard, 2011) regression models.
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Proposition 2.2. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) and (H3,t), t = 1, . . . , T are fulfilled. Suppose also that π(βt, .) is a logit or

probit link function. Then as n tends to infinity,

√
n

θ̂

β̂

−

θ

β

⇝ N

0

0

 ,

Q−1
π QZ,ϵQ

−1
π 0

0 Γβ

 ,

where β = (β1, . . . ,βT ) and β̂ = (β̂1, . . . , β̂T ).

2.5 Bootstrap confidence intervals

We are now interested in computing confidence intervals for θ and for E[Yt − Y0|xt,x0] =

π(xt,βt)θ
⊤ (xt − x0). Note first that under previous hypotheses, we directly get with the help

of the continuous mapping theorem (see van der Vaart (1998), Theorem 2.3), that, given xt and

x0, Ê [Yt − Y0 | xt,x0] defined in (17) converges in probability to E [Yt − Y0 | xt,x0] as n tends to

infinity.

Then, building confidence intervals for θ using the asymptotic normality given in Proposi-

tion 2.1 requires to have at hand a consistent estimate of Q−1
π QZ,ϵQ

−1
π , which may not be so

simple. As far as the expected variation E[Yt−Y0|xt,x0] is concerned, the use of the Delta method

based on Proposition 2.2 is one possibility for building confidence intervals with asymptotically

controlled level of confidence. However, this approach relies on the estimation of the asymptotic

variance and is not so simple to implement in statistical softwares.

Paired bootstrap, which is reasonably time-consuming in our parametric framework, is gener-

ally preferred and is much simpler to implement (see Wooldridge, 2010, Chapter 21, in the general

context of policy evaluation and Cardot and Musolesi, 2020 for an illustration with zero-inflated

data). Recall that a sample is made of (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T ), i = 1, . . . , n, which are sup-

posed to be n independent realizations of (Y0, . . . , YT ,x0, . . . ,xT ). Consider a paired bootstrap

sample
(
Y ∗
i,0, . . . , Y

∗
i,T ,x

∗
i,0, . . . ,x

∗
i,T

)
, i = 1, . . . , n drawn independently and with equal probabil-

ity from the empirical distribution of (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T ), i = 1, . . . , n. We denote by

(θ̂
∗
, β̂

∗
) the bootstrap estimate of (θ,β) defined as the minimizer of Ψn(θ,β) evaluated over the

bootstrap sample. For u1 ∈ Rp and u2 ∈ Rp, we denote by Fn,B(u1,u2) the conditional joint

cumulative distribution function of the bootstrap estimator, given the data:

Fn,B(u1,u2) = P
[√

n
(
(θ̂

∗
, β̂

∗
)− (θ̂, β̂)

)
≤ (u1,u2) | (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )

n
i=1

]
where the inequality should be understood component-wise.

We denote by Fn(u1,u2) = P
[√

n
(
(θ̂, β̂)− (θ,β)

)
≤ (u1,u2)

]
the joint cumulative distribu-

tion function corresponding to the multivariate Gaussian distribution given in Proposition 2.2.
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We can state the following proposition, which ensures that the bootstrap procedures provide con-

sistent approximation to the distribution of (θ̂, β̂) and can be useful to build consistent confidence

intervals for prediction with a given asymptotic confidence level.

Proposition 2.3. Suppose that models (1) and (2) hold and assume that hypotheses (H1,t), t =

1, . . . , T and (H2) and (H3,t), t = 1, . . . , T are fulfilled. Suppose also that π(βt, .) is a logit or

probit link function. Then as n tends to infinity,

sup
u1,u2

|Fn,B(u1,u2)− Fn(u1,u2)| = op(1).

Given xt and x0, we also have

sup
u∈R

∣∣∣P [√n
(
π(xt, β̂t)θ̂

⊤
(xt − x0)− π(xt,βt)θ

⊤(xt − x0)
)
≤ u

]
−P
[√

n

(
π(xt, β̂

∗
t )θ̂

∗⊤(xt − x0)− π(xt, β̂t)θ̂
⊤
(xt − x0)

)
≤ u | (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )

n
i

]∣∣∣∣ = op(1).

The first part of this Proposition is a consequence of Theorem 2.4 in Bose and Chatterjee

(2003), which heavily relies on the fact that the estimators are defined as the minimizers of a

convex objective function Ψn(θ,β) that is a twice differentiable in θ and β. We could consider

other sufficiently smooth link functions to model the Bernoulli variable Z and Proposition 2.3

would remain true provided that the criterion Ψ1n(.) is a twice differentiable convex function

ofβ. The second part of Proposition 2.3 is based on an application of the Delta method for

bootstrapped estimates (see Theorem 23.9 in van der Vaart, 1998).

3 Program evaluation with difference-in-differences

In the last decades, there has been a huge amount of literature on DID estimation and on its rela-

tion with standard unobserved effects panel data models (Heckman and Hotz, 1989; Wooldridge,

2005; Abadie, 2005; Lechner, 2015; Lee and Kang, 2006; Heckman et al., 1997, 1998). Recent

works have provided further insights. Some of them have investigated the assumptions that

are needed to yield estimated coefficients having a causal interpretation and, in particular, have

considered various settings such as allowing for heterogeneous treatment effects, variation in

treatment timing, and dynamic treatment effects (De Chaisemartin and d’Haultfoeuille, 2020;

Goodman-Bacon, 2021; Han, 2021; Sun and Abraham, 2021).

We explore another direction and show that the presence of a zero inflation phenomenon when

considering the difference-in-differences approach gives rise to heterogenous nonlinear treatment

effects.
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3.1 Model, assumptions and estimand

We suppose now that we aim at evaluating a treatment effect, among R − 1 possible exclusive

treatments, set up at time tτ , on an outcome Yt at time t > tτ . The value of Yt is made at discrete

instants in time, t = 0, . . . , tτ , . . . , T . We suppose that at time t0, we have for i = 1, . . . , n,

Yi,0 = θ⊤
0,0xi + ci + ϵi,0

where θ0,0 is an unknown vector of regression coefficients, ci is an unobserved individual effect

and ϵi,0 is a noise component satisfying E(ϵi,0|xi) = 0 and E(ϵ2i,0|xi) = σ2
0 almost surely. We

denote by Dr
i , for r ∈ {0, 1, . . . , R − 1}, the binary treatment indicator variable that takes value

1 if treatment r has been applied to statistical unit i and 0 otherwise, with the convention that

r = 0 corresponds to no treatment. The R − 1 possible treatments are supposed to be mutually

exclusive, so that by definition
∑R−1

r=0 Dr
i = 1. We suppose that the potential outcome at time

t ≥ tτ , under treatment r, can be expressed as follows

Y r
i,t =

 Yi,0 with probability 1− πr
i,t

θ⊤
r,txi + ci + ϵri,t with probability πr

i,t

(19)

Note that it is only possible to observe one value of Y r
i,t, which is equal to Yi,t =

∑R−1
r=0 Dr

i Y
r
i,t,

among the R potential outcomes Y 0
i,t, . . . , Y

R−1
i,t . The potential outcome difference between time

t = 0 and time t ≥ tτ , under treatment r, is thus equal to

Y r
i,t − Yi,0 = Zr

i,t

(
(θr,t − θ0,0)

⊤ xi + ϵri,t − ϵi,0

)
+
(
1− Zr

i,t

)
0, (20)

where Zr
i,t is a (counterfactual) binary variable indicating which regime governs the evolution of

the outcome between t ≥ tτ and time 0, with Zr
i,t = 0 if there is no variation of the outcome and

Zr
i,t = 1 otherwise.

Our aim is to estimate, given xi, the average treatment effect at time t under treatment r

compared to no treatment,

ATEr(t,x) = E
(
Y r
t − Y 0

t | x
)
. (21)

We assume that, for r = 0, . . . , R − 1 and t ≥ tτ , the set of confounding variables x ensures

that

(Hr
4,t) ϵrt − ϵ0 ⊥⊥ Zr

t | x.

Assumption (Hr
4,t) is similar to assumption (H1,t) discussed in Section 2.

We also assume that, for some known parametric model and unknown parameter βrt, we have

P [Zr
t = 1 | xi] = π(xi,βr,t). (22)
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Then, hypotheses (Hr
4,t) and (H0

4,t) allow to get the following decomposition for the conditional

average treatment effect, for treatment r ̸= 0.

Proposition 3.1. If assumption (Hr
4,t) and (H0

4,t) are in force for r ̸= 0, and models (20) and

(22) are true, then

ATEr(t,x) =
(
π(x,βr,t)θ̃r,t − π(x,β0,t)θ̃0,t

)⊤
x.

where θ̃r,t = θr,t − θ0,0.

Note that if there is no zero-inflation phenomenon, we get the classical result, ATEr(t,x) =

(θr,t − θ0,t)
⊤ x. The proof of Proposition 3.1 is direct and thus omitted.

We also deduce directly from Proposition 3.1 that the marginal effect of a variation of x is

equal to

∂ATEr(t,x)

∂x
=
(
π(x,βr,t)θ̃r,t − π(x,β0,t)θ̃0,t

)
+

∂π(x,βr,t)

∂x
θ̃
⊤
r,tx−

∂π(x,β0,t)

∂x
θ̃
⊤
0,tx. (23)

The presence of the terms π(x,βr,t) and π(x,β0,t) in the expression of ATEr(t,x) induces a non

linear effect of the set of covariates xt on the average effect of treatment r.

3.2 Empirical example: local employment evolution and rural policies

We exploit the French data set used by Cardot and Musolesi (2020), which covered 25, 593

municipalities over the period 1993-2002. Employment variation over time was modeled as a

function of local development policies and of some confounding (pre-treatment) covariates that are

indicated as relevant by the related literature on local employment growth, such as demographics,

education, work qualifications, land use and the initial level of employment.

Figure 2 depicts the estimated distribution of the variation of employment in time EMPi,1 −

EMPi,0, EMPi,t being the employment level in French municipalities with time t = 1 correspond-

ing to year 1994 and time t0 to year 1993.

===== Figure 2 =====

Also in that case, the distribution of the variation in time of the dependent variable can be

approximated by a mixture of a mass at 0 (0 representing more than 25 % of the municipalities)

and a continuous density function, whose support is defined over both positive and negative

values.

Moreover, consistently with (22), the probability of observing a non-null variation of EMPi,t

overtime is significantly affected by (some of) the explanatory variables x (detailed results are

12



available upon request). Since Zr
i,t is largely explained by the size of the municipality, and by

other socio-economic characteristics, so that introducing these variables in the regression function

could make ϵrt−ϵ0 conditionally independent to Zr
t , as stated in the identification condition (H4,t).

3.3 Estimation of the conditional average treatment effect

Suppose we have a sample (Yi,t, Yi,0, D
0
i , . . . , D

R−1
i ,xi) for i = 1, . . . , n. The observed value of the

outcome Yi,t can be written as follows

Yi,t =

R−1∑
r=0

Dr
i Y

r
i,t. (24)

We define the binary variable Zi,t as Zi,t = 1 if (Yi,t − Yi,0) ̸= 0 and Zi,t = 0 otherwise.

For treatment r and time t, the vectors of parameters βr,t and θ̃r,t = θr,t − θ0,0 can be

estimated by minimizing the function Ψr
n,t(θ,β) = Ψr

1,n,t(β) + Ψr
2,n,t(θ), where

Ψr
1,n,t(β) = − 1

n

n∑
i=1

Dr
i

[
Zi,t ln

(
π(xi,β)

1− π(xi,β)

)
+ ln (1− π(xi,β))

]
(25)

is the opposite of the log likelihood and where, as in Section 2.5, the conditional probability

π
(
βr,t,x

)
= P[Zr

t = 1|x] is supposed to be of a probit or logit shape.

Function Ψr
2,n,t(θ) to be minimized is a least squares criterion

Ψr
2,n,t(θ) =

1

n

n∑
i=1

Zi,tD
r
i

(
(Yi,t − Yi,0)− x⊤

i θ
)2

. (26)

Assuming that
∑n

i=1D
r
iZi,txix

⊤
i is a full rank matrix (which is true with high probability, as

seen in Section 3.4 under hypothesis (Hr
6,t)), function Ψr

2,n,t has a unique minimizer,

̂̃
θr,t =

(
n∑

i=1

Dr
iZi,txix

⊤
i

)−1( n∑
i=1

Dr
iZi,txi(Yi,t − Yi,0)

)
. (27)

Replacing the unknown parameters in the expression of ATEr(t,x) given in Proposition 3.1

by their estimators, we get the estimate

ÂTE
r
(t,x) =

(
π(x, β̂r,t)

̂̃
θr,t − π(x, β̂0,t)

̂̃
θ0,t

)⊤
x (28)

for the conditional average treatment effect at time t for treatment r.

3.4 Consistency of the estimated conditional treatment effect

We assume in the following that, for t ≥ tτ ,

(H5,t)
(
Y 0
t − Y0, . . . , Y

R−1
t − Y0

)
⊥⊥
(
D0, . . . , DR−1

)
| x.

13



Condition (H5,t) is a classical conditional independence assumption in the econometric lit-

erature on policy evaluation and multiple treatment effects. With (20) and (Hr
4,t), it implies

that

(ϵ0,t − ϵ0, . . . , ϵR−1,t − ϵ0) ⊥⊥
(
D0, . . . , DR−1

)
| x (29)

and

(Z0
t , . . . , Z

R−1
t ) ⊥⊥

(
D0, . . . , DR−1

)
| x. (30)

We denote by πr
t (x) = P [DrZr

t = 1|x] the probability of receiving treatment r and that Y r
t −Y0

is different from zero, given x. Note that if Dr
i = 1, we only observe Zr

i,t and Y r
i,t − Yi,0 for the

unit i in the sample. Hypothesis (H5,t) implies that the distribution of Zr
t given x is independent

on Dj , for j ∈ {0, . . . , R − 1}. Note that when (H5,t) holds and model (20) is true, we have

πr
t (x) = π(x,βrt)P [Dr = 1|x].

We also assume that the following assumption holds,

(H6,t) E
(
πr
t (x)xx

⊤
)
= Qr

t where Qr
t is a non-singular matrix, r = 0, . . . , R− 1.

Condition (H6,t) is fulfilled under the classical assumption that E
(
xx⊤) is a full rank matrix

and πr
t (x) > 0 almost surely. This identifiability condition ensures the existence of a unique

estimator
̂̃
θr,t when the sample size n is large enough. It also implies that P[Dr = 1] > 0, for

r = 0, 1, . . . , R− 1.

We can now state the consistency and asymptotic normality of the estimators of the param-

eters defined in models (20) and (22).

Proposition 3.2. Suppose that model (19) holds. Assume also that hypotheses (H4,t), (H5,t),

and (H6,t) are fulfilled. Then as n tends to infinity,

̂̃
θr,t − θ̃r,t = op(1).

If P[Zr
t = 1|x] = π (x,βrt) is of a probit or logit shape, we have, as n tends to infinity,

β̂r,t − βr,t = op(1).

and

√
n





̂̃
θ0,t̂̃
θr,t

β̂0,t

β̂r,t

−


θ̃0,t

θ̃r,t

β0,t

βr,t



⇝ N

0,

Γr
θ,t 0

0 Γr
β,t

 ,

where Γr
θ,t is the block diagonal asymptotic covariance matrix of

√
n(
̂̃
θ0,t − θ̃0,t,

̂̃
θr,t − θ̃r,t) and

Γr
θ,t is the asymptotic covariance matrix of

√
n(β̂0,t − β0,t, β̂r,t − βr,t).
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We deduce the following corollary from previous Proposition.

Corollary 3.3. Under the assumptions of Proposition 3.2 as n tends to infinity and for all x ∈ Rp

we have

ÂTE
r
(t,x)−ATEr(t,x) = op(1).

Furthermore, if (βr,t, θ̃r,t) ̸= (β0,t, θ̃0,t),

√
n
(
ÂTE

r
(t,x)−ATEr(t,x)

)
⇝ N (0,∆r

t (x))

for some covariance matrix ∆r
t (x).

The proof of Corollary 3.3 is a direct consequence of the continuous mapping theorem and

the Delta method. It is thus omitted.

The expression for the asymptotic variance ∆r
t (x) of ÂTE

r
(t,x) can be derived with the delta

method. It is complicated and not given here. As in Section 2.5, paired bootstrap approaches are

not difficult to employ and give reliable (and consistent) confidence intervals since the estimators

are obtained as minimizers of Ψr
n,t(β,θ), which is a twice differentiable convex functional.

4 A simulation study

To illustrate with a very simple example the effect of zero inflation on the expected value of

the response variable and to check the ability of paired bootstrap procedures to produce reliable

confidence intervals, we consider the following toy model. A time t0, we suppose that the outcome

variable satisfies, for i = 1, . . . , n,

Yi,0 = θ0 + θxi,0 + ci + ϵi,0,

whereas at time t1 > t0, we observe

Yi,1 =

 Yi,0 with probability 1− π(xi,1 − xi,0, β0, β)

θ1 + θxi,1 + ci + ϵi,1 with probability π(xi,1 − xi,0, β0, β)

We thus have that

E [Yi,1 − Yi,0|xi,0, xi,1] = π(xi,1 − xi,0, β0, β)× (θ1 − θ0 + θ (xi,1 − xi,0)) (31)

We generate artificial data as follows. The variation xi,1−xi,0 are independent and uniformly

distributed in the interval [−2, 2]. The error terms ϵi,1−ϵi,0 are independent normally distributed

random variables with mean 0 and variance σ2
ϵ = 0.5. The probability of variation is described

by the following probit model :

π(xi,1 − xi,0, β0, β) = P [β0 + β(xi,1 − xi,0) + ν > 0]
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where the distribution of ν is a standard Gaussian, independent of ϵ. The constant terms θ̃0 =

θ1 − θ0 and β0 are both equal to 1, while the slope parameters θ and β take different values

corresponding to different scenarios. Hypothesis (H1t), for t = 1, as well as hypothesis (H2) are

satisfied, noting that

Qπ = E

π(x1 − x0, β0, β)

1 0

0 (x1 − x0)
2


is a definite positive matrix.

We generate data considering different values for θ, with θ ∈ {2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2},

while β = 2 and draw, in Figure 3, the expected variation of the outcome given in (31), non linear

estimates obtained with (17), as well as linear estimates based on the empirical version of (9)1.

Pointwise confidence intervals, with 95% confidence, built via the bootstrap procedure described

below (see also Section 2.5) are also drawn in Figure 3.

The algorithm is the following, based on B = 1000 bootstrap replications:

• Repeat for b = 1 to b = B

– Draw from the initial sample a paired bootstrap sample,

(Y ∗
1,0, Y

∗
1,1, x

∗
1,1−x∗1,0), . . . , (Y

∗
n,0, Y

∗
n,1, x

∗
n,1−x∗n,0) with equal probability sampling with

replacement.

– Estimate, with probit and OLS, the conditional probability of not observing zero and

the continuous part of the zero-inflated model, respectively, and then compute, as

in (17), the estimated expected value ∆̂Y
b
= π(x, β̂

b
)(θ̂

b
)⊤x.

Then, non-parametric bootstrap confidence intervals with confidence α are built by considering

the quantiles of order α/2 and 1− α/2 for the estimated expected value.

===== Figure 3 =====

It clearly appears from the plots in Figure 3 that the zero-inflated phenomenon can produce

very different functional relations depending on the parameters β and θ. When β and θ have

the same sign the relation is monotonic, otherwise, when they have opposite signs, the resulting

relation can also be non-monotonic. Clearly, as β (resp. θ) gets closer to 0 the resulting relation

approaches linearity (resp. a probit shape).

1Additional results obtained by considering other values for β, are available upon request.
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As far as the estimation is concerned, the proposed estimator, which handles the zero inflation,

provides a very faithful description of the underlying DGP. Additionally, the true underlying

relation is always within the bootstrapped bands, which closely follow the DGP. In contrast, the

linear model always provides misleading results, and in particular, when the underlying relation

is non-monotonic it clearly provides a senseless fit.

By considering samples with moderate sizes, n = 200, we also evaluate the ability of the

bootstrap procedure to build reliable confidence intervals. Results are plotted in Figure 4, for a

nominal level of 1− α = 0.95. We note that irrespective of the values of the parameters β and θ,

the empirical coverages are most often very close to the nominal ones. The only exception is when

X is in the range between −2 and −1, where the empirical coverage is about 0.9. Overall, these

results offer evidence of the validity of the non-parametric bootstrap in the proposed zero-inflated

framework even in the case of a small sample size.

===== Figure 4 =====

5 Empirical illustrations

5.1 Mincer wage equation

In this subsection, we revisit the classical problem of estimating a wage equation with panel

data and then provide evidence that standard approaches, which exploit individual differencing

over time such as long difference (LD) and first difference (FD) estimators, suffer from a bias in

presence of the zero-inflated phenomenon previously described and that the bias is sizeable, even

when the fraction of observations equal to zero is relatively small.

We consider the dataset described in Baltagi and Khanti-Akom (1990), which was described in

Section 2, where long-differenced variable of the dependent variable log (WAGEi,t)−log (WAGEi,0)

takes has a distribution that can be approximated by a mixture of a mass at 0 and a continuous

density function, whose support is defined over both positive and negative values. As far as the

explanatory variables are concerned, in addition to years of education (edu) and full-time work

experience (exp), this dataset also contains the number of weeks worked (wks) and some dummy

variables: occupation (occ = 1 if the individual is a blue-collar worker), industry (ind = 1 if

the individual works in manufacturing), geographical location (south = 1 and smsa = 1 if the

individual resides in the south and in a metropolitan area, respectively), marital status (ms = 1 if

the individual is married), union coverage (union = 1), sex (fem = 1 if the individual is female),

and race (blk = 1 if the individual is black).
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The Mincer wage equation is the cornerstone of a huge literature in empirical economics, prob-

ably because it is derived from a theoretical model of schooling choice and post-schooling training

decisions, because it is simple enough, and because it captures reality quite well (Card, 1999).

Previous studies have extensively discussed the empirical validity of this specification and its im-

plications (Heckman et al., 2006). A relevant debate has emerged regarding functional form and

the adoption of a quadratic form for experience. In particular, according to Murphy and Welch

(1990) the quadratic specification provides a poor approximation of the underlying concave func-

tion as it overstates initial earnings, overstates earnings at mid-career, and understates earnings

at retirement. Using higher-order polynomial functions was subsequently proposed (Lemieux,

2006), and, more recently, studies adopting non-parametric regression models have provided fur-

ther interesting insights. For example, Henderson and Souto (2018) provide evidence of a concave

but monotonic relation using both splines and kernels, which is consistent with the main findings

of Murphy and Welch (1990).

To estimate the model, we consider the framework given in equations (1), (2) and (3) and

then apply the proposed estimator. Such a framework, as the standard unobserved effects panel

data model, allows for arbitrary correlation between the unobserved effects and the observed

explanatory variables but does not allow for identifying the effect of education and other time-

invariant variables. Therefore, as an illustrative example we focus our attention on the effect of

experience.

As far as functional form is concerned, we adopt a log-log specification. This choice provides

a number of relative advantages. First, it allows for the identification of the parameter of work

experience when time dummies are introduced into the model, while the log-level specification

does not. Indeed, while expi,t = ai + t is perfectly collinear with respect to the time dummies,

log(expi,t) is not as log(ai+t) ̸= log(ai)+log(t). Second, the log-log specification also encompasses

a variety of non-linear relations between WAGE and exp, and in particular, it may allow for a

decreasing marginal return of experience. We are not claiming that the log-log model provides

the best approximation to the underlying function, but we adopt it because it is consistent with

a concave and monotonic relation, as suggested by the literature discussed above, and it is simple

enough for our illustration purposes. The estimation results are presented in Table 1. In column

(i), for the sake of comparison with the proposed approach that exploits long differences (i.e. the

difference between time t and time t0), we give the estimated values of the parameters considering

the standard LD estimator. This estimator, which has a long tradition in panel data econometrics

as it was initially proposed to address the errors in variable problem (Griliches and Hausman,

1986) and then was considered in a variety of situations (Hahn et al., 2007; Hanlon and Miscio,

2017; Behaghel et al., 2014; Segú, 2020), assumes a continuous density function and, under the
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zero-inflated phenomenon described by (1), (2) and (3), it is generally a biased estimator of πθ

unless π(xt,βt) = π does not depend on xt. As we will see below, in this empirical application

the conditional probability of observing zero is significantly affected by some of the explanatory

variables that are in the continuous part of the model.

Our main goal is to recover partial effects (PEs, see (8)) and average partial effects (APEs)

of the considered zero-inflated model, which is intrinsically non-linear. The vector of unknown

parameters θ is estimated by applying the estimator described by equation (16), which it is

referred to as subset estimator, while the conditional probability π(xt,βt) and the partial effects

from the binary model ∂π(xt,βt)
∂xt

can be obtained by adopting either a probit or a logit regression

model. For sake of simplicity we here assume that βt = β ∀t.

When estimating a binary response regression model with panel data, one would ideally es-

timate the quantities of interest without putting restrictions on the conditional distribution of

the unobserved effects given the explanatory variables, D (ci | X = xi). However, the standard

fixed effects approach that consists in viewing the components ci as parameters to be estimated

provides inconsistent estimates of the parameters for a fixed T and a sample size n growing to

infinity, because of the incidental parameter problem (Neyman and Scott, 1948).2 Interestingly,

in the logit case only is it possible to allow ci and xi to be arbitrarily related, by adopting a

similar strategy that is used in the linear framework to eliminate ci from the estimating equa-

tion. This approach leads to considering a conditional maximum likelihood estimator (CMLE).

Unfortunately, PEs are not identified. Therefore, we instead consider a correlated random effects

(CRE) framework (see, for example, the seminal work by Mundlak, 1978), which places some

restrictions on D (ci | xi), and adopt the Chamberlain CRE probit model (Chamberlain, 1980).

Wooldridge (2010) proposes both a joint and a pooled MLE. We specifically adopt the pooled

MLE, which is a simple probit model supplemented with time averages of the continuous ex-

planatory variables. Beyond its simplicity, while the joint MLE is not robust to the violation of

the conditional independence assumption, meaning that serial independence of the idiosyncratic

shocks is needed for consistency, the pooled MLE is robust to such a violation, serial dependence

can be handled by standard robust inference, and obtaining PEs is straightforward.

===== Table 1 =====

The results are as follows. When considering the standard LD estimator and assuming a

continuous density function (i), the estimated coefficient of log(expi,t) is .183 (s.e.=0.037), sug-

2Fernández-Val and Weidner (2016) propose bias corrections for panels where both n and T are moderately

large.
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gesting a concave monotonic wage–experience relation (i.e., diminishing returns to experience).

This result is close to what is obtained by employing the FD estimator, which is equal to 0.191

(s.e.=0.036) and is broadly consistent with the above-cited literature, which mainly exploits cross-

sectional data. Comparing this result with that obtained without including the time effects may

provide some interesting insight into the possible bias that arises because of the omission of time-

related factors. In that case, the estimated coefficient of log(expi,t) increases up to 0.817 (0.822 for

the FD estimator) indicating an almost linear wage–experience relation and suggesting a sizeable

omitted common factors bias. When the model does not contain time effects, we can also apply

the long difference estimator to a typical Mincer log-level equation that contains experience and

its square as regressors instead of the logarithm of experience. In this case, the LD estimator

provides estimates of the coefficients of experience and of its square equal to 0.118 and −0.0005,

respectively (0.116 and −0.0005, for the FD), which suggests an unsatisfactorily increasing ex-

ponential relation between wage and experience, thus reinforcing the idea that including time

effects in the econometric specification is of crucial empirical relevance.

However, even if time effects are included, the standard LD estimator assuming an underlying

continuous response may suffer from a bias because of the zero-inflation phenomenon. From the

probit regression Model (iii), it emerges that log(expi,t) also significantly affects the conditional

probability π(x,β), i.e., the conditional probability of observing zero (i.e., a null variation in

wages), with an estimated APE equal to −0.27. From the probit model, we can also observe that

other factors have a significant effect. These factors are south, union, both positively affecting

the conditional probability, with estimated ATEs equal to 0.026, 0.022, respectively, and edu,

which instead has a positive effect, with an estimated ATE equals to 0.003. Estimating the

probit Model (iii) not only provides the basis for the computation of the PEs of the zero-inflated

model but also gives interesting insight from an economic viewpoint.

We finally compute the PE of log(exp) according to (8). It is found that the proposed mixture

model provides a PE of log(exp) that is highly heterogeneous across cross-sectional units, ranging

from -1.073 to 0.191, with an estimated APE equal to 0.039, which is very far with respect to the

value of 0.182 that has been obtained by employing the standard LD estimator. Moreover, the

kernel density estimate of such a PE (Figure 5) indicates a very asymmetric distribution having a

mode equals to 0.169, with a negative PE for about 25% of the observations, and with the fourth

quantile that is concentrated in a very dense portion of the domain, i.e. between 0.190 and 0.191.

===== Figure 5 =====

These results suggest i) a sizeable overestimation of the APE when erroneously adopting
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standard approaches that exploit individual differencing over time (FD and LD) and that, ii) in

any case, assuming an underlying continuous response does not allow capturing the heterogeneity

of the PE that is due to the zero inflation.

5.2 Program evaluation of rural development policies in France

5.2.1 Description of the programs, variables, and ATEs of interest

We exploit the data by Cardot and Musolesi (2020), which contains information on french rural

policies, employment and other socio-economic variables. In France, enterprise-zone programs

have been implemented to boost job creation. Such policies are based on fiscal incentives to firms

located in deprived areas. Specifically designed to boost employment in rural areas, the ZRR

(Zones de Revitalisation Rurale) program started the 1st of September, 1996, and covered the

1996–2004 period. At a supranational level, territorial cohesion, convergence, and a harmonious

development across regions are among the objectives the European Union tries to pursue through

these structural funds. Specifically devoted to boosting rural development, the objective 5B

programs (1991–1993 and 1994–1999) allocated financial subsidies to firms and public actors

located in eligible “rural areas in decline”. A notable feature of both programs is that the

selection process of the treated units was clearly not random, and sources of selection on both

observables and unobservables are expected to be relevant.

Municipalities are the statistical units of analysis, and the dependent variable Yi,t is the

number of employees at time t. This variable has been observed over a period of ten years,

from 1993 to 2002. As policy variables, we use ZRR zoning during the period and 5B zoning

over the 1994–1999 period. The set of confounding variables comes from the French census of

1990 and cover information on demographics, education, and work qualifications aggregated at

the municipality level. The data set also contains information on land use, obtained thanks

to satellite images that were also taken in 1990. These variables are indicated as relevant by

the related literature on local employment growth. The use of pre-treatment covariates aims at

ensuring that D causes x and Y causes x does not occur (Lechner, 2011; Lee, 2005). Another

relevant variable that is worth mentioning is the initial level of employment. Including the

initial outcome as a regressor implies assuming unconfoundedeness given a lagged outcome. This

inclusion avoids an omitted variable bias, which would be particularly relevant if the average

outcome of the treated and control groups differ substantially in the first period (Imbens and

Wooldridge, 2009), as in this case.

We focus on the assessment of ZRR and 5B as well as their joint effect and thus adopt a frame-
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work with R = 4 multiple potential outcomes. These potential outcomes are associated with the

potential treatments {0, ZRR, 5B,ZRR&5B} indicating the program in which each municipality

actually participated. The modality 0 indicates that the municipality was not endowed with

either policy measure, whereas ZRR (respectively, 5B) indicates that the municipality received

incentives only from the ZRR initiative (respectively, only from the 5B initiative) and ZRR&5B

indicates that the municipality received incentives from both ZRR and 5B. Specifically, we focus

on the estimation of the following ATEs:

ATE5B(t,x) = E
(
Y 5B
t − Y 0

t |xi

)
,

ATEZRR&5B(t,x) = E
(
Y ZRR&5B
t − Y 0

t |xi

)
.

As far as the effect of ZRR is concerned, it can be noted that only a few municipalities (pre-

cisely 722) are treated. Consequently, we prefer to focus our attention on the 7014 municipalities

that received incentives both from 5B and ZRR, and we calculate the following differential effect:

ATEZRR(t,x) = E
(
Y ZRR&5B
t − Y 5B

t |xi

)
.

This differential effect simply represents the expected difference between the outcome when a

municipality receives incentives both from ZRR and 5B and when it receives incentives only from

5B.

As for the pre-treatment period t0, we set t0 = 1993, which is before the introduction of

both policies. When setting t, in principle we could use all of the available information in the

data. In particular, by setting t = 1994, 1995 we could conduct placebo tests on ZRR, which

was introduced in 1996, and use the remaining time periods, t = 1996, ..., 2002, to estimate the

temporal treatment effects for ZRR and 5B as well as their interaction, as in Cardot and Musolesi

(2020). With the aim of providing an illustration of the proposed approach, we set t = 1999,

which is the last time period under the 5B program.

5.2.2 Estimation results and comparison with the continuous response model

In this subsection, we compare the estimated values of the ATEs defined in (28) obtained with the

proposed mixture approach with those obtained with a naive method that does not account for

the mass at zero and only assumes a continuous response model (Imbens and Wooldridge, 2009).

This may provide relevant insight into the size of the bias when neglecting the zero-inflation

feature of the data. We consider alternative specifications for the regression function (19), which

are presented in more detail below. The estimation results are presented in Table 2.

We first follow a common practice in the econometric literature that consists in adopting

a linear specification for the confounding variables and assuming that only the intercept varies
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between treated groups, while the slope parameters do not (Model (i)). This is a simple extension

of the DID estimator that allows for temporal policy effects and takes account of linear effects

of the initial conditions (Abadie, 2005). We consider the same set of variables as in Cardot

and Musolesi (2020). We then consider more flexible models. In the second model (Model

(ii)), because the linearity assumption is strong and a misspecification of the relation between

Y r(t) for r ∈ {0, ZRR, 5B,ZRR&5B} and the regressors may lead to incorrect results and a

misinterpretation of the policy effect, we allow for non-linear effects of the confounding variables.

This is achieved by adopting natural cubic regression splines, i.e., piecewise-cubic splines with

the constraint that they are linear in their tails beyond the boundary knots, which are generally

preferred to cubic splines because of less problematic edge effects (Harrell Jr, 2015). This also

makes the underlying identification conditions less restrictive (Lechner, 2011). Finally, in the

third model (Model (iii)), we rely on a linear regression model, but it is assumed that both the

intercepts and the slope parameters of some confounding variables vary between treated groups

(see, for example, Heckman and Hotz, 1989, eq. 3.9). Following Cardot and Musolesi (2020), we

retain only two significant interactions of the policy variable: the first one with the initial level of

employment (variable size) in the municipality and the second one with its population density

(variable density).

In order to build confidence intervals, we consider the non-parametric bootstrap approach

to approximate the distribution of the conditional counterfactual outcome of each municipality

i having the characteristic xi. We draw B = 1000 bootstrap samples, and for each bootstrap

sample b, with b = 1, . . . B, we make the following estimation of the ATE (see (28)):

ÂTE
r,b
(t,x) =

(
π(x, β̂

b

r,t)
̂̃
θ
b

r,t − π(x, β̂
b

0,t)
̂̃
θ
b

0,t

)⊤
x

Bootstrap confidence intervals are then deduced using the percentile method.

Average treatment effects When comparing the proposed conditional mixture model with

the naive DID model, it can be noted in Table 2 that accounting for a mass of observations at

zero increases the estimated ATEs by about 5%–10%. This happens for the three specifications

considered (Models (i), (ii), and (iii)), providing robust evidence that accounting for the mass of

observations at zero is important to avoid a significant underestimation of the average effect of

the policies.

===== Table 2 =====
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Distributional treatment effects The results discussed above hide another important feature

of the proposed mixture model. Indeed, a relevant consequence of the model described in equation

(19) is that even though it is assumed that only the intercept varies between treated groups,

while the slope parameters do not, as in Models (i) and (ii), the resulting treatment effects are

heterogeneous across individuals according to (23). Distributional treatment effects are reported

in Table 3.

===== Table 3 =====

First, by focusing on Models (i) and (ii) it can be noted that when handling the zero-inflated

phenomenon, the estimated treatment effects vary greatly across units, with the estimated treat-

ment effects for the 99th percentile often being more than twice those of the 1st percentile, while

the estimated treatment effects based on a continuous response model obviously do not vary

across units.

When focusing on Model (iii), we can note that the estimated treatment effects vary across

units even more than those obtained from Models (i)−−(ii) but the distribution of the estimated

treatment effects is similar when comparing the two estimators. This feature, however, does not

ensure that at an individual level the two approaches provide similar estimates. With the aim of

highlighting possible individual differences between the estimates obtained with the two methods,

we build a new variable defined as the relative change between the treatment effect obtained

from the zero-inflated approach (t̂ezri ) and that obtained from the naive estimator (t̂enr
i ). The

variable is defined as r̂cri =
(
t̂ezri − t̂enr

i

)
/t̂enr

i , the estimated density functions of which—with

bandwidths selected using biased cross-validation—are depicted in Figure 6. For Models (i) and

(ii), all the estimated densities are left-skewed, with the mode around 0.15–0.2. For Model (iii),

the estimated densities are rather symmetric, with bimodal shapes in two cases out of three.

Overall, these results highlight that when focusing on distributional treatment effects (rather

than only focusing on the mean effect), the naive estimator faces a sizeable bias and the sign of

this bias can be either positive or negative.

===== Figure 6 =====
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6 Conclusion

In this paper, we introduce a statistical formalization combining a continuous response regression

model and a mass at zero in order to take account of the zero inflation phenomenon that may

occur when differences over time of the outcome variable are computed, for instance in order to

get rid of individual effects with panel data or for identification purposes in program evaluation.

We first focus attention on unobserved effects panel data models and we provide a mathemati-

cal approximation by means of conditional mixtures. Our estimators of the regression coefficients

are based on the subset on the subsample of units for which the dependent variable has non-

null variations and we derive its asymptotic properties under a specific conditional independence

assumption, which is likely to be satisfied in many empirical circumstances. The probability

of having no variation over time can be estimated thanks to usual binary regression models,

such as probit or logistic regression. We prove the asymptotic normality of the estimator that

combines both effects as well as consistency of the empirical bootstrap. We then study difference-

in-differences estimation under zero inflation and propose an estimator of the average treatment

effect that is proven to be consistent.

We also bring new evidence based both on simulated and real data. The simulated example

illustrates the effect of zero inflation on the expected value of the variation of the response variable,

and it clearly shows that the zero-inflated phenomenon can produce very different functional

relations that depend on the underlying parameters, whereas the linear model fails to provide a

faithful description of the underlying DGP. The simulation study also provides evidence of the

effectiveness of non-parametric paired bootstrapping with small samples.

Finally, we revisit two real data example and analyze with our statistical methodology a

classical Mincer wage equation as well the estimation of the ATE of two distinct public policies

that were devoted to boosting rural development in France. In both cases, the estimation results

provide additional insight into the usefulness of the proposed estimator and also indicate that

commonly used regression models, which are based on the assumption that the response variable is

continuous, may face a sizeable bias with respect to average effects and that, in any case, assuming

an underlying continuous density function does not allow for capturing the heterogeneity of PEs

that arises because of the non-linear shape of the zero-inflation model.

The present work could be extended in many directions. For instance, further studies may

consider instrumental variables estimation under zero inflation or may focus on more flexible non-

parametric regression models. These extensions are outside the scope of this paper and certainly

deserve further investigation.
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A Proofs

Proof. of Proposition 2.1
First note that, with (3),

θ̂ = θ +

(
1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x⊤
i,t

)−1(
1

n

n∑
i=1

T∑
t=1

Zi,t(ϵi,t − ϵi,0)∆xi,t

)
. (32)

Under assumption (H2), (
∑T

t=1 Zi,t∆xi,t∆x⊤
i,t), i = 1, . . . , n, are i.i.d with expectation Qπ. The

Khintchine’s weak law of large numbers gives us, as n tends to infinity,(
1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x⊤
i,t

)
−Qπ = op(1). (33)

The application of the continuous mapping theorem (see van der Vaart (1998), Theorem 2.3),
together with assumption (H2) which implies that inversion is continuous in a neighborhood of
Qπ, gives us (

1

n

T∑
t=1

Zi,t∆xi,t∆x⊤
i,t

)−1

−Q−1
π = op(1). (34)

We also have that, with the set of assumptions (H1,t), t = 1, . . . , T ,

E [Zi,t(ϵi,t − ϵi,0)∆xi,t] = E
(
E [Zi,t|xi,t,xi,0]E [ϵi,t − ϵi,0|xi,t,xi,0] ∆xi,t

)
= 0 (35)

and with the Khintchine’s weak law of large numbers, as n tends to infinity,

1

n

n∑
i=1

T∑
t=1

Zi,t(ϵi,t − ϵi,0)∆xi,t = op(1). (36)

We deduce, using the continuous mapping theorem, (34) and (36) that(
1

n

n∑
i=1

T∑
t=1

Zi,t∆xi,t∆x⊤
i,t

)−1(
1

n

n∑
i=1

T∑
t=1

Zi,t(ϵi,t − ϵi,0)∆xi,t

)
= op(1)

which proves, with decomposition (32), the first point of the proposition.

To get the asymptotic normality of θ̂, note that the random vectors
(∑T

t=1 Zi,t(ϵi,t − ϵi,0)∆xi,t

)
,

i = 1, . . . , n are i.i.d, with expectation 0 and variance-covariance matrix QZ,ϵ. We deduce from
the central limit theorem that

√
n

(
1

n

n∑
i=1

T∑
t=1

Zi,t(ϵi,t − ϵi,0)∆xi,t

)
⇝ N (0,QZ,ϵ) (37)

and with (32), (34) and Slutsky’s Lemma (see van der Vaart (1998), Proposition 2.8),

√
n
(
θ̂ − θ

)
⇝ N

(
0,Q−1

π QZ,ϵQ
−1
π

)
.
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Proof. of Proposition 2.2 The proof is based on classical arguments (see Newey and McFadden
(1994), Theorem 3.1), and relies on a Taylor expansion of the gradient of the objective function
Ψn as well as the conditional independence assumptions (H1,t), t = 1, . . . , T . We clearly have,
with the additive structure of Ψn given in (11), that the Hessian matrix is block diagonal, since,
for t = 1, . . . , T , and ν ̸= t,

∂2Ψn

∂βt∂θ
= 0

∂2Ψn

∂βt∂βν

= 0.

The gradient of Ψn being equal to zero at (θ̂, β̂1, . . . , β̂T ), we thus have

0 =


∂Ψn
∂θ
∂Ψn
∂β1
...

∂Ψn
∂βT

+


∂2Ψn

∂θ⊤∂θ
0 · · · 0

0 ∂2Ψn

∂β⊤
1 ∂β1

· · · 0

... 0
. . . 0

0 0 0 ∂2Ψn

∂β⊤
T ∂βT




θ̂ − θ

β̂1 − β1
...

β̂T − βT

 (38)

where the second order partial derivatives are evaluated componentwise, at points between (θ̂, β̂1, . . . , β̂T )
and (θ,β1, . . . ,βT ). On the other hand, we have with (4),

∂Ψn

∂θ
= − 2

n

n∑
i=1

T∑
t=1

Zi,t

(
∆cYi,t (xi,t − xi,0)− (xi,t − xi,0) (xi,t − xi,0)

⊤ θ
)

= − 2

n

n∑
i=1

T∑
t=1

Zi,t (ϵi,t − ϵi,0) (xi,t − xi,0) (39)

and, with (12),

∂Ψn

∂βt

= − 1

n

n∑
i=1

(Zi,tϕ1(xi,t,βt) + ϕ2(xi,t,βt))xi,t (40)

for some known continuous functions ϕ1(., .) and ϕ2(., .). At the true value (θ,β), we have

E
[
∂Ψn
∂θ

]
= 0 and E

[
∂Ψn
∂β

]
= 0, so that the covariance matrix of ∂Ψn

∂θ and ∂Ψn
∂β is equal to

E
[
∂Ψn
∂θ

∂Ψn

∂β⊤

]
. Conditioning on xt and Zt, for t = 1, . . . , T , we get

E
[
∂Ψn

∂θ

∂Ψn

∂β⊤ |xt, Zt, t = 1, . . . , T

]
= E

[
∂Ψn

∂θ
|xt, Zt, t = 1, . . . , T

]
E
[
∂Ψn

∂β⊤ |xt, Zt, t = 1, . . . , T

]
= 0 (41)

almost surely. Indeed, under assumption (H1,t) and decomposition (39), we have

E[Zt (ϵt − ϵ0) (xt − x0) |xt,x0, Zt] = Zt (xt − x0)E[ϵt − ϵ0|xt,x0, Zt]

= 0 almost surely.

Thus

E
[
∂Ψn

∂θ

∂Ψn

∂β⊤

]
= E

(
E
[
∂Ψn

∂θ

∂Ψn

∂β⊤ |xt, Zt, t = 1, . . . , T

])
= 0.

Consequently, the covariance matrix of the score vector is block diagonal and the asymptotic
covariance matrix of the estimators is also block diagonal.

30



Proof. of Proposition 2.3.
The first part of the Proposition is a direct consequence of Theorem 2.1 and Theorem 2.4 in
Bose and Chatterjee (2003), remarking that if we assume that the link function for π(x,β) has a
logit or probit shape, the objective function Ψn

(
θ,β; (Yi,0, . . . , Yi,T ,xi,0, . . . ,xi,T )

n
i=1

)
is a convex

function, in (θ,β) that is also twice differentiable. The Hessian matrix is positive definite at the
true value of the parameter (θ,β) thanks to hypotheses (H2) and (H3,t) t = 1, . . . , T .

The second part of the proof is a direct consequence of the delta method for bootstrapped
estimates (see Theorem 23.9 in van der Vaart (1998)) considering the function π(x,β)θ⊤x, which
is differentiable with respect to (θ,β).

Proof. of Proposition 3.2.
We follow the same lines as the proof of Proposition 2.1 and thus omit some details. First note

that our estimators (
̂̃
θ0,t,

̂̃
θr,t, β̂0,t, β̂r,t) are defined as the minimizers of the functional

Ψn(θ0,θr,β0,βr) = Ψ0
1,n,t(β0) + Ψr

1,n,t(βr) + Ψ0
2,n,t(θ0) + Ψr

2,n,t(θr).

It is thus straightforward, under hypotheses (H4,t), (H5,t), and (H6,t) to get that the regression

parameters are consistent. As n tends to infinity,
̂̃
θ0,t − θ̃0,t = op(1) and

̂̃
θr,t − θ̃r,t = op(1).

As far as β0,t and βr,t are concerned, their maximum likelihood estimators do not come from
a standard maximum likelihood framework because the number of observations (the sample size),
nr(n) =

∑n
i=1D

r
i is not deterministic. If nr was not random, we would directly get under previ-

ous assumptions that the maximum likelihood estimator of βr,t is consistent and asymptotically
Gaussian. Note that in our random number of observations case, we have, with expression (25),
that for all βr ∈ Rp,

E
[
Ψr

1,n,t(βr)
]
= −E

(
Zr
t ln

(
π(x,βr)

1− π(x,βr)

)
+ ln (1− π(x,βr)) |Dr

t = 1

)
P[Dr

t = 1]. (42)

By assumption H5,t we have, given Dr
t = 1,

P [Zr
t = 1|x] = π(x,βr,t)

so that, with assumption (H6,t),

E
[
Ψr

1,n,t(βr)
]
= −E

(
π(x,βr,t) ln

(
π(x,βr)

1− π(x,βr)

)
+ ln (1− π(x,βr)) |Dr = 1

)
P[Dr = 1]

> E
[
Ψr

1,n,t(βr,t)
]
,

for all βr ̸= βr,t (see e.g Lemma 2.2 in Newey and McFadden (1994)). We also get, with the
strong law of large numbers that for all βr ∈ Rp,

Ψr
1,n,t(βr)− E

[
Ψr

1,n,t(βr)
]
→ 0, almost surely

and we can deduce, by Theorem 2.7 in Newey and McFadden (1994) that the sequence β̂r,t of
minimizers of Ψr

1,n,t tends to βr,t almost surely.
For the asymptotic normality, first observe from (19) and (27) that(̂̃

θr,t − θ̃r,t̂̃
θ0,t − θ̃0,t

)
=

(
(Qr

n,t)
−1 0

0 (Q0
n,t)

−1

)( 1
n

∑n
i=1D

r
iZi,txi(ϵ

r
i,t − ϵi,0)

1
n

∑n
i=1D

0
iZi,txi(ϵ

0
i,t − ϵi,0)

)
(43)

with Qr
n,t = 1

n

∑n
i=1D

r
iZi,txix

⊤
i . The strong law of large numbers gives directly that Qr

n,t −
Qr

t = oP (1) as n tends to infinity. The random vectors (D0
iZi,txi(ϵ

0
i,t − ϵi,0), D

r
iZi,txi(ϵ

r
i,t − ϵi,0)),
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i = 1, . . . , n are i.i.d copies of (D0Ztx(ϵ
0
t − ϵ0), D

rZtx(ϵ
r
t − ϵ0)), and

E
(
D0Ztx(ϵ

0
t − ϵ0)

)
= E

[
E
(
D0Zt(ϵ

0
t − ϵ0)|x

)
x
]

= E
[
E
(
D0|x

)
E(Zt

(
ϵ0t − ϵ0)|x

)
x
]

with H5,t

= E
[
E(D0|x)E(Zt|x)E(ϵ0t − ϵ0)|x)x

]
with H4,t

= 0. (44)

For r ̸= 0, we have

Cov
(
(D0Ztx(ϵ

0
t − ϵ0)x, D

rZt(ϵ
r
t − ϵ0)x

)
= E

[
D0DrZt(ϵ

0
t − ϵ0)(ϵ

r
t − ϵ0)xx

⊤
]

= 0 (45)

because D0Dr = 0 almost surely. The Central Limit Theorem and Slutsky’s Lemma allow to
conclude that

√
n

((̂̃
θ0,t̂̃
θr,t

)
−

(
θ̃0,t

θ̃r,t

))
⇝ N

(
0,Γr

θ,t

)
,

with Γr
θ,t a block diagonal covariance matrix.

Note that the asymptotic normality of
√
n
(
β̂r,t − βr,t

)
is based on an application of Theorem

3.3 in Newey and McFadden (1994) for probit regression, with asymptotic variance given by

Γr
t =

1

P[Dr = 1]

[
E
(
λ(β⊤

r,tx)λ(−β⊤
r,tx)xx

⊤|Dr = 1
)]−1

where λ(u) = Φ′(u)/Φ(u), u ∈ R. In case of logistic regression, it can be deduced from Theorem
5.1 in Hjort and Pollard (2011) that

Γr
t =

1

P[Dr = 1]

[
E
(
π(x,βr,t)(1− π(x,βr,t))xx

⊤|Dr = 1
)]−1

.

For the joint normality, we have, with (25), that

∂Ψr
1,n,t

∂βr

= − 1

n

n∑
i=1

Dr
i (Zi,tϕ1(xi,βr) + ϕ2(xi,βr))xi (46)

for some known continuous functions ϕ1(., .) and ϕ2(., .). We thus get, for r and κ in {0, 1, . . . , R−
1},

E
[
∂Ψr

1,n,t

∂βr

∂Ψκ
2,n,t

∂θ⊤
κ

]
=

2

n
E
[
DrDκ (Ztϕ1(x,βr) + ϕ2(x,βr))Zt

(
(Y κ

t − Y0)− x⊤θκ

)
xx⊤

]
(47)

Previous expression is clearly equal to 0 when r ̸= κ since DrDκ = 0 for r ̸= κ. When r = κ, the
covariance evaluated at the true value (θ̃r,t,βr,t) is equal

E
[
∂Ψr

1,n,t

∂βr

∂Ψr
2,n,t

∂θ⊤
r

]
=

2

n
E
[
DrZt

(
Ztϕ1(x,βr,t) + ϕ2(x,βr,t)

) (
(Y r

t − Y0)− x⊤θ̃r,t

)
xx⊤

]
=

2

n
E
[
DrZt (Ztϕ1(x,βr) + ϕ2(x,βr)) (ϵ

r
t − ϵ0)xx

⊤
]

= 0, (48)

thanks to (20) and assumptions (H4,t) and (H5,t). This implies that the asymptotic covariance
matrix is block diagonal.
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B Appendix: description of the variables

We present here the variables that were considered in Section 5.2. A detailed description of the

definition of these variables as well as some descriptive statistics can be found in the Appendix

of Cardot and Musolesi (2020).

The dependent variable Yi,t corresponds to the number of employees at time t for municipality

i. The socio-economic and demographic variables come from standard INSEE sources while the

variables measuring land use have been obtained from the “Corine Land Cover” base. By starting

from a set of sixteen possible explanatory variables, the final set of variables, which were selected

by employing a backward variable selection procedure, contains the following eleven variables:

• size≡ Yt0 is the initial outcome, i.e the level of employment at t0, with t0 equals to 1993.

• density≡ (total population) /
(
total surface in terms of km2

)
;

• income≡ (net taxable income) / (total population) ;

• old≡ (population over 65 ) / (total population) ;

• fact≡ (number of factory workers) / (total population);

• bts≡ (number of people with a technical degree called “Brevet de Technicien Supérieur”)
(total population) ;

• agri≡ (farmland surface) / (total surface);

• cult≡ (cultivated land surface) / (total surface);

• urb≡ (urban surface) / (total surface);

• ind≡ (industrial surface) / (total surface);

• ara≡ (arable surface) / (total surface);

where the total surface and the total population should be understood within the considered

municipality.
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Figure 1: The estimated distribution of log (WAGEi,1) − log (WAGEi,0). The probability
of a mass at zero is estimated by the proportion of observations such that log (WAGEi,1) −
log (WAGEi,0) = 0 (indicated by the circle). We also consider a continuous density estimation of
log (WAGEi,1)− log (WAGEi,0) ̸= 0 thanks to a kernel estimator; BCV: biased cross-validation
(see Sheather, 2004; Silverman, 1986).
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Figure 2: The estimated distribution of EMPi,1 − EMPi,0 with t0 = 1993. The probability
of observing no variation is estimated by the proportion of observations such that EMPi,1 −
EMPi,0 = 0. The vertical bars represent the probability of observing a given value when EMPi,1−
EMPi,0 ̸= 0. We also consider a continuous density estimation of EMPi,1 −EMPi,0 ̸= 0 thanks
to a kernel estimator; BCV: biased cross-validation (see Sheather, 2004; Silverman, 1986).
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Figure 3: Simulation. Sample size n = 200. The vertical axis represents
E [Yi,1 − Yi,0|xi,0, xi,1] = π(xi,1−xi,0, β0, β)×(θ1 − θ0 + θ (xi,1 − xi,0)) where π(xi,1−xi,0, β0, β) =
P [β0 + β(xi,1 − xi,0) + ν > 0] for different values for θ, with θ ∈ {2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2},
and β = 2. Bootstrap confidence intervals are built by considering the percentile approach over
1000 replications.
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Figure 4: Empirical coverage. Sample size n = 200 and nominal level of 1−α = 0.95 for different
values for θ, with θ ∈ {2, 1, 0.6, 0.2,−0.2,−0.6,−1,−2}, and β = 2.
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Figure 5: The estimated distribution of the partial effect of log(EXP ) in the wage equation from
the zero-inflated model. Bandwidth selected using biased cross-validation.
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Figure 6: The estimated distribution of the relative change between the treatment effect obtained
using the zero-inflated approach and the one obtained adopting the naive estimator. Bandwidth
selected using biased cross-validation.
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CONTINUOUS RESPONSE CONDITIONAL MIXTURE MODEL

(i) (ii) (iii)

Continuous part Discrete part

LD - whole sample LD - subset sample CRE Probit - Pooled MLE
Coefficient Coefficient Coefficient APE

log(exp) 0.183*** 0.191*** -4.708*** -0.270***
(0.037) (0.036) ( 1.111) (0.060)

log(wks) 0.026 0.027 -0.507 -0.029
(0.024) (0.024) (0.639) (0.036)

occ -0.017 -0.016 0.169 0.009
(0.022) (0.023) (0.122) (0.006)

ind 0.044* 0.045* 0. 111 0.006
(0.026) (0.026) (0.104) (0.005)

south -0.058 -0.060 0.454*** 0.0260***
(0.079) (0.080) (0.115) (0.006)

smsa -0.064 -0.066 -0.010 -0.010
(0.042) (0.042) (0.122) (0.006)

ms -0.056* -0.056* -0.394* -0.022*
(0.029) (0.029) (0.218) (0.012)

union 0.053** 0.051* 0.385*** 0.022***
(0.027) (0.027) ( 0.142) (0.008)

fem -0.300 -0.0172
(0.277) (0.016)

blk 0.076 0.004
(0.230) (0.013)

edu -0.061** - 0.003**
(0.024) (0.001)

All specifications include a full set of time dummies.
The standard errors of the estimated coefficients (in brackets) are robust to arbitrary serial correlation.
The standard errors of the APEs in the CRE probit model are obtained using the delta method.
***, **, *: significant at 1%, 5%, and 10% level, respectively.

Table 1: Wage equation
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CONTINUOUS RESPONSE MODEL CONDITIONAL MIXTURE MODEL

(i) (ii) (iii) (i) (ii) (iii)

ATEZRR&5B 2.021 3.001 2.955 2.110 3.134 3.016
[0.664-3.303] [1.688-4.358] [1.105-4.828] [0.710-3.401] [1.860-4.557] [1.160-4.941]

ATE5B 0.896 1.571 0.781 0.943 1.604 0.821
[-0.452-2.331] [0.213-2.981] [-0.530-2.144] [-0.400-2.356] [0.245-2.997] [-0.485-2.180]

ATEZRR 1.125 1.430 2.174 1.167 1.530 2.195
[-0.194-2.318] [0.173-2.785] [0.187- 4.140] [-0.154-2.387] [0.271-2.935] [0.205-4.201]

Model (i): DID with linear regression function.
Model (ii): DID with natural cubic regression splines.
Model (iii): DID with linear regression function and policy interaction with density and sie.
Between brackets: 95% confidence bands computed by nonparametric bootstrap (percentile method)

Table 2: Average treatment effects

CONTINUOUS RESPONSE MODEL

Model (i) (ii) (iii)
Percentile 1 25 50 75 99 1 25 50 75 99 1 25 50 75 99
ZRR&5B 2.021 2.021 2.021 2.021 2.021 3.001 3.001 3.001 3.001 3.001 -4.721 2.289 2.786 3.558 12.384

5B 0.896 0.896 0.896 0.896 0.896 1.571 1.571 1.571 1.571 1.571 -7.951 0.604 1.350 1.724 2.99
ZRR 1.125 1.125 1.125 1.125 1.125 1.430 1.430 1.430 1.430 1.430 -7.391 0.566 1.380 2.866 20.336

CONDITIONAL MIXTURE MODEL
ZRR&5B 1.576 1.916 2.148 2.349 2.368 1.382 3.142 3.371 3.470 3.524 -5.167 2.269 2.269 3.594 12.963

5B 0.628 0.889 0.987 1.011 1.101 0.683 1.605 1.724 1.774 1.800 -8.072 0.746 1.352 1.655 3.056
ZRR 0.782 1.036 1.180 1.338 1.357 0.683 1.536 1.646 1.696 1.724 -7.830 0.651 1.356 2.774 20.894

CONDITIONAL MIXTURE MODEL vs. CONTINUOUS RESPONSE MODEL
(Relative change in the treatment effect)

ZRR&5B -0.220 -0.052 0.063 0.162 0.172 -0.539 0.046 0.123 0.156 0.174 -0.356 -0.088 0.056 0.155 0.678
5B -0.299 -0.007 0.101 0.128 0.229 -0.564 0.022 0.097 0.130 0.146 -1.937 -0.077 0.022 0.104 2.135

ZRR -0.303 -0.078 0.049 0.190 0.206 -0.522 0.074 0.151 0.186 0.205 -2.279 -0.136 0.037 0.1431 2.831

Model (i): DID with linear regression function.
Model (ii): DID with cubic regression splines.
Model (iii): DID with linear regression function and policy interaction with density and size.

Table 3: Distributional treatment effects
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