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Abstract: On the climate-health issue, studies have already attempted to understand the influence
of climate change on the transmission of malaria. Extreme weather events such as floods, droughts,
or heat waves can alter the course and distribution of malaria. This study aims to understand the
impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s
community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic
mathematical model for the study of malaria transmission that considers the impact of climate
and population variability. A new approach for VECTRI input parameters was also used. A bias
correction technique, the cumulative distribution function transform (CDF-t) method, was applied
to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project
Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand,
we use reference data for validation such as CPC global unified gauge-based analysis of daily
precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed
Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results
were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near
future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show
that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives
a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS,
CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the
validation data on a maximum peak in September with a period of strong transmission in August–
October. With spatial variation, the CMIP5 model simulations show more of a difference in the
number of malaria cases between the south and the north. Malaria transmission is much higher in the
south than in the north. However, the results predicted by the models on the occurrence of malaria
by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and
the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM,
CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However,
ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases
in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future
with these models is much more visible in the RCP8.5 scenario. The results of this study are of
paramount importance in the climate-health field. These results will assist in decision-making and
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will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases,
including malaria, in the targeted regions of Senegal.

Keywords: climate change; malaria; Senegal; VECTRI; GCM; CDF-t method; BIAS corrected CMIP5

1. Introduction

It is now recognized that vector-borne diseases, including malaria, are largely related
to climate variability. Many studies have shown the risk of malaria transmission to be
primarily modulated by rainfall, temperature, and humidity [1–3]. In Senegal, malaria
remains endemic throughout the country. Throughout the country, the entire population is
at risk of the disease. It is recognized in Senegal that malaria is a major cause of negative
socioeconomic impact, mortality, and morbidity [4]. Between 2017 and 2020, the number
of malaria cases decreased by 4.4%, from 52 to 50 per 1000 population at risk, while the
number of malaria deaths increased slightly by 1.8%, from 0.24 to 0.245 per 1000 population
at risk during the same period. In 2020, 0.7% of malaria deaths worldwide occurred in the
country [4].

In Senegal, malaria transmission is closely linked to the rhythm of the rains. It generally
occurs during the rainy season and at the beginning of the dry season because of. The
main vectors of malaria belong to the An. gambiae complex and An. arabiensis. These two
high-vector-density species belonging to the An. gambiae complex are responsible for all
malaria transmission [5]. The disease is caused by three Plasmodial species (Plasmodium
falciparum, Plasmodium malaria and Plasmodium ovale) of which the main one is Plasmodium
falciparum [6,7].

According to the 2007 Intergovernmental Panel on Climate Change (IPCC) report [8],
climate change on the Earth’s surface is unequivocal. As a result of its immediate and
sustained impact on the natural environment, climate change has become a major threat
to the planet. These climatic changes directly threaten human life. These health problems
include vector-borne diseases, heat-related disorders, and mental health disorders [9,10].
Many deaths and illnesses are due to climate change and variability through natural
disasters such as heat waves, floods, and droughts.

Several studies in Senegal show that climate change is having a major impact on
the health sector. Studies have already attempted to understand the effects of climate
change on malaria transmission [11,12]. The evolution and distribution of malaria can be
affected by extreme weather events, such as floods or droughts. Otherwise, modifying the
rainfall system in intensity and frequency can modulate the development of the mosquito
population [13–16].

The important climate simulation exercises carried out by climate modeling teams
have greatly contributed to our understanding of the evolution of climate and climate
change over the 20th and 21st centuries. This work has made it possible to know the inter-
actions and feedback between its different components (atmosphere, biosphere, cryosphere,
oceans, and continental surface), to understand the climate system, and also to understand
climate change of anthropogenic origin and its consequences on societies and the environ-
ment [17,18]. This is of great interest to scientists and remains a major environmental and
scientific challenge. The best tools for simulating climate change are coupled atmosphere–
ocean general circulation models (AOGCM) [8,19]. Two main groups of climate models
differ according to their resolution: the global circulation models (GCM) [20,21] and the
regional circulation models (RCM) [22]. These models are established by mathematical
equations solved on three-dimensional grids. These grids represent vertical and horizontal
resolutions. Two main parts make up any climate model: a dynamic part, which describes
the equations of the general circulation of the atmosphere, and a physical component
introduced into the models in the form of physical parameterizations [23]. Climate models
provide outputs that will always have characteristics that differ from observations [24].
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This is why statistical processes are applied to them to correct the distortion between
observations and simulations. These statistical processes are so-called statistical downscal-
ing techniques when the spatial resolution of the original data are smaller than the final
resolution of the corrected data [25] and bias correction when the resolution of the original
and corrected data remain the same [26,27].

The first objective of this paper is to evaluate the bias-corrected GCM data obtained
with the cumulative distribution function (CDF-t) transformation method in Senegal and
then quantify the sensitivity of the bias-corrected data for the study of climate impact
on malaria. The second aim of this study is to understand the effects of future climate
change on malaria transmission using, for the first time in West Africa, the VECtor-borne
disease community model of ICTP, TRIeste (VECTRI), which has been developed by the
International Centre for Theoretical Physics (ICTP). The model physics and associated
parameters are taken from the literature for the Anopheles gambiae complex and the malaria
parasite Plasmodium falciparum. This biological model is a mathematical model of malaria
transmission. The model takes into account the impact of climate variability (rainfall and
temperature) and variability in the growth cycles of the malaria parasite and vector. In the
simulation, the model also takes into account the population density. The VECTRI model is
an open-source tool for understanding the drivers of malaria transmission. The simulation
can be done on a regional scale at spatial resolutions of 10 km or less. The model has a
compartmental representation of susceptibility, exposure, infectivity, and recovery (SEIR).
The VECTRI model can integrate migration, immunity, and interventions [28].

2. Materials and Methods
2.1. Study Area

Senegal is a West African country located between the tropics and the equator. It
has a tropical climate characterized by the alternation of, on the one hand, the rainy
season from July to October and, on the other hand, the dry season from November to
June due to the West African Monsoon (WAM) [9]. The annual precipitation varies in a
decreasing manner along the south–north direction of the country. In the south, the rains
are abundant, reaching up to 1500 mm, while the center–north is part of the Sahel, and
receives scanty rains, less than 600 mm per year, with variations from one year to the next.
According to the decreasing variation in rainfall, three major rainfall zones corresponding
to three climatic zones are identified: a semi-desert zone in the north, the wooded savannah
in the center, and a forest zone in the south, with their respective types of climates: a
Sahelian climate, a Sudano-Sahelian climate, and a Sudano-Guinean climate [29]. Due to
these climatic differences, malaria transmission is unevenly distributed over the territory.
Senegal has an area estimated at 196,712 km2, divided into 14 administrative regions: Dakar,
Diourbel, Fatick, Kaffrine, Kaolack, Kedougou, Kolda, Louga, Matam, Saint-Louis, Sedhiou,
Tambacounda, Thies, and Ziguinchor (Figure 1).

2.2. Climate Data

For the evaluation part of this study, we use different reference datasets, including
re-analysis data (ERA5), estimated satellite data (ARC2 and CHIRPS), and CPC obser-
vations from meteorological station networks around the world, and on the other hand,
data from different global climate models (GCM) of the CMIP5 project (Coupled Model
Intercomparison Project Phase 5 (CMIP5) for the historical data and the projections.

ERA5 data represent the terrestrial component of ERA5 reanalysis climate data from
1979 to the present [30]. The data has a 0.25◦ × 0.25◦ (25 km × 25 km) resolution grid,
and the temporal frequency of output is hourly [31].The Climate Hazards Group InfraRed
Rainfall with Station data (CHIRPS) is a rainfall dataset covering more than 30 years.
CHIRPS creates gridded rainfall time series using satellite imagery and in situ station data
for resolutions of 0.05◦ [32]. Africa Rainfall Climatology 2.0 (ARC2) is a 29-year rainfall
estimation dataset focused on Africa at a spatial resolution of 0.1◦. ARC2 is a revision of
the first version of ARC1 that uses data from two sources in accordance with version 2
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of the operational precipitation estimation algorithm [33].The Climate Prediction Center
(CPC) is a gridded dataset of precipitation and temperature with a resolution of 0.5◦. These
data have been available since 1979 [28].Three objective techniques are applied to data
from daily quality-controlled precipitation reports from approximately 16,000 land stations
to obtain daily precipitation analyses [34]. Table 1 summarizes the re-analysis and data
satellite combined with observation data (model, definition, grid, and references).

1 

 

 

Figure 1. Map of Senegal with its fourteen administrative regions divided according to the agro-
climatic zones.

Table 1. Datasets: this table summarizes the available datasets.

Climate Datasets Definition Resolution References

ERA5
(Rainfall at temperature) European ReAnalysis 0.25◦ × 0.25◦ [30]

CHIRPS
(Rainfall)

Climate Hazards
InfraRed Rainfall with

Station data
0.05◦ × 0.05◦ [32]

ARC2
(Rainfall)

Africa Rainfall
Climatology, version 2 0.1◦ × 0.1◦ [33]

CPC
(Rainfall)

Climate Prediction
Center 0.25◦ × 0.25◦ [34]

2.3. GCM Models Used (Bias-Corrected CMIP5)

The results of climate impact studies may be sensitive to global climate model (GCM)
biases. In the simulation of current precipitation, the biases will impact the reproduction
of future precipitation changes. In fact, precipitation changes associated with warming
correlate with the present-day pattern of precipitation [35].

Precipitation biases, for example, alter and modify hydrological simulations because
of the nonlinear nature of runoff [36]. In addition, temperature biases can influence the
distribution of precipitation either as snow or as rain. For this reason, climate impact
models generally use bias-corrected GCM output. Researchers working on the evaluation
and modeling of climate change impacts (in terms of health, renewable energy, crop yields,
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water resources, etc.) are increasingly using these simulation outputs either to compute
related impact metrics or to alter models.

It is well known that GCM (general circulation model) simulations require a down-
scaling process to increase their spatial resolution before projecting onto the local domain.

In this study, we extracted the dataset from the daily data produced by [26] using the
CDF-t (cumulative distribution function transform) method developed by [37] to correct
the statistical distribution of the key climatic parameters for impact simulations.

This bias technique reduces the errors in the present-day simulations of the CMIP5
models compared to observed data according to [12] (figure not shown) and also reduces
the spread between models for the different representative concentration pathways (RCPs).

As GCM prediction outputs have a coarse spatial resolution and are not suitable for
use directly on the local scale, they have been bi-linearly interpolated onto a 0.5◦ linear grid
before bias correction. This unbiased set of daily rainfall and temperature from 11 CMIP5
models is used under two RCPs (RCP4.5 and RCP8.5) over the period 2006–2100 with the
resolution of 0.5◦ × 0.5◦.

The RCP4.5 is a scenario, corresponding to a CO2 atmospheric concentration of ap-
proximately 650 ppm by 2100, that stabilizes radiative forcing at 4.5 W/m2 without ever
exceeding that value and leads to an elevation of the global surface temperature between
1.1 ◦C and 2.6 ◦C.

Conversely, the RCP8.5 is the high-emission scenario with a high greenhouse gas
concentration increase in CO2 atmospheric concentration >1000 ppm in 2100 that delivers
global warming at an average of 8.5 W/m2 across the planet with a temperature increase of
about 4.3 ◦C [38,39].

More details on the CDF-t method can be found in [40–42]. The validation of CMIP5
bias-corrected data for Africa, used in this work, can be found in [26]. More details on the
names, institutes, resolutions and references of the 11 global climate models used in this
study can be found in Table 2.

Table 2. List of the 11 global circulation models (GCMs) used in the study.

Model Institute Resolution Reference

ACCESS1–3 Australian Community Climate and Earth
System Simulator, Australia 1.25◦ × 1.9◦, L38 [43]

CanESM2 Canadian Centre for Climate Modeling
and Analysis, Canada 2.8◦ 9 × 2.8◦, L35 [44]

CMCC-CM Centro Euro-Mediterraneo per I
Cambiamenti Climatici, Italy 0.75◦ × 0.75◦, L31 [45]

CMCC-CMS Centro Euro-Mediterraneo per I
Cambiamenti Climatici, Italy 0.75◦ × 0.75◦, L31 [45]

CNRM-CM5 Centre National de Recherches
Météorologiques, France 1.4◦ × 1.4◦, L31 [46]

CSIRO-Mk3–6-0 CSIRO-QCCCE, Australia 1.9◦ × 1.9◦, L18 [47]

GFDL-CM3 Geophysical Fluid Dynamics
Laboratory-Climate Model version 3, USA 2◦ × 2.5◦, L48 [48]

GFDL-ESM2G
Geophysical Fluid Dynamics

Laboratory-Earth System Models
version 2G, USA

2◦ × 2.5◦, L48 [49]

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory
Earth System Models version 2M, USA 2◦ × 2.5◦, L48 [50]

Inmcm4 Institute for Numerical
Mathematics, Russia 2◦ × 1.5◦, L21 [51]

IPSL-CM5B-LR Institut Pierre-Simon Laplace, France 1.895◦ × 3.75◦, L39 [52]
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2.4. Malaria Impact Model Used (VECTRI)

The malaria model used is a distributed dynamic model called the VECtor-borne
disease community model of ICTP, TRIeste (VECTRI). VECTRI is a new dynamic model of
community malaria developed by the Abdus Salam International Centre for Theoretical
Physics (ICTP). To simulate this, the model takes into account the influences of temperature
and rainfall on the life cycles of parasites and vectors [53,54]. The VECTRI model combines
a biological model for vector and parasite life cycles. The disease progression in the
human host is given by the susceptible-infectious-recovered compartmental representation
(SEIR) [55].

The growth of the immature stages (egg, larvae, and pupae) and the gonotrophic and
sporogonic cycles were explicitly solved in the model using a set of cells for each process.
This is like the method used with the Liverpool Malaria Model (LMM) [56].

The model is able to reproduce the reduction in entomological inoculation rates (EIR)
and prevalence (PR) according to increasing population density, which has been widely
observed in Africa [57], although the relationship is too close and strong in the model [58].
The model can be run at regional or continental scales. It has a spatial resolution of 5 to
10 km with a daily time step and considers sub-seasonal climate variations. The model
has a structure that facilitates future development to integrate migration, immunity, and
interventions. More details on the VECTRI model can be found in [28].

2.5. Methods

First of all, as shown by our earlier study over Senegal at a local and national scale [12],
we employed the VECTRI model to simulate malaria indices and validated them with
malaria surveillance data from the National Malaria control Programme (Programme
National de Lutte contre le Paludisme, PNLP) in Senegal and with reference climate
products including ERA5, CHIRPS, ARC2 and CPC. The comparison of the spatio-temporal
representation between the EIR (model data) and the observed cases showed that VECTRI
well simulates malaria transmission in Senegal. Indeed, the simulation of the annual cycle
was well reproduced by the model, which gives a difference of 1 month between the peak
of rainfall and that of EIR. In addition, the year-to-year variation of the EIR variable and
the number of malaria cases showed a coincidence of both high and low transmission
years associated with high and low rainfall and temperature, respectively. The spatial
representation of the EIR variable showed that the southern zone is the most affected by
malaria compared to the northern zone, as was found with the PNLP observation data.
As for the simulation of malaria seasonality, the simulation results are almost identical to
the surveillance data. The results of this previous validation study allowed us to consider
VECTRI as a tool for simulating climate-modulated malaria transmission [12].

Afterwards, this paper is undertaken further in the framework of impact studies with
bias-corrected data from the CMIP5 coupled model intercomparison project. It aims to
reproduce historical malaria patterns in Senegal and quantify the projected changes under
two RCPs, namely RCP.45 and RCP8.5. In this study, we again used climate data from the
ERA5, CHIRPS, ARC2, and CPC as reference data for the baseline.

Some previous analyses of the performance of bias-corrected CMIP5 data to represent
some climate characteristics revealed an improvement of the corrected products compared
to the observations [26,59]. So, the bias-corrected products can be used to generate future
projections and in climate change impact studies [60]. In this study, we use the climate data
from the bias-corrected GCMs to develop malaria indices in various climatological periods,
namely the baseline, i.e., the validation period (1983–2005), historical (1983–2005), the near
future (2006–2035), the middle future (2036–2066), and the far future (2066–2095) using
historical experiments and RCP4.5 and RCP8.5 scenarios.

The VECTRI model is forced by the daily rainfall and daily temperature of the bias-
corrected GCM model, e.g., 11 bias-corrected CMIP5, for the RCP4.5 and RCP8.5 emission
scenarios separately. The VECTRI model uses climate data at this native resolution. All
the models used were interpolated to the resolution of the Senegal mask, which is 0.0625◦
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longitude for 0.0625◦ latitude, to standardize the resolutions, improve intercomparison,
and achieve the multi-model average. For validation, the time series and spatial patterns of
the GCM models are compared to those of the reference datasets, considering the common
period. The Taylor diagram described by [61] is used to evaluate the performance of
bias-corrected CMIP5 models against reference datasets. It is used by meteorologists and
atmospheric scientists. This diagram offers the advantage of representing at the same time
3 statistics: the centered root-mean-square error (RMSE), the standard deviation (STD)
of the simulation compared to the observation, and the correlation coefficient between
observation and simulation. The correlation coefficient measures the degree of connection
or dependence between two quantitative traits. It is between −1 and 1. The standard
deviation is the most commonly used measure of data dispersion in statistics. The lower the
standard deviation, the less the values are dispersed around their mean. The RMSE of the
arithmetic mean of the square of the difference between the observed and simulated values.

A new approach for the VECTRI model input parameters was used. The bias correc-
tion technique using the CDF-t (cumulative distribution function transform) method was
applied to the climate simulations of the fifth phase of the Coupled Models Intercomparison
Project (CMIP5) [26]. This eliminates systematic biases in climate models that could alter
impact predictions. The results were analyzed for two representative concentration path-
way (RCP) scenarios (RCP4.5 and RCP8.5) for the different periods (historical: 1983–2005;
near future: 2006–2035; the medium term: 2036–2065; and far future: 2066–2095).

3. Results
3.1. Validation of the Rainfall and Temperature Inputs

For the annual cycle (Figure 2a), the datasets show a peak (maximum precipitation) in
August. On the other hand, CHIRPS data shows the highest rainfall amount approaching
200 mm in August, while ARC2 shows the lowest rainfall amount in August (~150 mm). A
small variation between data sets is observed in the amplitudes.

The CMIP5 climate simulations were compared to these datasets. The annual cycle is
well reproduced by the models (Figure 2a), with the maximum precipitation in August, but
with some divergences in the amplitudes. Some models have a maximum value of around
200 mm (CMCC-CM and CMCC-CMS) approaching validation data (CHIRPS), others
between 205 and 245 mm (ACCESS1–3, CanESM2, CSIRO, CNRM-CM5, GFDL-CM3,
GFDL-ESM2G, GFDL-ESM2M, inmcm4, ENSMEAN-GCM), and one of about 250 mm
(IPSL-CM5B), which overestimate rainfall over the period 1983–200.

Greater variability prevails in the interannual cycle (Figure 2b) of precipitation. In
Figure 2b, all datasets show an increasing trend from 1983 to 1989 (CPC [400–700 mm],
ARC2 [310–550 mm], CHIRPS [410–650 mm], ERA5 [400–650 mm], and ENSMEAN
[399–640 mm]). Beyond this year, we see that precipitation decreased slightly between 1990
and 1998. The years 2001 and 2002 was marked by a sharp drop in precipitation, which
was mainly manifested by the CPC.

The CMIP5 data, for the year-to-year variation, shows that the IPSL-CM5B model
strongly overestimates precipitation over almost the entire period compared to the val-
idation datasets. With the exception of a few models such as CSIRO, inmcm4, and
GFDL-ESM2M, which slightly overestimate rainfall for some years, all other models, such
as ACCESS1–3, CanESM2, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL- CM3, GFDL-
ESM2G, and ENSMEAN-GCM, are close to validation.

The spatial distribution of precipitation for the different datasets was represented
(Figure 3) considering the high rainy season, namely July–September, for the validation
period 1983–2005. We recall that there is only one rainy season in Senegal and more
generally in the Sahel, between June and October, but that more than 85% of total rainfall
falls between July and September (JAS). Indeed, the climate of Senegal presents a unimodal
rainfall regime.
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Figure 2. Temporal variability of rainfall for validation data: (the reference data used as obser-
vation data) CPC, ARC2, CHIRPS, ERA5, and ENSMEAN-OBS. Corrected GCM data: ACCESS1–
3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-
ESM2M, inmcm4, IPSL-CM5B, ENSMEAN-MOD from 1983 to 2005 in Senegal: (a) Annual cycle,
(b) Interannual cycle.

The long dry season (seven months) extends from November to May, and the wet
or rainy season (five months) from June to October. The maximum rainfall is usually
recorded in August. In Figure 3a–e, a noticeable latitudinal gradient separates the northern
and southern parts of Senegal. The wettest area of Senegal is clearly highlighted by the
different datasets. The regions of Ziguinchor, Sedhiou, Kolda, and Kedougou are located,
respectively, in the southwest and southeast of the country.

The spatial pattern of the models is shown in Figure 3f–q for average rainfall in July–
August, as this is a period of highest rainfall, usually followed by an upsurge in malaria
epidemics. Figure 3f–q illustrate the rainfall gradient from the south to the north of Senegal.
The GCM precipitation patterns show a minimum in the central and northern parts, with
maximums in the south and southeast, as obtained with the baseline data. The models
show the strong signal obtained in the southwestern and southeastern parts as obtained
with the validation data (CPC, ARC2, CHIRPS, ERA5, and the ensemble mean).

The annual cycle indicates a bimodal temperature cycle with two peaks in May
(31.5 ◦C) and October (29 ◦C) (Figure 4a). The monthly temperature trend shows that mild
temperature conditions prevail from July to September due to the influence of cloud cover
and heavy rainfall during the rainy season. A regular trend resulting in an increase in
temperatures is observed. In addition, we even see this tendency to increase in temperature
in the validation period, which worsens in the projections.
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Figure 3. Representation of spatial distribution of rainfall in June, August, and September in Sene-
gal for the common period 1983–2005 for validation data (the reference data used as observation
data): (a) CPC, (b) ARC2, (c) CHIRPS, (d) ERA5, (e) ENSMEAN-OBS, and corrected GCM data:
(f) ACCESS1–3, (g) CanESM2, (h) CSIRO, (i) CMCC-CM, (j) CMCC-CMS, (k) CNRM-CM5, (l) GFDL-
CM3, (m) GFDL-ESM2G, (n) GFDL-ESM2M, (o) inmcm4, (p) IPSL-CM5B, and (q) ENSMEAN-MOD.

The annual temperature cycles obtained with the various CMIP5 simulation data
clearly reproduce the two peaks in the temperature evolution: the first in May and the
second in October. The ACCESS1–3 model (Figure 4a) strongly overestimates the tempera-
tures (32.5 ◦C in May and 30 ◦C in October) compared to the other models, which are close
to the values of the validation data (31.5 ◦C in May and 29 ◦C in October).

For interannual variability (Figure 4b), significant temperature changes are clearly
observed. We can observe a regular trend that has resulted in an increase in temperatures
since the beginning of the validation period (1983). The year 1986 records the lowest
temperature value (27.7 ◦C), and the year 1998 records the highest temperature value
(29.2 ◦C).
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Figure 4. Temporal variability of temperature in Senegal for the period 1983–2005 for validation data
(the reference data used as observation data): ERA5. Corrected GCM data: ACCESS1–3, CanESM2,
CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4,
IPSL-CM5B, ENSMEAN-GCM. For historical: (a) Annual cycle and (b) Interannual cycle.

The spatial distribution reveals that the highest temperatures are generally in the
interior of the country but mainly in the eastern part of Senegal, namely in Matam, Tam-
bacounda, and Kédougou. The lowest temperature values prevail in the coastal zone of
Senegal (Saint-Louis, Dakar, and Ziguinchor) (Figure 5a). On the coasts, there are winds
coming from the ocean that soften the local temperatures, which become low compared to
the interior of the territory [62].

The models, for their part, for the spatial distribution show an increasing variation in
temperatures from the coast towards the interior of the country (Figure 5b–m). The highest
temperatures are recorded in the east of the country. The ACCESS1–3 model overestimates
temperatures almost over the spatial extent of the country, although it underestimates
the maximum in eastern Senegal and overestimates temperatures on the coast (Figure 5b).
Most CMIP5 models indicate an underestimate of the spatial extent of temperatures in the
central part of the country. On the other hand, temperatures are overestimated on the coast
(Figure 5c–m).
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Figure 5. Representation of spatial distribution of temperature for the period 1983–2005 in Sene-
gal for validation data (the reference data used as observation): (a) ERA5; corrected GCM data:
(b) ACCESS1–3, (c) CanESM2, (d) CSIRO, (e) CMCC-CM, (f) CMCC-CMS, (g) CNRM-CM5, (h) GFDL-
CM3, (i) GFDL-ESM2G, (j) GFDL-ESM2M, (k) inmcm4, (l) IPSL-CM5B, and (m) ENSMEAN-MOD.

3.2. Evaluation of the Performance of the VECTRI Model with GCM

In the following, the results are presented only for the validation of the CMIP5
data to reduce the number of figures. The rest of the figures have been presented in
the Supplementary Material.

3.2.1. Spatio-Temporal Variability of the EIR for the Validation of the GCM

The simulations of the VECTRI model, represented on Figure 6, are based on the
reference data and their overall average (CPC, ARC2, CHIRPS, ERA5, and ENSMEAN-
OBS) and on the outputs of 11 models from the CMIP5 and their overall mean (ACCESS1–3,
CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G,
GFDL-ESM2M, inmcm4, IPSL-CM5B, and ENSMEAN-MOD).
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Figure 6. The annual EIR (in ib/p/m, i.e., infectious bites per person per month) cycle of malaria for
the period 1983–2005 in Senegal: Simulations of the VECTRI model forced by rainfall and temperature
of the CPC, ARC2, CHIRPS, ERA5, and ENSMEAN-OBS (the reference data used as observation data)
for evaluation and corrected CMIP5 GCM models from ACCESS1–3, CanESM2, CSIRO, CMCC-CM,
CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, IPSL-CM5B, and
ENSMEAN-GCM for historical.

The malaria season simulated by VECTRI through the variable EIR (entomological
inoculation rate) in Senegal, in particular, runs from August to October, with a sharp peak
in September (Figure 6). The highest EIR value is given by CHIRPS (105 ib/p/m), followed
by CPC, ERA5, and ENSMEAN-OBS (105 ib/p/m), and finally, ARC2, which has the
smallest value (85 lb/p/m).

For the simulation of the CMIPS models, we find that the models reproduced the
annual cycle well. Apart from the IPSL-CM5B model, which gives a peak in August
(maximum peak at 121 ib/p/m), all the others agree with the validation data over the
period with a strong transmission in August, September, and October and a maximum
peak in September. All models overestimate malaria in Senegal compared to baseline
data. However, the ACCESS1 model greatly exceeds the other models (maximum peak
at 125 ib/p/m), followed by the CanESM2, CSIRO, CMCC-CM and CMCC-CMS, CNRM-
CM5, inmcm4, and ENSMEAN models (maximum peak at 118 ib/p/m), and finally the
GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M models (maximum peak at 110 ib/p/m).

We note, for the variation of the transmission of malaria during the year according
to the latitudes, that the regions located between 13◦ N and 15◦ N have a strong tendency
for the transmission of malaria during the month of September, where the maximum is
observed for validation data (CPC, ARC2, CHIRPS, ERA5, and ENSMEAN-OBS). Above
15◦ N, the trend gradually decreases at higher latitudes. Regarding the representation of the
variation of malaria transmission during the year according to the latitudes of the VECTRI
simulations based on the outputs of the CMIP5 models forced by the 11 models and their
ensemble mean (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5,
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, IPSL-CM5B, and ENSMEAN-GCM)
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over the period 1983–2005, the high values of the EIR are found in southern areas at
latitudes below 13◦ N, which gradually decrease or even disappear as they move north, i.e.,
at latitudes above 17◦ N. All models (except GFDL-ESM2M and IPSL) have their maximum
peak in the month of September, and the period of high malaria transmission is given in
August, September, and October (see Figure S1 in the Supplementary Material).

The intra- and interannual Hovmöller diagrams of the EIR depicted in Figure 7 illus-
trate the variation of malaria over the years as a function of the months. The results of
the reference data show the maximum of the EIR, which is observed in September. High
malaria transmission is clearly evident in August–October (Figure 7a–e).

Figure 7. Hovmöller diagram intra- and interannual of the EIR (in ib/p/m, i.e., infectious bites
per person per month) of malaria in Senegal for the period 1983–2005. Simulations of the VECTRI
model forced by rainfall and temperature of the assessment data: (a) CPC, (b) ARC2, (c) CHIRPS,
(d) ERA5, and (e) ENSMEAN-OBS (the reference data used as observation) for validation and
corrected CMIP5 GCM models: (f) ACCESS1–3, (g) CanESM2, (h) CSIRO, (i) CMCC-CM, (j) CMCC-
CMS, (k) CNRM-CM5, (l) GFDL-CM3, (m) GFDL-ESM2G, (n) GFDL-ESM2M, (o) inmcm4, (p) IPSL-
CM5B, and (q) ENSMEAN-MOD for the historical.

Some models, such as CMCC-CMS, GFDL-ESM2G, and IPSL-CM5B, show an increas-
ing evolution of malaria over the years (see Figure 7j,m,p). Other models, such as CanESM2,
CMCC-CM, and inmcm4, show a decrease in malaria over time (see Figure 7g,i,o). The
CSIRO, CNRM-CM5, GFDL-CM3, and GFDL-ESM2M models show alternating high and
low years of malaria transmission (see Figure 7h,k,L,n).The simulations of the CMIP5
GMCs show a much larger signal than the signal obtained with the reference data. In other
words, the simulations overestimate the number of infectious mosquito bites per man per
month over time. The period of strong transmission (between August, September, and Oc-
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tober) is reproduced by the models, as is the maximum peak (obtained in September). The
ACCESS1–3 model and the ensemble mean of all CMIP5 models (ENSMEAN-MOD) appear
to provide a fairly good representation of the variation in malaria over time (Figure 7f,q).

For the variation of malaria transmission from one year to another according to lati-
tudes, we note that the periods 1986–1989, 1992–2000, and 2003–2005 are marked by a strong
transmission of malaria that extends from latitudes 12◦ N to 15◦ N. As obtained with the
simulations of the reference data, the results of the simulations of the CMIP5 models showed
a strong transmission of malaria extending from latitudes 12◦ N to 15◦ N during the periods
1986–1989, 1992–2000, and 2003–2005. (See Figure S2 in the Supplementary Material).

Figure 8 shows the variation of the EIR as a function of latitudes for the four reference
datasets and their overall mean (CPC, ARC2, CHIRPS, ERA5, and ENSMEAN-OBS). We
see a decrease in EIR from the southern latitudes to the northern latitudes of Senegal.
Additionally, the CHIRPS data gives the highest EIR values from 12◦ N to 17◦ N. As for
the others, the ARC2 data provide the smallest EIR values from 12◦ N down to 14.75◦ N;
beyond this value, the ERA5 data presents the lowest values.

Figure 8. Mean EIR (in ib/p/m, i.e., infectious bites per person per month) meridian gradient of
malaria in Senegal for the period 1983–2005: Simulations of the VECTRI model forced by rainfall and
temperature of CPC, ARC2, CHIRPS, ERA5, ENSMEAN-OBS (the reference data used as observation
data) for evaluation and bias-corrected CMIP5 GCM models: from ACCESS1–3, CanESM2, CSIRO,
CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, IPSL-
CM5B, ENSMEAN-GCM for historical.

The results of the CMIP5 models show a very clear meridian variation of malaria.
The models clearly reproduced the south–north gradient. The simulations show a clearer
differentiation of the EIR further south than north for all models. The IPSL-CM5B model
deviates from other models at latitudes 14.75 N up to 17 N.

The spatial distribution of RIA (Figure 9) shows a clear difference in signal intensity
between the northern and southern regions of Senegal. We find, with the reference data
(Figure 9a–e), that the regions located in the southwestern and southeastern parts are
more affected by malaria compared to the other regions for the different data as well as
the global average (ERA5, CPC, ARC2, CHIRPS, and ENSMEAN-OBS). As obtained with
precipitation, the transmission extends from south to north up to latitudes 15◦ N.
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Figure 9. Spatial distribution of the EIR (in ib/p/m i.e., infectious bites per person per month) of
malaria in September, October, and November in Senegal for the period 1983–2005: Simulations of
the VECTRI model forced by rainfall and temperature of the assessment data (a) CPC, (b) ARC2,
(c) CHIRPS, (d) ERA5, and (e) ENSMEAN-OBS (the reference data used as observation) for validation
and bias-corrected CMIP5 GCM models: (f) ACCESS1–3, (g) CanESM2, (h) CSIRO, (i) CMCC-CM,
(j) CMCC-CMS, (k) CNRM-CM5, (l) GFDL-CM3, (m) GFDL-ESM2G, (n) GFDL-ESM2M, (o) inmcm4,
(p) IPSL-CM5B, and (q) ENSMEAN-MOD for historical.

We find that the simulations of the CMIP5 models show more of the difference between
the south and the north (Figure 9f–q). Malaria transmission is much higher in the south
than in the north. The CMCC-CM, CMCC-CMS, and IPSL-CM5B models show the presence
of malaria over almost all of the territory except for a small part of the north, i.e., latitudes
above 16 N (Figure 9i,j,p) unlike what was found with the validation data (Figure 9f–q).
Concerning the GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and ENSMEAN-
MOD models (Figure 9h,l–n,q), we note that their results are close to those of the validations.
As for the ACCESS1–3, CanESM2, CNRM-CM5, and inmcm4 models (Figure 9f,g,k,o), the
distribution is weak on the territory, but the unequal distribution between the south and
the north has been found.
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3.2.2. Taylor Diagram for Rainfall, Temperature and EIR Variable

Statistical performance measures are summarized in the Taylor diagram in Figure 10.
The root-mean-square difference (RMSE), the pattern correlation I(r), and the standard
deviation (STD) are three statistical measures that are used with the Taylor diagram,
computed between bias-corrected CMIP5 results and the ensemble mean (ENSMEAN-OBS)
of the four types of rainfall (ERA5, CPC, ARC2, and CHIRPS) (Figure 10a) and ERA5
temperature (Figure 10b), which are used as a point of reference. Figure 10c shows the
Taylor diagram for simulated EIR using bias-corrected CMIP5 and simulated EIR using
the reference climate data. The Pearson correlation coefficient is indicated by the grey
dashed lines, the root mean square error (RMSE) by the grey outlines, and the standard
deviation (STD) by the blue outlines. The models to be compared are shown by colored
points and the observation by the uncolored point on the x-axis. The CMCC-CM provides
a very faithful representation of the monthly mean rainfall of the individual bias-corrected
CMIP5 models and their ensemble mean compared with the reference data. The inmcm4,
CNRM-CM5, and CMCC-CMS models provide a good representation of the temporal
variation of the annual rainfall cycle. Alone, the IPSL-CM5B model has a large positive bias
compared to the observed data. ACCES1, GFDL-ESM2G, GFDL-ESM2M, and CanESM2
perform relatively well against reference data with low root mean square errors and high
correlations. The ensemble mean (ENSMEAN-OBS) also provides good results but always
overestimates the basic rainfall.

Figure 10. Taylor plots displaying rainfall statistics, temperature, and simulated EIR, comparing
monthly bias-corrected CMIP5 data to baseline monthly climate data: (a) precipitation (pr), (b) tem-
perature (t2m), (c) Simulated EIR.

The quantitative diagnostics in Figure 10b show that the models are very strongly
correlated (r > 0.98) with the reference data for the monthly mean temperatures and have a
normalized standard deviation close to 1 (slightly greater than 1). Most models (CMCC-CM,
CMCC-CMS, CNRM-CM5, ACCESS1, GFDL-ESM2M, GFDL-ESM2G, and GFDL-CM3)
represent the annual temperature cycle well. The ACCESS1–3 model shows the largest bias
against the observed data. However, it is important to note that CMIP5 models overestimate
the annual temperature cycle (Figure 10b).

Figure 10c provides a summary of the relative skill of the 11 models in simulating
malaria transmission through the EIR variable. The results show a strong correlation for
all 11 models (values greater than 0.9). Despite this correlation, we note the presence of
a strong dispersion among the models but also more or less remarkable errors for the
IPSL-CM55B, CanESM2, and inmcm4 models. The CMCC-CM, CMCC-CMS, CNRM-CM5,
and ACCESS1–3 models show strong correlations (0.99). In addition to the correlation,
the CMCC-CM, CMCC-CMS, and CNRM-CM5 models present the lowest root mean
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square error (RMSE) values (0.25). The GFDL-ESM2M, GFDL-ESM2G, and GFDL-CM3
models are less dispersed (lower standard deviation values) with strong correlation values
(greater than 0.95). The GFDL-CM3 model, compared to the two other versions of the
model, simulates the EIR variable less well, with high RMSE values, a weaker correlation,
and a significant standard deviation. Most models overestimate the magnitude of the
entomological inoculation rate. The results show that the CMCC-CM and CNRM-CM5
models perform better at representing the EIR variable. It should also be noted that the
CMCC-CMS models present scores very close to those of the CMCC-CM.

In summary, in Figure 10a,b, we note that for all models, r is greater than 0.99, RMSE
is lower than 0.2, and the STD is approximately around 1.25. These three statistical values
illustrate the performance of individual bias-corrected CMIP5 in reproducing precipitation
observations (ERA5) and the ad value by using these data as input for VECTRI simulations.
For the simulated EIR (Figure 10c), there are more discrepancies between the models, but
the r values are also all greater than 0.95, the RMSE values comprise between 0.1 and 0.6,
and the STD is also between 1 and 1.5.

3.3. Projected Changes in Malaria Index (EIR)

The results in Figure 11 show the effect of precipitation and temperature changes on
malaria transmission for the far future period. We calculated, over this period of 23 years,
for each model the future-historical differences of EIR in percentage, as well as the future-
historical differences of temperatures (in absolute) and the future-historical differences of
rain (in%). We then traced the relationship between the climatic variables (precipitation
and temperature) and the malaria variable (EIR).

Figure 11. Relative changes in VECTRI-simulated malaria transmission versus percent precipitation
change (left) and absolute mean surface temperature change (right) for RCP45 and RCP85 scenarios
from CMIP5 GCM data corrected for the far future: CanESM2, CSIRO, CMCC-CM, CMCC-CMS,
CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, IPSL-CM5B, ENSMEAN-MOD.

We found that malaria increases linearly with increasing rainfall in the future for both
scenarios (rcp45 and rcp85) for the ensemble of models used and their ensemble mean
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(Figure 11a,c). In other words, in general, if total seasonal rainfall increases, malaria trans-
mission will increase and if rainfall decreases, transmission will also decrease. However,
heavy rains can flush the female mosquitoes’ eggs deposited on the water surfaces. On
the other hand, intermittent rainfall (or showers) can enhance the development of the
mosquito vector population. The increase in temperature has a negative impact, especially
in hot areas where infection currently occurs with temperatures favorable to transmis-
sion (Figure 11b,d). On the other hand, a warming climate may increase the incidence of
malaria in colder mountainous areas. The more the temperature increases, the more the
transmission tends to decrease. This negative drop is more visible in the rcp85 scenario.
Most models show the impact of climate change on malaria transmission.

The same result was obtained in the near and medium future (see Figures S3 and S4 in
the Supplementary Material).

All models reproduced the annual cycle well in these scenarios. The peak is obtained
in September over the historical period (1983–2005) with the two scenarios for all models.
For the period of the near future (2006–2035), most of the models show a peak in September
except the ACCESS1–3 model (Figures 12a and 13a), which exhibits in this period a peak in
October under the two scenarios used. In the period of the middle future (2036–2065) as
well as the far future (2066–2095), the ACCESS1–3 model gives the maximum of the EIR
in October, and other models in August such as CSIRO, GFDL -ESM2G, GFDL-ESM2M,
inmcm4, IPSL-CM5B (Figure 12c,h–k), and a maximum in September prevailed for the rest
of the models, including CanESM2, CMCC-CM, CMCC-CMS, CNRM-CM5, and GFDL-
CM3 (Figure 12b,d–g). However, there are discrepancies in the peak amplitude between
the models. In Figure 13, in general, there is agreement in the results for the RCP4.5 and
RCP8.5 scenarios for the historical, near future, and middle future periods regarding the
annual profile despite discrepancies in the range. For the far future, only the CSIRO and
GFDL-ESM2G models (Figure 13c,h) agree on the period of the far future.

Figure 12. The annual EIR cycle of malaria in Senegal for the period 2006–2100 (historical: 1976–2005
grey curve, near future: 2006–2035 pink curve, middle future: 2036–2065 green curve, far future:
2066–2095 red curve. Simulations of the VECTRI model forced by rainfall and temperature CMIP5
GCM models corrected: (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM, (e) CMCC-CMS,
(f) CNRM-CM5, (g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4, (k) IPSL-CM5B,
and (l) ENSMEAN-MOD for RCP45.
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Figure 13. The annual EIR cycle of malaria in Senegal for the period 2006–2100 (historical: 1976–2005
grey curve, near future: 2006–2035 pink curve, middle future: 2036–2065 green curve, far future:
2066–2095 red curve). Simulations of the VECTRI model forced by rainfall and temperature CMIP5
GCM models corrected: (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM, (e) CMCC-CMS,
(f) CNRM-CM5, (g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4, (k) IPSL-CM5B,
and (l) ENSMEAN-MOD for RCP85.

The representation of the variation of malaria transmission during the year according
to the latitudes of the simulations shows that the hotspots in the malaria epidemics are
located in the southern regions (up to 15◦ N) for the CanESM2 models, CSIRO, GFDL-
ESM2M, and IPSL-CM5B for the RCP4.5 scenario. Similar observations were observed with
the RCP8.5 scenario for the CSIRO and GFDL-ESM2M models. The period of high malaria
transmission is observed from August to October for all models of the RCP4.5 scenario.
Some models, including ACCESS1–3, CNRM-CM5, and inmcm4, show the period of high
transmission outbreaks from July to November for the RCP8.5 scenario (see Figures S5 and
S6 in the Supplementary Material).

The intra- and interannual variations of the entomological inoculation rate (EIR)
described in Figures 14 and 15 illustrate the number of infectious mosquito bites per
man and per month over the years. The models agree on a maximum EIR in September,
whatever the scenario, except for ACCESS1–3 (Figures 14a and 15a). An increase in malaria
transmission in the far future (2066–2095) compared to the near future (2036–2065) is
found in the simulations ACCESS1–3, CSIRO, CNRM-CM5, GFDL-CM3, GFDL-ESM2G,
and GFDL-ESM2M (Figure 14a,c,f–i), while the other models, such as CanESM2, CMCC-
CM, CMCC-CMS, inmcm4, and IPSL-CM5B, predict a decrease for the RCP4.5 scenario
(Figures 14d,e,j,k and 15d). The decrease in malaria in the future with the models cited
above is much more visible under the RCP8.5 scenario (Figure 15b,d,e,j,k).

The variation in malaria transmission from one year to the next as a function of
latitude shows the decrease in malaria in the territory of Senegal for the different CMIP5
models in the two scenarios (RCP4.5 and RCP8.5), but also in the years to come (2066–2100).
This decrease is more significant with the RCP8.5 scenario (see Figures S7 and S8 in the
Supplementary Material).
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Figure 14. Hovmöller diagram intra/inter of the annual cycle of EIR in Senegal for the period
2006–2100. Simulations of the VECTRI model forced by rainfall and temperature of bias-corrected
CMIP5 GCM models: (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM, (e) CMCC-CMS,
(f) CNRM-CM5, (g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4, (k) IPSL-CM5B,
and (l) ENSMEAN-MOD for RCP45.

Figure 15. Hovmöller diagram intra/inter of the annual cycle EIR in Senegal for the period 1983–2005.
Simulations of the VECTRI model forced by rainfall and temperature bias-corrected CMIP5 GCM
models: (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM, (e) CMCC-CMS, (f) CNRM-CM5,
(g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4, (k) IPSL-CM5B, and (l) ENSMEAN-
MOD for RCP85.

The results show a very clear meridian variation of malaria for the future, with a
south–north gradient (Figures 16 and 17). The simulations show a clearer differentiation
of the EIR for the different periods, more in the south than in the north. The CanESM1,
CSIRO, and CMCC-CM models (Figure 17b–d) predict an entomological inoculation rate
that would be relatively low in the north in the future for the RCP8.5 scenario. However,
the difference in periods with the RCP8.5 scenario (Figure 17) is much clearer than that
found with the RCP4.5 scenario (Figure 16).
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Figure 16. Mean EIR meridian gradient of malaria in Senegal for the period 2006–2100 (historical:
1983–2005 grey curve, near future: 2006–2028 pink curve, middle future: 2030–2052 green curve, far
future: 2077–2099 red curve). Simulations of the VECTRI model forced by rainfall and temperature
of bias-corrected CMIP5 GCM models: (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM,
(e) CMCC-CMS, (f) CNRM-CM5, (g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4,
(k) IPSL-CM5B, and (l) ENSMEAN-MOD for RCP45.

Figure 17. Mean EIR meridian gradient of malaria in Senegal for the period 2006–2100 (historical:
1983–2005 grey curve, near future: 2006–2028 pink curve, middle future: 2030–2052 green curve, far
future: 2077–2099 red curve): Simulations of the VECTRI model forced by rainfall and temperature
of bias-corrected CMIP5 GCM models (a) ACCESS1–3, (b) CanESM2, (c) CSIRO, (d) CMCC-CM,
(e) CMCC-CMS, (f) CNRM-CM5, (g) GFDL-CM3, (h) GFDL-ESM2G, (i) GFDL-ESM2M, (j) inmcm4,
(k) IPSL-CM5B, and (l) ENSMEAN-MOD for RCP85.
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4. Discussion

The VECTRI simulations based on bias-corrected CMIP5 show repercussions on
malaria transmission in Senegal. The simulations showed that climate influences the
epidemiology and geographic distribution of malaria. Studies have shown that malaria
transmission follows rainfall patterns [53,63–66]. High malaria transmission is found
during the rainy season. The EIR peak prevailed in September. The rainfall peak in August
is generally followed by the malaria peak in about one to two months [12,67,68]. This is
explained by the fact that the water bodies develop where the mosquitoes lay. The larval
development in aquatic environments can last according to the temperature: 1 to 3 weeks
in tropical areas and several weeks or months in temperate areas [7,69]. In addition, the
infected person takes time before developing symptoms [70]. In Senegal, like rainfall,
malaria transmission follows the decreasing variation in the south–north direction. The
southern part of Senegal (humid and rainy) is the area most affected by malaria compared
to the northern part of the country (dry and arid). The aridity limits the survival and
ability of adult Anopheles vectors to contribute to parasite transmission [71]. The unequal
distribution of rain in the Senegalese territory is due to the weather that the monsoon
takes to reach the country [72,73]. The trade winds from a cyclone in Sainte Hélène, which
creates the monsoon loaded with humidity, reach the country in the month of April. This
meteorological phenomenon crosses the territory in the northeast direction, thus implying
the start of the rainy season in Senegal. For the southern regions, the season starts in May,
and for the central and northern regions, it starts around June or July. The maximum rainfall
in Senegal is generally obtained in August [29,74]. In addition to rain, humidity, and hot
periods, high vegetation coverage, and optimal malaria transmission temperatures (25 ◦C,
6 ◦C lower than previous models) [75] also promote transmission. Some studies argue
that temperature fluctuations significantly affect both the life expectancy or completion
of the mosquito life cycle and the development of sporogonic stages in the body of the
malaria patient [53,76,77]. At warmer temperatures, mosquitoes increase the rate of parasite
transmission, reach sexual maturity earlier, and obtain more human blood [78]. In Senegal,
the main species found are Plasmodium falciparum and a few rare cases of Plasmodium ovale
and Plasmodium malariae. Among the different species that infect humans, Plasmodium
falciparum (~98%) is the one that causes the most severe cases in Senegal. A movement of
identical parasites from one region to another and from one year to another is also noted in
the country [6,7].

The period 1983–2005 (historical), which is the reference period, was characterized by
an alternation between wet years and dry ones with a continuity of strong rainfall instability.
However, that did not prevent years of high, medium, and low malaria transmission.
Malaria varies depending on the years of extreme weather events such as floods and heat
waves [79].

Temperatures have a greater impact than rainfall on malaria transmission because
of interannual variability [3]. The variation in EIR is attributed to the decrease in rainfall
since the 1970s for some studies [67]; for others, this variation is due to the variability of
temperatures [80].

However, the results predicted by the models on the occurrence of malaria by 2100
with the RCP8.5 scenario considered a high emission scenario and the RCP4.5 scenario con-
sidered an intermediate mitigation scenario have differences. Some models (ACCESS1–3,
CSIRO, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M) predict the increase
in malaria regardless of the scenario (RCP4.5 and RCP8.5) (Figures 14a,c,f–i and 15a,c,f–i).
On the other hand, other models (CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-
CM5B) predict a decrease for the RCP4.5 scenario (Figure 14b,d,e,j,k). The decrease in
malaria projected in the future with these models is much more visible under the RCP8.5
scenario (Figure 15b,d,e,j,k).

This reduction in malaria with these climate models could be explained by the fact
that they actually show a downward trend in rainfall [81] one of the aspects that can, on the
one hand, justify the reduction in malaria in the far future, in particular with the extreme
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scenario RCP8.5. The other aspect is that the optimal temperature of transmission in Africa
is 25 ◦C, and beyond 28 ◦C, it declines [82]. We would expect temperature increases [83]
that will be larger than the optimum in the far future, especially with the RCP8.5. Hot
temperatures could negatively impact mosquito survival, and heavy flooding could cause
larvae to be displaced [84].

The negative impact of climate change on malaria transmission is a very robust finding,
especially for long-term projections (2077–2099). About 70% of IPCC climate scenarios have
shown that warming is expected to exceed +2 ◦C for sub-Saharan West Africa. In addition,
a reduction in precipitation is expected in the far future [85].

Notwithstanding, an increase in malaria transmission due to climate change should
not be expected in areas where transmission is stable or unstable at low levels [86].

In contrast, future climate warming could increase malaria incidence in colder moun-
tainous regions while decreasing incidence in already warm regions with average tempera-
tures above 25 ◦C [87], as the results of RCP4.5 show. These observations agree with the
conclusions according to which the epidemic fringe would have shifted towards the south
for most models of malaria. The climate is expected to become unfavorable in the northern
Sahel in the far future [15]. So, the drop in signal in the far future is not a surprising
result, as research has shown that malaria transmission may gradually decrease in West
Africa in the far future [88]. Such a decrease in malaria seems to be associated with climate
change and the consideration of socio-economic factors [89,90]. A decrease in the simulated
conditions of malaria in the Sahel has been shown [90] whatever the period and the scenario
considered, which are linked to a temperature effect.

In the case of years of high rainfall, there may be periods in which transmission
continues until the beginning of the dry season. It is ensured by the reproduction of the
Anopheles vector, which continues to improve thanks to the strong heat of October, the
presence of breeding sites, and plant cover. This allows the eggs to resist drought by
remaining latent in the moist soil [91], hence the presence of malaria outside the rainy
season (October) shown by some models. Sometimes the late start of the season contributes
to the displacement of the maximum EIR in October. However, heavy flooding could
cause the displacement or destruction of the larvae, or, in other words, the reduction of
the transmission.

The results obtained using projections given by different GCM models are of paramount
importance. However, according to our results, malaria will be more important in the
RCP4.5 scenario, which is less restrictive than the RCP8.5 scenario.

Relating climate change to malaria projections is not a simple matter. There are
many uncertainties in the projection of malaria-related temperatures and rainfall. The
uncertainties come from the imperfection of climate models, the bias correction methods,
the choice of climate parameters, the choice of an observation-based reference dataset on
bias correction, climate change scenarios, and the malaria model (we used VECTRI).

The present study focuses on three sources (climate models, bias correction methods,
and malaria models).

In the chosen GCMs, depending only on simulation availability, we have not evaluated
their projection skills in the Sahel area and were not based on their spatial resolution. Due to
the coarse spatial resolution of GCMs, we certainly neglected some atmospheric processes
that can affect temperature and rainfall parameters.

Using CFD-t bias correction, we applied this method independently for each of the two
variables. However, doing that may cause the spatial coherency and dependence among
variables to be removed by the application of univariate calibrations. Other recent studies to
address this challenge are focused on multivariate correction and spatial and/or temporal
dependences [92,93]. Other more sophisticated methods using multivariate correction were
also recently developed.

Finally, we used the new malaria model VECTRI, which was run and evaluated in the
Sahel domain.
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Nevertheless, our paper shows that it is crucial to use multi-climate models to evaluate
the response of malaria to climate change, which has been overlooked by previous malaria
studies in West Africa.

5. Conclusions

In this study, the VECTRI malaria model is used to simulate the spatio-temporal
variation of the malaria parameter (EIR) in Senegal. The simulations are based on ERA5,
CPC, ARC2, and CHIRPS data to assess and CMIP5 global climate models, separating
historical data and projection data. The two scenarios (RCP8.5 and RCP4.5) made it
possible to know the presence and evolution of malaria in the future. This means that
the model can reproduce the effect of climate change on malaria transmission. The study
revealed that the maximum of the EIR (obtained in September) follows the rainfall regimes
(obtained in August), with a strong period of transmission generally located between
August and October for a major part of the models and July and November for certain
models. Precipitation provides breeding grounds for mosquitoes, while temperature
impacts larval and mosquito life cycles. Even if our results reveal a decrease in malaria
transmission in Senegal in the far future, the burden of malaria will likely increase in many
parts of the world due to climate change. The decrease in rainfall in the two scenarios
(RCP8.5 and RCP4.5) associated with very hot temperatures might imply a reduction in the
mosquito population. However, these results must be interpreted with caution, as there
are still uncertainties related to both the disease model and the GCM projections for the
future. Given the wide divergence between models, it is usually advisable not to base
assessments of future climate change on the results of a single model used in isolation; so,
we can conclude by suggesting working on an average of a set of different GCM models
(multi-model ensemble mean) in addition to individual models if a comparison is needed.

These results will assist in decision-making and allow for the establishment of preven-
tive surveillance systems for local climate-sensitive diseases including malaria, especially
in areas currently free of malaria and expected to be affected by the disease in the future.
Future research will be done based on the combination of RCPs with the shared socio-
economic pathway (SSP), which considers key scenario factors such as socio-economic
growth, urbanization, and population for the estimation of future malaria.
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of the annual EIR cycle of malaria in Senegal for the period 2006–2100: Simulations of the VECTRI
model forced by rainfall and temperature bias-corrected CMIP5 GCM models; Figure S6: Hovmöller
diagram of the annual EIR cycle of malaria in Senegal for the period 2006–2100: Simulations of the
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