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Improvement of the Gerchberg-Saxton Algorithm Convergence in Phaseless
Antenna Measurements via Spherical Wave Filtering

Nicolas Mézières and Laurent Le Coq

Abstract—The phaseless characterization of antennas enables
configurations with reduced measurement efforts as the phase
acquisition is highly sensitive to numerous error sources. How-
ever, both the magnitude and phase information are necessary
to reconstruct the 3D radiation pattern of the tested radiating
system. The two scans technique allows for accurate phase
retrievals from magnitude-only measurements. In this paper, the
two concentric spheres setup is considered with a Gerchberg-
Saxton (GS) algorithm as phase retrieval procedure. These
methods are known for their convergence problems, the price
to pay for the easier, magnitude-only, measurements. A filtering
approach is studied to mitigate these effects and a new, more
efficient, filter is proposed. A loop of GS runs coupled with
filters is shown to improve the radiation pattern reconstruction
without much considerations. Validations are led on simulations
and experimental data acquired using a commercial system.

Index Terms—Antenna measurements, near field, phaseless
measurement, phase retrieval, spherical waves.

I. INTRODUCTION

THE characterization of antennas using spherical Near-
Field (NF) measurements is a standard procedure in

antenna prototyping and development enabling the reconstruc-
tion of the 3D radiated field. The ever-growing complexity
of radiating systems has led to numerous and mandatory
developments of post-processing strategies. Many of them are
dedicated to spherical measurements with Spherical Waves
(SW) [1], including phaseless measurements, that aims at
avoiding the complex phase evaluation task thanks to appro-
priate samplings and processing methods. However, the phase
information is mandatory for the full radiation pattern to be re-
constructed. As a counterpart of the simplified measurements,
the data processing is tedious since phase retrieval problems
are often ill-conditioned, as emphasized in [2].

Various phase retrieval approaches for antenna measure-
ments are available, as reviewed in [3]. The most spread
phaseless antenna characterization method is the two scan
technique. The field is sampled over two measurement surfaces
with various geometries or/and a priori information on the
Antenna Under Test (AUT) [3]–[5]. These surfaces might be
concentric spheres [6] (cf Fig. 1), two planes [7] or even a
combination of a plane and a sphere [8]. A single sphere
but for two positions of the AUT has been proposed and
validated in [9], [10]. Others methods with different probes or
interferometric methods are studied in [11], [12], respectively.

Manuscript received xx, 2022; revised xx, xx.
This work is supported in part by the European Union through the European

Regional Development Fund (ERDF), and by the french region of Brittany,
Ministry of Higher Education and Research, Rennes Métropole and Conseil
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Fig. 1. Scheme of a two scan method with NF spheres S1, S2. In a given
coordinate system, the radiated field possesses a unique SW expansion outside
the minimum sphere (whose center coincides with the origin), of radius a.

The present article focuses on two concentric spherical
scans combined with a Gerchberg-Saxton (GS) algorithm.
Such method possesses the interesting property to be compu-
tationally efficient and to converge systematically, but often
to local minima, as reported in [6]. This paper has stud-
ied the possible configurations (in term of sampling ratios,
distributions and sphere radii) leading to successful phase
retrieval using the GS algorithm. The numerous minima may
be avoided by using a quadratic inversion approach, as investi-
gated in [2], [13], but it requires more scans. Finally, a filtering
approach has been proposed in [14] to clear out the high degree
spherical waves above a given index. A new filter is proposed
here and compared to this one. Several initialization methods
are used for completeness. Interestingly, these filters can be
applied directly on many phase retrieval algorithms with SW
expansion, for example with convex optimization [7], [15], as
soon as phase initialization is possible.

The paper is organized as follows. The SW expansion and
the used GS algorithm are defined in Section II. The filtering
approach is described in Section III. Validations on simulations
and experimental data are shown and discussed in Section IV.
Finally, conclusions are drawn in Section V.

II. PHASELESS SPHERICAL NEAR-FIELD MEASUREMENT

A. Spherical Wave Expansion

The electric field E radiated from sources can be expanded
outside the minimum sphere enclosing them using Spherical
Waves (SW) Fsmn as follows [1]

E(r, θ, φ) =
k
√
η

∑
smn

QsmnFsmn(r, θ, φ) (1)

where k is the wavenumber, η the admittance of the prop-
agation medium and (r, θ, φ) the spherical coordinates. The
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quantities Qsmn are the complex coefficients to be determined.
The series (1) is truncated to n ≤ N according to the rule
N = ⌊ka⌋ + n1 where a is radius of the minimum sphere,
⌊x⌋ the floor function and n1 an integer [1], set to 10 [16].
If the electric field radiated by the AUT is sampled at M
positions, the SW expansion of the field (1) can be rewritten
as a linear system of equations

y = Ax (2)

where the vector y of size 2M gathers the complex measured
field (two polarizations), A is the matrix containing the SW,
Fsmn, at the sampling positions and x stores the spherical
coefficients Qsmn. The linear system (2) can be solved in the
least-square sense by computing the pseudo-inverse of A. The
solution is given by x := Ã+ỹ where the matrix Ã+ is the
pseudo-inverse of A with controlled conditioning. Such task
is achieved by an appropriate truncation of the singular value
decomposition.

B. Gerchberg-Saxton Algorithm

The GS algorithm for spherical antenna measurements
propagates the complex field back and forth between the
two sampled NF spheres, S1, S2 in Fig. 1, until convergence
of the SW expansion. The fields share the same spherical
coefficients Qsmn over both spheres, allowing for the field
propagation. After such operation, the magnitude is replaced
by the measurement data but the propagated phase is kept.
This process goes on until some stopping criterion is satisfied.
In the sequel, this criterion is defined to be a minimum change
occurring between two iterations. A maximum iteration count
maxiter is set to avoid unwanted, extended, computations. The
implementation is detailed in Algo. 1.

Algorithm 1 Gerchberg-Saxton for phaseless measurements
Require: |y1|, |y2| the measured magnitudes, A1,A2 the SW

matrices for the two measurement spheres S1, S2 and
their pseudo-inverses Ã+

1 , Ã
+
2 , ϕ(0) a starting phase guess,

tol the minimum required change, maxiter the maximal
number of iterations.

1: Initialization
2: ỹ1 ← |y1|eiϕ

(0)

#Assign starting phase
3: ỹ

(−)
1 ,← ỹ1, ε = tol #For stopping criterion

4: iter ← 0 #Iteration count
5: while ε ≥ tol and iter < maxiter do
6: x← Ã+

1 ỹ1 #Solving for the coefficients on S1

7: ỹ2 ← A2x #Propagate to S2

8: ϕ2 ← Phase(ỹ2) #Store the retrieved phase
9: ỹ2 ← |y2|eiϕ2 #Magnitude correction

10: x← Ã+
2 ỹ2 #Solving for the coefficients on S2

11: ỹ1 ← A1x #Propagate to S1

12: ϕ1 ← Phase(ỹ1) #Store the retrieved phase
13: ỹ1 ← |y1|eiϕ1 #Magnitude correction
14: ε← ∥ỹ(−)

1 − ỹ1∥ #Evaluate change norm
15: ỹ

(−)
1 ← ỹ1 #Store to evaluate change

16: iter ← iter + 1 #Iteration count update
17: return x #Complex spherical coefficients

The evaluation of the coefficients in x and field propa-
gation are performed by a matrix-vector multiplication. The
pseudo-inverses Ã+

1 , Ã
+
2 are costly to evaluate, especially for

large systems, but contain most of the complexity of the
procedure. Therefore, once computed, large iteration counts
maxiter and/or several runs with different phase initialization
are possible within reasonable computation times.

C. Phase Initialization
The GS algorithm requires a starting phase, ϕ(0). The used

methods do not require a priori information on the AUT. Three
methods are used for benchmark purposes.

1) Constant phase: The starting phase is ϕ(0) = 0 (or
any real constant), noted as 0-Pha thereafter. It is highly non-
physical but provides the most simple, unbiased, choice.

2) Dipole phase: The phase ϕ(0) is taken from an Hertzian
dipole, noted as Dip.Pha. The direction of the dipole is chosen
to avoid phase jumps at high magnitude positions, as in [6].

3) Correlated SW Phases: The phase is provided by a set
of randomly drawn coefficients using low-degree SW with
the highest correlation relatively to the input magnitude data,
denoted by Corr.Q in the sequel. It generates more complex
starting phases with no jumps at high magnitude levels.

III. FILTERED GERCHBERG-SAXTON

The GS algorithm is simple but its convergence is slow and
often trapped in local minima [6]. To mitigate these effects, a
filter procedure is used. A new GS run is initialized with the
previously found phase to which a filter has been applied. The
resulting algorithm is named Filtered GS (FiGS) in this paper.

A. Principle
At the end of the GS run (either by hitting tolerance

tol or maximal number of iterations maxiter), a filter is
performed on the retrieved complex spherical coefficients x.
The filtered coefficients yield a phase pattern for a new GS
run. The proposed filters aim to clear the aliasing on high-
degree SW introduced during minimization, as noted in [14]
and illustrated in Section III-B3. Conversely, the filters must
not enforce specific distributions of the SW coefficients but
only guide the convergence of the GS algorithms. Hence, the
filters attenuate as detailed in Section IV-B2. An alternative
approach would be to apply the filters within the GS algorithm,
between lines 6-7 and 10-11 in Algo. 1. However, as the GS
technique is equivalent to a Steepest-Descent algorithm [17],
such method would produce a perturbed descent leading to
worse performances results as confirmed by several tests (not
shown here for conciseness) relatively to the proposed imple-
mentation (in stability, accuracy and speed of convergence).
This method is thus left aside for this paper.

B. Filter methods
1) n-Low-Pass Filter (n-LPF): A low-pass filter whose

cutoff is a maximal degree nT given by a chosen percentage
of the total radiated power [14]. The index nT corresponds to
the first degree such that P% of the total radiated power is
radiated. This filter sets to 0 every spherical coefficients Qsmn

with degree n > nT .
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(d) n-spectra of the coefficients displayed in Fig. 2

Fig. 2. Simulated horn antenna: effects of the filters on the SW coefficients
for P = α = 99%. The corresponding n-spectra are shown in (d).
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Fig. 3. Simulated horn antenna: n-spectra after a run of GS, before the first
filtering operation and at the end of FiGS for the nm-MT filter.

2) nm-Maximum-Threshold (nm-MT): A riddling of the
least contributing coefficients over both the degree n and the
order m, introduced by this paper. A threshold α determines
the dynamic over the normalized SW expansion coefficients
Qsmn/max |Qsmn|. As a result, the spherical coefficients in
x with magnitude less than (1− α)maxj |xj |2 are set to 0.

3) Observations and illustrations: The effects of both filters
are showcased in Fig. 2 on a simulated horn antenna in X
band. The spectra for s = 1 are shown in Fig. 2.a,b,c and
the distribution of the radiation power over the degrees, the
n-spectrum, in Fig. 2.d. The n-spectrum is the sum of powers
radiated by the modes of degree n. The tail of the distribution
is cut abruptly as it contains small magnitudes only. Intuitively,
the filters clear out the fast but small oscillations to provide a
new starting phase. As illustrated by the n-spectra in Fig. 3, at
one sixth of the maximal number of iterations (before the first
filter), the solution contains many high degree modes n ≥ 20.
These modes are not present in the true set of coefficients and
the power distribution is not modified significantly thereafter
by the GS algorithms as compared to the FiGS run.

IV. NUMERICAL AND EXPERIMENTAL VALIDATIONS

A. Characterization Accuracy

The success of the phaseless characterization is evaluated by
comparing the retrieved Far Field (FF) in ỹ from the phaseless

NF data to the reference one, y. This comparison is achieved
point-wise by the error signal defined as follows

Error(y, ỹ) =
||y| − |ỹ||
maxi |yi|

. (3)

The mean of this error signal is the Equivalent Noise Level
(ENL). Both are given in dB. The comparison of the FF
magnitudes provides a single, straightforward, indicator of a
coherent retrieved phase in NF as faithful FF reconstruction is
not possible otherwise. It also avoids the comparison of phase
patterns, which is tedious for phase reference reasons.

B. Methodology
1) Phaseless configuration: The NF spherical samplings

use the igloo strategy [18] as it provides a somewhat uniform
sampling distribution, as advised in [15]. The coordinate
system are the ones used for the simulation or the one of
the MVG StarLab [19] for the measurements. The distance is
evaluated as a % of the FF distance given by the Rayleigh
definition, rFF = 2 (2a)2

λ . The sampling ratio δ is the number
of data on each sphere over the number of unknowns. The
total sampling ratio is 2δ as two scans are performed. The NF
sphere radii are chosen according to [6]. The FF cutting planes
are shown for |θ| ≤ 135° for readability and results from the
phase initialization having the best FF reconstructions. The
ENL metrics are however computed on the whole spheres.

2) Filter implementation and algorithm comparison: The
filters are designed to guide the convergence of the GS
algorithm but not to enforce the solution. Consequently, the
successive filtering operations attenuate. In this paper, it trans-
lates into the following: a starting threshold α0 or P0 is
chosen and increases linearly toward 99.9%. For example, if
the starting value is α0 = 90% and the filter is applied 3
times, the thresholds are respectively 90, 94.95 and 99.9%.
Also, the maximal number of iterations between two filtering
operations is fixed and chosen so the maximal total iteration
count is the same for the GS and FiGS algorithms. Finally,
the tolerance parameter is set to tol = 10−6. These choices
are empirical and help avoiding unfair comparisons due to
prematurely stopped algorithms.

3) Filter tuning: For each filter, the starting threshold α0/P0

and the number of filtering have to be set. Extensive testings
for a wide range of possible values have been performed on the
presented cases to demonstrate the stability. In particular, the
tests for the simulated horn antenna are provided in section
IV-C1 and show similar behaviors for the other antennas.
Consequently, for all cases, the n-LPF filter is applied 1 times
with threshold P = P0 = 95% and the nm-MT filter 5
times with thresholds α increasing linearly from α0 = 99%
to 99.9%, as motivated in Section IV-D2. For a total maximal
iteration of 2000 in both simulation cases, the n-LPF filter is
applied at most at the 1000th iteration and the nm-MT one at
most every 333 iterations. If minimum tolerance tol is reached
before, the next filter, if performed, occurs earlier.

C. Simulations
Two antennas are considered; a model of the horn antenna in

X band in Fig. 9 and a 5×5 array of rectangular wave-guides
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(b) Cross-polarization

Fig. 4. Simulated horn antenna: reconstructions of the FF in the E-plane
using GS and FiGS with the proposed nm-MT filter. Error signals relatively
to reference are in grey with same style as their parent curve.

(WG array) at 30GHz with a tilted main beam, providing two
very different patterns. The simulations are performed on CST
[20] and data exported on NF and FF spheres. The ENL values
between the FF reconstruction from the phaseless data and the
reference FF are given in Table I. The total maximal number
of iterations is set to maxiter = 2000 for both cases.

1) Horn antenna at 10GHz: This antenna has a minimum
sphere radius a = 75mm, N = 25. The two NF spheres
S1 and S2 are located at 150 and 225mm, or 10 and 15
% of the FF distance, respectively. There are 2744 samples
for each sphere and 1350 coefficients to identify (sampling
ratio δ ≈ 2.03). The reconstructions of FF co- and cross-
polarizations in the E-plane are shown in Fig. 4. The ENL
of the reconstructions on S1 over the iterations are shown in
Fig. 5, illustrating the effects of the filter on the convergence.
The ENL of FF reconstructions relatively to the sampling size
(sampling ratio) and to filter tuning are shown in Fig. 6 and 7,
respectively. These results are discussed in the next section.

2) Waveguide array at 30GHz: The array has a minimum
sphere radius a = 48mm, N = 40. The NF spheres are
located at 184 and 277mm, or 10 and 15 % of the FF
distance, respectively. There are 6832 samples for each sphere
and 3360 coefficients to identify (sampling ratio δ ≈ 2.03).
The reconstructions of the co-polarization of the FF in two
orthogonal places going through the maximum at (θ, φ) =
(30°,290°) are shown in Fig. 8.

D. Discussions on Simulations
1) Accuracy of the FF: According to Table I, the FiGS

algorithm produced more accurate results in all cases. This
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Fig. 5. Simulated horn antenna: ENL of the reconstructions on the first
measurement sphere S1 during a run of GS (dotted curves) and FiGS (plain
curves) with nm-MT filter.
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TABLE I
SIMULATIONS : FF RECONSTRUCTION PERFORMANCES IN ENL

Horn 0-Pha Dip.Pha Corr.Q
GS -44.0 -47.6 -47.4

FiGS n-LPF -48.7 -47.7 -48.2
FiGS nm-MT -55.1 -50.1 -52.5

WG array 0-Pha Dip.Pha Corr.Q
GS -41.5 -42.1 -41.9

FiGS n-LPF -42.2 -43.3 -42.6
FiGS nm-MT -45.5 -45.7 -45.1

observation is further illustrated in Fig. 6 for various dataset
sizes. Finally, the proposed nm-MT filter yields significantly
better results in a more stable way. A possible explanation
is that the nm-MT filter also acts on the order m. Since
there is a multiplicative term ejmφ in the SW expression,
which has constant modulus, the order m is highly critical
for phase ambiguities. The lower error signal in the various
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Fig. 7. Simulated horn antenna: ENL of the FF reconstruction with FiGS using
both filters relatively to the number of filtering operations and the starting
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improved or deteriorated, respectively.
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(a) Principal plane (φ = 290°)
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(b) Co-principal plane (θ′ = 0 indicates (θ, φ) = (30°,290°))

Fig. 8. Simulated WG array: reconstructions of the FF co-polarization in
two orthogonal planes going through the maximum. The angle θ′ represents
the angle θ in the coordinate system pointing at the maximum. Error signals
relatively to reference are in grey with same style as their parent curve.

cutting planes also illustrates the claimed improvements.
2) Choice of the parameters: The filtering approach relies

on two parameters: the number of filters and the starting
threshold α0. Without a FF reference, a rule of thumb for
the parameter tuning is to observe the achieved ENLs on the
measurement spheres. Indeed, the final values of the FiGS
curves in Fig. 5 follow the same order as the FF reconstruction
accuracy in Table II. Note that one FiGS curve stops around
1750 because the minimum tolerance tol is reached. The
filter operations are visible as spikes. The parametric studies
reported in Fig. 7 motivate the set values for both filters as
they lie in the region where the improvements are the most
significant and stable. Similar behavior can be observed for
the other AUTs (not shown here for conciseness), allowing
the fixed values used throughout the paper. It also shows how
more stable and efficient is the proposed nm-MT filter.

E. Data from Measurements
The NF measurements have been performed in the StarLab

for the horn antenna previously simulated and a metasurface
antenna [21]. The (complex) SW coefficients returned by the
MVG software are used to generate the phaseless samplings.
The ENL values between the FF reconstructions from the
phaseless NF and the reference are given in Table II.

1) Horn antenna at 10GHz: The data parameters are the
same as in the simulation except for the sampling distances,
of 320 and 450mm (the StarLab radius), or 20 and 30 % of
the FF distance, respectively. The FF reconstructions of one
polarization in two planes are shown in Fig. 10.

(a) Horn (b) Metasurface [21]

Fig. 9. Pictures of the antennas measured in the MVG Starlab for the
experimental validations of the phaseless characterization procedure.

135 90 45 0 45 90 135
 (deg)

60

50

40

30

20

10

0

E
 m

ag
ni

tu
de

 (d
B

)

GS
FiGS nm-MT
Ref.

(a) Eθ in E-plane (Co-polarization)
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(b) Eθ in the plane φ = 45°

Fig. 10. Horn antenna: FF reconstructions of Eθ in two planes. Error signals
relatively to reference are in grey with same style as their parent curve.

2) Metasurface antenna at 17GHz: This antenna has a
minimum sphere radius a = 130mm, N = 56. The two NF
spheres are located at 450 and 900mm, or 6 and 11 % of
the FF distance, respectively. There are 14264 samples for
each sphere and 6496 coefficients to identify (sampling ratio
δ ≈ 2.20). The maximal iteration count is maxiter = 3000.
Both larger sampling ratios and maximal iteration count are
due to the high complexity of the antenna to ensure proper
convergence of all the methods. The reconstructions of co-
and cross-polarizations of the FF in the main cutting plane
are shown in Fig. 11.

3) Summary and Usage Guidelines: The FiGS algorithm
has led to improved accuracy of between 1.1 and 2.5 dB
in mean and better side-lobes reconstructions using predeter-
mined values, as shown by the ENL in Tab. II and displayed
cutting planes. It has to be noted that the metasurface antenna
is in circular polarization with two tilted main beams with
low directivity, explaining the worse ENL levels despite the
larger samplings and maximal iteration count. These studies
allow the following conclusions: the nm-MT filter is more
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Fig. 11. Metasurface antenna: FF reconstructions in the principal plane. Error
signals relatively to reference are in grey with same style as their parent curve.

TABLE II
MEASUREMENTS : FF RECONSTRUCTION PERFORMANCES IN ENL

Horn 0-Pha Dip.Pha Corr.Q
GS -42.0 -42.3 -42.1

FiGS n-LPF -42.2 -42.6 -44.1
FiGS nm-MT -43.8 -42.8 -44.6
Metasurface 0-Pha Dip.Pha Corr.Q

GS -35.0 -35.2 -34.8
FiGS n-LPF -35.6 -35.4 -34.9

FiGS nm-MT -36.1 -35.2 -37.3

efficient in this context, the filter parameters can be set to
the values given above (5 filters, α0 = 99 %) without risk
relatively to the standard GS. Further improvements can be
obtained by searching for the parameters leading to the lowest
measurement errors, which is not computationally heavy once
pseudo-inverses have been computed.

V. CONCLUSION

The filtering approach for Gerchberg-Saxton (GS) algorithm
method for the two scan approach in phaseless spherical near-
field has been reviewed. A filter yielding more accurate results
in a stable way is proposed. Validations have been performed
using simulations and experimental data and improvements
in mean of several dB are achieved without additional cost.
A next step is to further understand the relationship between
the initialization methods, sampling size, parameters, filtering
methods and the accuracy of the result. An adaptive approach
for the tuning of the filter is of interest to further improve the
results. Other phase retrieval procedures using spherical waves
and based on convex optimization are also interesting options.
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[3] O. Breinbjerg and J. F. Álvarez, “Mathematical formulation of phase
retrieval for phaseless spherical near-field antenna measurements with
probe correction,” in URSI EMTS, 2019.

[4] O. Bucci, G. D’Elia, G. Leone, and R. Pierri, “Far-field pattern deter-
mination from the near-field amplitude on two surfaces,” IEEE Trans.
on Antennas and Propag., vol. 38, no. 11, pp. 1772–1779, 1990.

[5] A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Phaseless antenna
characterization by effective aperture field and data representations,”
IEEE Trans. on Antennas and Propag., vol. 57, no. 1, pp. 215–230,
2009.

[6] F. Rodrı́guez Varela, J. Fernandez Álvarez, B. Galocha Iragüen,
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M. Sierra Castañer, and O. Breinbjerg, “Combination of spherical and
planar scanning for phaseless near-field antenna measurements,” in
AMTA, 2019, pp. 1–6.

[9] J. Fernandez Alvarez, M. Mattes, and O. Breinbjerg, “Phase retrieval
for spherical near-field measurements using two antenna positions,” in
AMTA, Florida, 2021.
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