
HAL Id: hal-04148865
https://hal.science/hal-04148865v1

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The nature of computational models
Konrad Hinsen

To cite this version:
Konrad Hinsen. The nature of computational models. Computing in Science and Engineering, 2023,
25 (1), pp.61-66. �10.1109/MCSE.2023.3286250�. �hal-04148865�

https://hal.science/hal-04148865v1
https://hal.archives-ouvertes.fr


Department: Scientific Programming

The nature of computational models
Konrad Hinsen, Centre de Biophysique Moléculaire, CNRS, Orléans, France

Abstract—Computational models lie at the heart of computational science. And
yet, few scientists have a clear idea of what a computational model actually is. Is
it software? Or an algorithm? How does it relate to mathematical models? What
are suitable languages or notations for expressing a computational model in the
literature? And will AI make computational models obsolete?

Introduction
Any scientific computation involves the application of
one or more computational models. Some of these
models seem so obvious that we hardly recognize
them as such. For example, when we fit a straight line
to a set of points, we use a computational model de-
rived from two hypotheses: (1) the dependent quantity
is a linear function of the independent quantity, and
(2) measurement errors follow a normal distribution,
with equal variance for all data points. At the other
extreme, some models are so complex that they seem
to be all there is to a piece of software. For example,
what climate researchers call an Earth system model
is really a simulator for a model, i.e. software that
computes model predictions. There are also branches
of computational science, in particular bioinformatics,
that emphasize methods for solving problems over
models representing the underlying phenomena, and
as a consequence hardly discuss models at all. But
the models are still there, in the form of assumptions
about the systems under study that are implicit in the
problem-solving algorithms.

If we condense the process of scientific research to
its very basics, it is the creation and iterative improve-
ment of models that describe the observations that we
make of natural phenomena. Models and observations
are thus the core concepts of science. Two long-
standing specializations in many disciplines are the
theoretician, who comes up with and refines models,
and the experimentalist, who designs ingenious setups
to make good observations.

In computational science, observations are repre-
sented as datasets. How about models? A frequent
view is that models are represented as code. After all,
“code and data” is an association that sounds like the
perfect analogy to “theory and experiment”. However,

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

this analogy doesn’t stand up to critical examination.
Code is a technical artifact that involves many choices
unrelated to modeling natural phenomena. For exam-
ple, to write code, I have to choose a programming
language, but that choice is completely unrelated to
the phenomenon I wish to describe by my model. A
computational model can be implemented in any pro-
gramming language, and should yield identical results
independently of that choice.

But then, what is a computational model? In the
following I will argue that it is a (partial) specification
of an algorithm or program. As part of my argument,
I will explain how specifications, algorithms, and data
are analogous to equations, functions, and numbers in
mathematics. In mathematics-based science, observa-
tions are numbers, relations between observations and
parameters are functions, and scientific models are
equations. In computational science, observations are
data, relations between observations and parameters
are algorithms, and computational models are specifi-
cations.

Set of constraints

Computation

Observables

d
e
fi
n
e
s

co
m

p
u
te

s

Equations

Function

Numbers

Specification

Code

Data

M
a
th

e
m

a
ti

ca
l 
M

o
d

e
l

C
o
m

p
u
ta

tio
n
a
l M

o
d

e
l

FIGURE 1. Mathematical and computational models in sci-
ence. Computations can be written down directly as a func-
tion or as executable code, but defining them via a set of
constraints, i.e. equations or specifications, results in modular
models that can be generalized and provide more insight.

Month Published by the IEEE Computer Society Computing in Science and Engineering 1



DEPARTMENT

Mathematical models in science
Quantitative mathematical models play a very impor-
tant role in scientific disciplines as diverse as physics,
biology, and economy. Such models describe relations
between observable quantities and system parameters
such as time. The simplest form such a relation can
take is a function, which expresses one quantity in
terms of other quantities and parameters. This ap-
proach can easily be generalized to multiple functions,
or a single multi-valued functions, for the case of
multiple dependent quantities. Models expressed as
functions often have adjustable parameters, whose
values are determined from observations.

Two historically important examples of function-
based models are Ptolemy’s and Kepler’s models for
orbits of celestial bodies. Ptolemy’s model describes
the orbit of the Sun as seen from the Earth as a circle
with superposed epicycles, an idea similar in spirit
to Fourier analysis. The radii and relative phases of
the cycles are parameters fitted to the observations.
Kepler’s model states, in modern language, that plan-
ets move on elliptical orbits around the Sun, which
occupies one of the two focal points. Each ellipse
has two adjustable shape parameters, which must be
determined from observations of the planet’s positions.
Kepler’s model also makes a quantitative statement
about the velocity at which the planets move, accel-
erating as they approach the sun and slowing down
as they move away from it, respecting what in modern
language is called the conservation of angular momen-
tum.

Historical discussions describe Kepler’s model as
superior to Ptolemy’s because it chose the Sun, rather
then the Earth, as the reference point for celestial
orbits. Another major progress is rarely discussed.
Ptolemy’s model is very generic. Any closed curve can
be described as a superposition of circular motions, in
the spirit of Fourier analysis. But a good approximation
takes many epicycles and thus many fit parameters.
Kepler puts the shape of the orbits into the functional
form of his model, reducing the number of parameters
to two. In general, given two models with adjustable
parameters that predict observations equally well, the
one with fewer parameters is the more powerful one,
because it captures more of the regularities of the
data. This is a lesson that modern data science is just
rediscovering.

A more advanced kind of mathematical model con-
sists of equations, whose solutions are the functions
that relate observable quantities and system parame-
ters. Since a function can be regarded as a special
case of an equation in which nothing is unknown,

equation-based models are a superset of function-
based models. In general, equations are constraints on
functions. Equations are more powerful than functions
as scientific models because they can be arbitrarily
composed. Functions can of course be composed as
well, but not arbitrarily. You can chain together two
functions, but the value of one function must then be a
valid argument to the second function. Equations can
just be lumped together. At worst, the combination has
no solution, or too many to be of practical interest.
Each equation can focus on one specific aspect of
the overall model. The use of equations thus makes
mathematical models modular. Much of the insight
that such models provide comes from the study of its
component equations (1).

A good illustration is Newton’s model for celestial
mechanics, which was a huge improvement on Kepler’s
ellipses. It consists of the combination of two equa-
tions. One of them is a general principle of (classical)
mechanics: the force acting on an object is equal to its
mass times its acceleration. The other equation is the
law of gravitation, which states that two masses attract
each other with a force that is proportional to each
mass and inversely proportional to the square of the
distance between them. It is this separation into a gen-
eral principle, applicable to many other situations, plus
a description of specific interactions, that has turned
classical mechanics into one of the most successful
and practically important scientific theories of all times.

Kepler’s ellipses are a solution of Newton’s equa-
tions. But Newton’s equations go far beyond those
ellipses, even if we consider only celestial mechan-
ics. The equations show that ellipses are an exact
solution only for one planet orbiting a single star. In
our multi-planet solar system, elliptical orbits are only
an approximation, useful if the gravitational attraction
between planets is small enough to be neglected.
Better yet, Newton’s equations tell you how to improve
the solutions by taking into account these interactions.
Moreover, Newton’s equations show that there are also
non-elliptical solutions: the parabolic orbits of celestial
bodies arriving from infinite space and never returning
to their place of origin. Finally, Newton’s equations
permit the derivation of conservation laws, e.g. for
energy and angular momentum, that greatly facilitate
reasoning about possible solutions even without com-
puting them in detail.

This celestial mechanics example illustrates how
function models and equation models tend to play
different roles in science. Functions, usually with fitted
parameters, are used to summarize observations in
a compact form, and separate regularities from the
inevitable noise or errors in any measurement. Such

2 Publication Title Month 2023



DEPARTMENT

a descriptive model (Fig. 2) can be used to compute
theoretical values for past and future observations. But
it is not generalizable to similar though not identical
situations. Equation models are usually explanatory :
they describe the observations as the outcome of
supposedly more fundamental mechanisms, such as
kinetics and gravitation, which are applicable in a much
wider range of situations (Fig. 3).

Algorithms and specifications
In the realm of computations, the equivalent of a
mathematical function is an algorithm. It takes data
items as input, and produces one or more data items
as output. The inputs thus correspond to a function’s
arguments, and the outputs to the function’s value. This
very suggestive correspondence is the reason why
many programming languages use the term “function”
for code items that implement an algorithm. It is, how-
ever, exact only if the algorithm does nothing else than
return its outputs: it may not change data elsewhere in
memory, nor change what is displayed on a screen,
nor send data over a network connection, etc. Under
that condition, functions and algorithms can almost
be considered synonyms in the context of scientific
models, leaving aside mostly theoretical subtleties re-
lated to the non-computability of real numbers. Lifting
the condition of no effect other than returning outputs,
we thus find that algorithms are a generalization of
functions.

A commonly held view is that computational mod-
els are algorithms. Many if not most computational
models used today are indeed algorithms, because
they are derived from mathematical models as solution
algorithms. That’s a topic I will discuss later. First, I
want to address another question: is there something
equivalent to equations in the realm of computation?
The answer is yes, and that something is called a
specification [3]. A specification describes what an
algorithm or a program is expected to do. Like a
set of equations, a specification consists of a set of
constraints on an algorithm’s or program’s behavior.
In fact, equations are one possible form of constraint
on an algorithm, and therefore a specification is a
generalization of a set of equations in the sense that
it allows for more types of constraints.

Specifications come in two varieties: formal and
informal. They are the extremes of a scale rather than
neatly separate categories. A formal specification is
expressed in a formal language, which is a language
whose syntax and semantics are precisely defined,
making it suitable for processing by computers. An
informal specification is plain prose written for human

readers, though it must try to be as precise as possible
to be of any practical value. In the gray zone between
the two extremes, we have semi-formal specifications,
a category that includes most of traditional mathe-
matics. Semi-formal specifications are amenable to
formal reasoning, such as “multiplying both sides of an
equation by the same number yields an equally valid
equation”, but the set of applicable rules is context-
dependent and not itself formalized, as it would have to
be to become part of a computer program. This is one
reason why the formalization of scientific models often
leads to more insight and understanding, in addition to
providing a useful computational tool [4].

Algorithms are usually formulated as informal spec-
ifications in narratives, or as semi-formal specifications
called pseudo-code. When expressed in a program-
ming language, an algorithm becomes executable, and
then we call it a program. However, as I explained
above, specifications are a more general notion than
algorithms. We can thus have formal specifications that
are not executable, because they are only constraints
on the results produced by a program. This requires
particular formal languages, called specification lan-
guages, which can express both algorithms and con-
straints on algorithms,

In software engineering, formal specifications are
mainly used for verifying that a program behaves as
expected, via formal proofs, tests, or other techniques.
The role of the specification is to provide a formulation
of the expected behavior of a software system that
is simpler and closer to user concerns than an im-
plementation written in a programming language. As
an example, consider the task of sorting a list. The
specification of this task is: produce a new list whose
elements are (1) the same as those of the input list
and (2) sorted. The specification does not say how this
new list should be constructed, and there are indeed
many possible solutions, including well-known sorting
algorithms such as quicksort or bubble sort. Additional
constraints, e.g. on the use of resources (memory,
CPU time, ...), can be added to the specification to
narrow down the set of acceptable solutions.

Although the principal use of specifications today is
the verification of programs, there are also formalisms
to derive executable code from a formal specification.
They are similar in spirit to the techniques that math-
ematicians have developed to find solutions to equa-
tions. One example is the Bird-Meertens formalism [1].

Formal specifications are a good framework for
defining computational models for several reasons:

1) They can be processed by computers.
2) They contain mathematical equations, expressed

Month 2023 Publication Title 3



DEPARTMENT

Mathematical model Celestial mechanics example Computational model

function with Ptolemy: circles machine learning
fitted parameters with epicycles

FIGURE 2. Descriptive models summarize a set of observations, separating perceived regularities from noise and measurement
errors. Traditionally, they take the form of mathematical functions with fit parameters. Machine learning models are the
computational generalization of this idea.

Mathematical model Celestial mechanics example Computational model

equations Newton: (1) F = m · a, (2) Fij = −Gmimj r̂ij/r2
ij specifications

general solution Kepler: elliptical orbits, sun at algorithm
(parametric) focal point, constant area speed (with input parameters)
specific solution Earth’s orbit around the Sun computed result

FIGURE 3. Explanatory models describe fundamental mechanisms by equations, whose composition defines general solutions,
in which parameters remain to be fixed in order to obtain specific solutions.

in a suitable formal language, as a special case.
3) They contain explicitly formulated algorithms as

a special case, and thus also computable math-
ematical functions.

4) They retain the modularity of sets of equations.

The most important obstacle to the use of formal
specifications in computational science is the lack of
specification languages suitable for this use case. In
contrast to the huge number of programming lan-
guages in use today, there are very few specification
languages, which moreover tend to have a narrow
application focus in software engineering. Today, com-
putational models in science usually have two un-
connected representations: an informal and typically
incomplete specification as part of a paper or textbook,
and an executable implementation as a computational
tool, in which the modularity of the specification is lost.

Derived and digital native
computational models

Most computational models in use today are derived
from mathematical models. In the simplest case, which
is a mathematical model already formulated as a com-
putable function, this only involves approximating the
real numbers in the mathematical model by floating-
point numbers. The linear regression I mentioned in
the introduction is a typical example. Another one is
the computation of an integral using Simpson’s rule.
Substituting real numbers by floating-point numbers
may seem trivial, and some programming languages
support this impression of triviality by calling floating-
point numbers “real”. However, this substitution is a
non-trivial approximation that requires considering the

impact of finite precision and non-associative arith-
metic [2].

Another frequent kind of derived computational
model computes a numerical solution for a set of
equations. Whole subfields of computational science
and engineering, e.g. computational fluid dynamics,
are based on computational models derived from dif-
ferential equations via some discretization scheme.
Deriving algorithms for numerical solutions of mathe-
matical equations is the topic of numerical analysis,
a field of research that predates computers by many
centuries. Indeed, numerical solutions to mathematical
equations have been computed by hand almost since
the beginning of science, because this was often the
only available technique for obtaining numbers that
could be compared with observations.

Computers have led to the development of alterna-
tives to numerical analysis for deriving computational
models from mathematical equations. The best-known
technique of this kind is the Monte Carlo method for
computing integrals by interpreting them as probability
densities. Another example are lattice gas automata
and Lattice Boltzmann methods, which are techniques
to solve the equations of fluid dynamics (the Navier-
Stokes equations) by simulating a dynamical system
that is convenient for computers (moving particles on
a lattice by applying simple rules) and whose averages
over sufficiently large space and time regions can be
shown to behave much like a real fluid. These models
were inspired by cellular automata, which were per-
haps the first “digital native” models, i.e. computational
models developed without any reference to traditional
mathematical models, based on ideas developed in the
1940s. Chapter 8 of Stephen Wolfram’s book “A New

4 Publication Title Month 2023



DEPARTMENT

Kind of Science” [5] describes computational models
based on cellular automata for various natural phenom-
ena. It contains a good discussion of the differences
between digital native models and models based on
mathematical equations.

Another class of digital native model consists of
agent-based models. Like cellular automata, they are
explanatory models, used in simulations from which
observable quantities are computed in the end. An
agent-based model describes the behavior of a system
by focusing on its constituents, called agents, and their
interactions with other agents, expressed as a set of
rules. The term “agents” suggests humans, and agent-
based models are indeed widely used to model human
behavior, for example in the spread of epidemics.
But the agents are not required to exhibit complex
or autonomous behavior, and can be as simple as
molecules in a model of chemical reactions.

Descriptive digital-native models have attracted a
lot of attention recently. Their formulation and exploita-
tion is commonly called data science. One popular
family of models in this category is the network model.
It describes some entities as the nodes of a graph, and
relations between the entities as the graph’s edges.
The entities can be physical (molecules, people, cities,
...) or symbolic (e.g. concepts in a knowledge graph,
or scientific papers in a citation graph), and the rela-
tions can be qualitative or quantitative, described by
weighted edges. Network models are studied by tech-
niques from graph theory, and yield mostly statistical
inferences about the importance or roles of various
entities or groups of entities in the network.

Another very important family of models in data
science is collectively called machine learning models.
Within this family, the best-known model type is the
neural network. It should not be confused with the net-
work model described above: in a network model, the
network represents the structure of the data, whereas
in a neural network, the network represents the re-
lations between small mathematical functions, called
artificial neurons because they were inspired by the
behavior of biological neurons.

In principle, a neural network is just a mathematical
function with a very large number of adjustable pa-
rameters. However, the way neural networks are used
is quite different from traditional mathematical function
models. In the latter, the functional form encodes the
scientific hypotheses of the model, with the parameters
serving only for fine-tuning the generic model to a
concrete system. In contrast, a neural network can by
design represent almost any function. This is known
as the universal approximation theorem [6]. By itself, a
neural network thus contains no scientific hypothesis

at all. Training a network on a dataset of observations
is more similar to lossy data compression than to
traditional function fitting. Computing predictions from
the trained network is then similar to interpolating and
extrapolating an approximation to the original dataset.

However, machine learning techniques are evolv-
ing quickly, and integrating prior information, such
as physical laws, is one of the main strategies for
improving neural networks. One way to do this is
via the architecture of the network, i.e. the patterns
of connections between the neurons. Convolutional
networks were the first such problem-specific archi-
tecture, designed for image processing. They enforce
translational invariance, thus ensuring by construction,
rather than as an outcome of the training process,
that a cat is recognized in exactly the same way
no matter if it’s in the top right corner of the image
or in the center. Recurrent networks similarly impose
a specific architecture for modeling sequential data.
A more recent technique, differentiable programming,
permits arbitrary combinations of numerical functions
expressed as code and numerical functions expressed
as neural networks. Large language models, which re-
cently found their way into software for a general public,
such as search engines, impose some of the basic
structure of human languages on a neural network,
allowing it to learn sequences of phrases that contain
references to each other.

Another approach to injecting prior knowledge into
neural networks is a modification of the loss function
used in training. The loss function is the quantity that
the training process aims to minimize. The main ingre-
dient in constructing the loss function is the deviation
of the network’s predictions from the training data.
Physics-informed neural networks add another term
that measures how much the prediction deviates from
specified physical laws, which are typically differential
equations. This differs from the network architecture
approach in that the prior knowledge is used as a soft
rather than a hard constraint.

All these techniques are already explored by sci-
entists in many disciplines, with the goal of identifying
their strengths and limitations. In parallel, the epistemic
status of machine learning models in science is a topic
of debate, and likely to occupy philosophers of science
for a long time to come. Plain neural networks do not
contain scientific hypotheses, meaning that they are
not really scientific models. But the more advanced
network structures raise the question whether the tra-
ditional separation of models and observations still
makes sense. It was never a completely accurate per-
spective on science. Fitted parameters, i.e. hybrid enti-
ties depending on both models and observations, have

Month 2023 Publication Title 5



DEPARTMENT

played an important role in science for centuries. More-
over, the design of any experimental setup depends
on input from models. Data thus always depended
on models in some way. With machine learning, we
get models that strongly depend on data. We can
compute predictions using these models, but how to
derive scientific insight from them remains an open
question. We certainly live in interesting times!

REFERENCES
1. J. Gibbons, “The School of Squiggol: A History of

the Bird-Meertens Formalism”, in Formal Methods,
FM 2019 International Workshops, LNCS Vol. 12233,
2020, pp 35-53.

2. N. Toronto, Jay McCarthy, “Practically Accurate
Floating-Point Math”, Comput. Sci. Eng., vol. 16, no.
4, pp. 80–95, 2014.

3. K. Hinsen, “Writing software specifications,”, Comput.
Sci. Eng., vol. 17, no. 3, pp. 54–61, 2015.

4. G.J. Sussman, J. Wisdom, “The Role of Programming
in the Formulation of Ideas”, AI Memo 2002-018,
Artificial Intelligence Laboratory, MIT, https://dspace.
mit.edu/handle/1721.1/6707

5. S. Wolfram, “A new kind of science”, Wolfram Media,
Champaign, IL, 2002, http://www.wolframscience.com/
nks/

6. M. Nielsen, “Neural Networks and Deep Learn-
ing”, Chapter 4, Determination Press, 2015, http://
neuralnetworksanddeeplearning.com/chap4.html

Konrad Hinsen is a researcher at the Centre de
Biophysique Moléculaire in Orléans and at the Syn-
chrotron SOLEIL in Saint Aubin. His research interests
include protein structure and dynamics and scientific
computing. Hinsen has a PhD in theoretical physics
from RWTH Aachen University. Contact him at kon-
rad.hinsen@cnrs.fr.

6 Publication Title Month 2023

https://dspace.mit.edu/handle/1721.1/6707
https://dspace.mit.edu/handle/1721.1/6707
http://www.wolframscience.com/nks/
http://www.wolframscience.com/nks/
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

	Introduction
	Mathematical models in science
	Algorithms and specifications
	Derived and digital native computational models
	REFERENCES
	REFERENCES
	Biographies
	Konrad Hinsen


