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Abstract. 

Purpose: Simulation-based training allows surgical skills to be learned safely. Most virtual reality based surgical 

simulators address technical skills without considering non-technical skills, such as gaze use. In this study, we 

investigated surgeons’ visual behavior during virtual reality based surgical training where visual guidance is 

provided. Our hypothesis was that the gaze distribution in the environment is correlated to the simulator’s 

technical skills assessment. 

Methods: We recorded 25 surgical training sessions on an arthroscopic simulator. Trainees were equipped with a 

head-mounted eye-tracking device. A U-net was trained on two sessions to segment three simulator-specific areas 

of interest (AoI) and the background, to quantify gaze distribution. We tested whether the percentage of gazes in 

those areas was correlated to the simulator’s scores. 

Results: The neural network was able to segment all AoI with a mean Intersection over Union superior to 94% for 

each area. The gaze percentage in the AoI differed among trainees. Despite several sources of data loss, we found 

significant correlations between gaze position and the simulator scores. For instance, trainees obtained better 

procedural scores when their gaze focused on the virtual assistance (Spearman correlation test, N=7, r=0.800, 

p=0.031). 

Conclusion: Our findings suggest that visual behavior should be quantified for assessing surgical expertise in 

simulation-based training environments, especially when visual guidance is provided. Ultimately visual behavior 

could be used to quantitatively assess surgeons’ learning curve and expertise while training on VR simulators, in 

a way that complements existing metrics. 
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1. Introduction 

 

Surgical simulators recreate surgical situations for trainees to learn and practice [1]. Virtual reality (VR) 

simulators offer high fidelity reusable environments [2] and the possibility to work on several procedures in a 

single device. VR simulation-based learning has been reported in many disciplines such as thoracic [3], urologic 

[4] and orthopedic [5] surgery. It has been demonstrated that VR training on arthroscopy significantly improves 

performance (e.g. time and camera alignment) after six months of training [6].  

VR simulators usually give feedback on strategy anticipation and technical skills through quantitative metrics 

such as the time of completion and gesture accuracy [7]. However, non-technical skills (NTS), defined as cognitive 

(decision-making, planning, situational awareness), social (teamwork, communication, leadership) and personal 

resources (stress, fatigue) factors, are equally important to patient outcomes [8]. There is even evidence that the 

lack of NTS may lead to more frequent surgical incidents than surgical technique errors [9]. 

NTS are usually assessed using subjective scales such as Non Technical Skills for Surgeons [10], Non 

TECHnical skills [11] and Observational Teamwork Assessment for Surgery [12]. Some initial works recently 

proposed objective assessment of NTS relying on sensors, such as measuring posture via surgeon's joints 

kinematics [13] or workload via pupillometry [14]. 

 

Eye-tracking (ET) devices have been extensively used in the medical field. A recent review of the broad use 

of ET in surgical research reported 46 articles on skill assessment, 25 on visual attention, 19 on workload and 11 

on skills training [15]. 

ET can be used as a non-invasive tool for assessing workload in clinical settings through pupil responses, gaze 

patterns and blinks [14]. ET has been used for training purposes [16]. It enables the observation of gaze and the 

use of visual cues of a surgeon, highlighting attentional gaze patterns. These can be used to draw the novices’ 

visual attention to the locations looked at by the experts to improve skills acquisition [17]. 

Visual behavior is also used to assess the expertise level of surgeons [18]. Comparing eye movements and 

fixations showed that novice surgeons need more visual feedback regarding their tools’ locations to complete a 

task [19]. Moreover, novices split their attention between the target and the surgical instruments, while experts 

tend to maintain their gaze on the target even when manipulating instruments [19]. It has also been demonstrated 

in orthopedic surgery training that participants with more surgical experience had a shorter duration and fewer 

fixations on the operative site [20]. However, the total number of participants was quite small (3 novice surgeons, 

5 surgeons with an intermediate level and 4 experienced surgeons), and all participants did not use the same tools 

to perform the simulation. Moreover, it assumes that the surgeons with more experience have better technical 

skills in this simulation environment but it is not objectively measured. 

Few studies attempted to correlate surgical skills with ET metrics. Pupillometry data was correlated with 

performance assessments of the Global Evaluative Assessment of Robotic skills (GEARS) and the numeric 

psychomotor test score (NPMTS) in both real tissue and a simulator on da Vinci surgical robot systems [21]. 

During laparoscopic cholecystectomy, time spent fixing on areas of interest (AoIs) was correlated with the 

Objective Structured Assessment of Technical Skill (OSATS) [22]. GEARS, NPMTS and OSATS are peer 

assessments and carry the risk of subjectivity. One study overcame this bias using a network of multiple camera 

sensors to assess the surgical trainees’ performance. The predicted assessment was correlated with several gaze 

metrics such as the time spent looking at the surgical display [23]. 

 

The study of visual behavior during surgical training should be a required assessment, especially in a VR 

environment where simulators can provide visual guidance. This assistance is useful in a training context, but 

carries the risk of skewing the skills transfer to a real environment if the trainee is not able to perform the task 

without the visual aid. Accordingly, the gaze position should be quantitatively measured to assess trainee visual 

behavior during simulation-based training. 

 

In this paper, we report on a study investigating surgical trainees’ visual behavior during VR arthroscopic 

training. Using a head-mounted ET device, we aimed to determine what the trainees were looking at. We trained 

a deep neural network to segment the environment into 4 simulator-specific areas. We then quantified gaze 

distribution in each area. Finally, we tested whether such gaze behavior was correlated to the simulator’s technical 

skills assessment. 
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2. Materials and methods 

2.1. Data acquisition 

2.1.1. Surgical simulator 

Data were acquired from 25 initial training sessions on the VR simulator VirtaMed (ArthroS™, VirtaMed, 

Schlieren, Switzerland) performed by 23 participants. The participants came from 6 Western French hospital 

centers and were post-graduate year 4 to 6. Seven of them wore eyeglasses. The 25 sessions were performed in 

three simulation centers in a controlled environment (a closed room with only the participant and the supervising 

surgeon to avoid environmental distractions, and not during conferences). 

 

The simulator consisted of a screen on which the simulation is performed (Figure 1), and a physical module 

in which the surgical instruments are inserted. Each session began with three instrument handling exercises, 

followed by a diagnostic task, and a double row cuff repair. It consisted of reattaching the tendon connecting the 

head of the humerus to the scapula using wired anchors. This is a minimally invasive surgical procedure where 

an arthroscope (a camera) is inserted into the shoulder joint [24]. We focused our study on this exercise since it 

involves multiple steps and multiple instruments. 

The sessions lasted approximately 35 minutes, with an average of 15 minutes devoted to the cuff repair. All 

sessions were overseen by a single supervising surgeon, responsible for instrument preparation and data 

acquisition. 

2.1.2. Eye-tracking device 

The participants were equipped with the eyeglass-compatible ET device Pupil Core (Pupil Labs, Berlin, 

Germany). The device consisted of three cameras: two directed toward the eyes (120Hz, 192x192 pixels) and one 

placed on the forehead to record the user's point of view (world camera, 30Hz, 1280x720 pixels). The calibration 

was performed at the beginning of each session by the single marker choreography provided by Pupil Labs (i.e., 

the user fixes on a moving target). The ET device uses the position of the pupils (relative to the eyeball) from the 

images of the eye cameras to determine the position of the gaze on the image of the world camera at a given time. 

These gaze position estimations, as well as their confidence, are extracted in real time during the recording [25]. 

Both gazes (240Hz) and world recorded frames are associated with a timestamp, enabling the association of each 

gaze with the corresponding environment image. 

2.2. Segmentation of simulator-specific areas 

To study gaze distribution in the environment during a training exercise, we defined several AoIs in the world 

camera field of view (FoV), focusing on the simulator’s screen. We used deep learning segmentation to automate 

the AoI recognition on the world camera video frames. 

2.2.1. Dataset 

The data consist of the images recorded by the world camera during the cuff repair. 888 images were sampled 

from the videos of two sessions (alpha and beta, Table 1) and were randomly distributed in training (70%) and 

validation datasets (30%). 

 

Table 1: Number of images (before data augmentation) from sessions alpha and beta in the training and validation 

datasets. Percentages are shown relative to the total number of images of the training and validation 

datasets. 

 Session alpha Session beta Total 

Training 329 293 622 (70%) 

Validation 134 132 266 (30%) 

Total 463 (52%) 425 (48%) 888 (100%) 

 

The test dataset was composed of 2,720 images sampled from the videos of the remaining 23 sessions. We 

choose to put the emphasis on the test dataset to assess whether the neural network was skewed toward session 

alpha’s and beta’s conditions (e.g. brightness, blurriness). In doing so, we ensured that the neural network 

performed equally for the sessions not used in the learning process. 
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720 images were extracted from the videos of 18 sessions, with a rate of 40 images per session. The 2,000 

other images came from the video of 5 sessions with a rate of 400 images per session. 

2.2.2. Annotations 

Annotations were all performed using the CVAT annotation software. Three AoIs were annotated: 

- "Arthroscope": the arthroscope point of view inside the articulation (left side of the screen); 

- “Virtual shoulder" (outside view): internal and external views of the articulation and relative placement 

of the surgical instruments (center of the screen); 

- “Information" (sidebar): list of tasks and access to instruments (right side of the screen). 

A fourth area "Background" was set for the rest of the image. All the annotations of an image are called a 

segmentation mask (Figure 1 right panels). When the AoIs were partially covered by the supervising surgeon’s 

hand (Figure 1 upper panels), the hand was not contoured.  

 

 
Figure 1: Original images from the frontal world camera (left panels) and their annotated segmentation mask (right 

panels). The Arthroscope area is in yellow (left side of the screen), the Virtual shoulder area is in red 

(center of the screen), the Information area is in blue (right side of the screen), and the Background area 

is in black. 

 

Annotation was performed by 6 annotators. They annotated 30 supplementary images randomly taken to test 

the inter-annotator variation. The mean Intersection over Union (IoU) quantifying the similarity between two 

annotations was superior to 90% for all segmented areas between each pair of annotators. For each segmented 

area of each image, we also computed a consensus annotation based on the 6 annotators’ annotations using the 

Simultaneous Truth and Performance Level Estimation [26]. The mean IoU between the consensus annotations 

and each annotator’s annotations was superior to 96% for all segmented areas. Therefore, the variation between 

annotators was considered to be negligible. 

 

Since the ET device is head-mounted, AoIs could be fully or partially out of the frame (Figure 1, bottom 

panels). Therefore, we ensured that each segmented area was correctly represented in each dataset (Table 2). 

 

Table 2: Number of annotated images of each area to be segmented for each dataset. Percentages given are relative 

to the 3,608 annotated images. 

 
Training 

(622 frames, ≈17.2%) 

Validation 

(266 frames, ≈7.4%) 

Test 

(2,720 frames, ≈75.4%) 

Background 622 266 2,720 

Arthroscope 618 265 2,689 

Virtual shoulder 619 265 2,688 

Information 621 266 2,689 

2.2.3. Learning 

Before being processed by the network, each image of the training and validation datasets was augmented 5 

times with random brightness, contrast and saturation adjustments. After augmentation, the training set consisted 
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of 3,732 (622×6) images, and the validation set of 1,596 (266×6) images. The images were also resized to 256×512 

pixels. 

The segmentation learning task was performed using a U-Net (resNet-34) pre-trained on ImageNet to extract 

spatial data [27] using an ADAM optimizer, a cross-entropy loss, a learning rate of 10-4 and a batch size of 50, 

with an early stopping after 10 non-improving epochs. The training was performed with a processor Intel Core i9-

9940X (14 Cores, 3.30 GHz), RTX 5000, using Python 3.6.9, Cuda 11.4 and Pytorch 1.10.1. 

The performance was evaluated using the mean IoU, also known as the Jaccard Index, of each class. The IoU 

is the overlapping area (i.e., intersection) between the prediction and the ground truth, divided by the union area 

between the prediction and the ground truth. 

2.3. Gaze distribution in the environment 

To study the distribution of the trainees’ gaze in the simulation environment, we computed the percentage of 

gazes (%gaze) in each AoI. 

2.3.1 Gaze selection 

a) Gaze confidence 

To ensure gaze detection quality, we used the detection confidence provided by the ET software. We used a 

Gaussian Mixture Model (GMM) to split the gaze data into several populations of confidence, the goal being to 

use the Gaussian parameters to set a confidence threshold high enough to make a proper selection while keeping 

sufficient data to analyze. 

Based on the gaze confidence distribution of all trainees and the shape of the associated probability density 

function (Figure 2a), we estimated that the confidence distribution could be modeled as the sum of 4 Gaussians, 

whose parameters were estimated via fitting a 4-component GMM (Figure 2b). From the parameters of the 3rd 

component (mean µ=0.905 and standard deviation σ=0.077), we fixed our threshold at µ-σ on this component. 

The confidence threshold for estimating the gaze position was then set at 0.828 (µ-σ=0.905-0.077, Figure 2a, 

vertical line). 

 

 
Figure 2: (a) Density function of the number of gazes according to the associated confidence and (b) 4-component 

GMM on this distribution. 

b) Gazes and world camera matching 

During acquisition, the world camera could be subject to freezes (i.e., the camera stopped recording new 

frames), skewing correct matches between the gaze and the closest world image. Since the ET device is head-

mounted, this matching could be unrepresentative of the real gaze (Figure 3b). To ensure that the matching was 

not biased, we only kept the gaze whose timestamps belonged to a window of 1/30 second centered on the 

timestamp of each image of the world camera (Figure 3c). This window is the theoretical maximum temporal gap 

between 2 images of the world camera. 
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(a) 
Ground truth  

(b) With world camera freeze 

without threshold 
 

(c) With world camera freeze 

with matching threshold 
 

 Gaze T. World T.   Gaze T. World T.   Gaze T. World T.  

 …    …    …   

 877.013    877.013    877.013   

 877.017 877.0   877.017 877.0   877.017 877.0  

 877.021    877.021    877.021   

 877.025    877.025    877.025   

 877.029    877.029    877.029   

 877.033    877.033    877.033   

 877.037 877.0   877.037    877.037 Unassigned  

 877.041    877.041    877.041   

 877.045    877.045    877.045   

 877.049    877.049    877.049   

 877.053    877.053    877.053   

 877.057    877.057    877.057   

 877.061 877.0   877.061 877.0   877.061 877.0  

 877.065    877.065    877.065   

 …    …    …   

Figure 3: World camera freezes consequence on the pairing between a gaze and the a priori matching world 

camera image. (a) Ground truth, (b) without the matching threshold and (c) when applying the matching 

threshold. T. = timestamp. 

c) Out-of-frame gazes 

The gaze coordinates that were not in the FoV of the world camera image were not included in the analysis 

since it was impossible to know which area the trainee was looking at. 

2.3.2. Simulator-specific areas 

The AoIs were the Arthroscope, Virtual shoulder, Information and Background areas (see Section 2.2.2.). For 

each session, images were extracted from the world camera video, and processed by the network for segmentation. 

2.3.3. Metric: percentage of gazes in simulator-specific areas 

Using the timestamps, each gaze position was placed on the corresponding image of the environment in order 

to deduce the area looked at. The %gaze per AoI was computed for each session. We only considered the gazes 

with a sufficiently high confidence (confidence threshold, see Section 2.3.1.a), which could be reliably attributed 

to a world camera image (matching threshold, see Section 2.3.1.b) and with coordinates in the FoV of the world 

camera image (see Section 2.3.2.c). 

2.4. Link between gaze position and simulator metrics 

2.4.1. Variables 

For each simulation, the simulator returns 20 metrics (e.g. procedure time, instrument path lengths, cartilage 

scratching) and 26 scores (based on the metrics compared to a target value) to objectively assess the surgical 

exercise. To investigate a link between gaze position and the metrics and scores computed by the simulator, we 

considered the %gaze within the Arthroscope (only view of the joint in real surgery) and the Virtual shoulder (a 

one-time visual aid in a simulator learning setting) areas. 

Correlation tests were applied between the %gaze on the Arthroscope or on the Virtual shoulder areas, and 

each metric and score for the cuff repair exercise. We performed Pearson correlation tests for data with a normal 

distribution (Shapiro-Wilk test, p > 0.05) and Spearman correlation tests otherwise (Shapiro-Wilk test, p ≤ 0.05). 

2.4.2. Training sessions 

To consider the whole process (segmentation included), both sessions used to train and validate the 

segmentation network were excluded from the correlation tests (23 sessions left). 
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To apply the correlation tests on data that were representative of the exercise, we placed a filter on the %gaze 

not included in the gaze distribution analysis (with a confidence ≤ 0.828, not assigned to, or outside the world 

camera FoV, see Section 2.3.1). The 15 sessions for which the gaze selection removed more than 30% of gaze 

data were not included in the analysis (8 sessions left). 

Due to calibration issues, we excluded 1 session for which the %gaze on the Background area was higher than 

50% as the surgeon was unlikely to complete the exercise without looking at the screen. Finally, 7 out of 23 

sessions were considered for the correlation tests. 

3. Results 

3.1. Segmentation of simulator-specific areas 

The cross-entropy loss did not show any overlearning (Figure 4a). The IoU averaged 98% on the training 

dataset and 96% on the validation dataset. Independently, each class reached an IoU of at least 94% (Figure 4b). 

 

 
Figure 4: (a) Cross-entropy loss (N=3,732) and the validation (N=1,596) datasets and (b) Intersection over Union 

(%) for each class of the validation dataset during the training. 

 

On the test dataset, the IoU averaged 96.59%, with 99.68% for the Background, 97.46% for the Arthroscope 

area, 93.72% for the Virtual shoulder area and 95.50% for the Information area. The segmentation performance 

was similar for the three simulation centers. 

3.2. Gaze distribution in the environment 

The number of gazes excluded from the analysis varied from one session to another. On average, the 

confidence threshold removed 32.90% ± 30.15% of the gaze, the matching threshold removed 17.54% ± 17.50% 

of the gaze, and the gaze outside the world camera FoV represented 4.09% ± 5.76% of the gaze. Note that the 

gaze selection (section 2.3.1) removed more than 30% of the data for 15 out of 23 sessions (Figure 5). 

 

 
Figure 5: Gaze data loss. The underlined sessions are excluded for further analysis (more than 30% of data loss). 
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The gaze distribution within the AoIs varied among sessions (Figure 6). For instance, the %gaze in the 

Arthroscope area ranged from 16% up to 95%, with a mean of 78% and a standard deviation of 25%. 

 

 
Figure 6: Percentage of gazes in the simulator-specific AoIs (after gaze selection, see Section 2.3.1) during the 

cuff repair exercise. The underlined session was excluded for further analysis (more than 50% of gaze 

on the Background area suggesting a calibration defect). 

3.3. Link between gaze position and simulator metrics 

There was no significant correlation before session selection. When we only focused on the 7 selected sessions 

(see Section 2.4.2), correlation was found between the %gaze in the Virtual shoulder and the Camera path length 

score, the Drilling attempts at incorrect location score and the Procedure score (Table 3). Note that the Camera 

path length score and Drilling attempts at incorrect location score are computed according to, respectively, the 

camera path length (cm) and the number of drilling attempts at incorrect location, compared to a target value. The 

Procedure score is based on 3 scores: the number of drilling attempts at incorrect location score and the maximal 

deviation from the optimal angle score for both anchor holes.  

 

Table 3: Significant correlations between the percentage of gazes on the Virtual shoulder area and the simulator 

scores. Training sessions were selected according to (a) Data removed by gaze selection < 30% and (b) 

Percentage of gazes on the Background area < 50% to overcome calibration defect. 

The values correspond to Spearman correlation coefficients and p-values. A slash means no significant 

correlation. 

 
Without training 

session selection 

With representative gaze data 

and satisfying calibration 

Number of training sessions 23 7 

Camera path length score / r=0.837, p=0.019 

Drilling attempts at incorrect location score / r=0.800, p=0.031 

Procedure score / r=0.800, p=0.031 

 

Furthermore, the higher the %gaze in the Arthroscope area, the higher the percentage of instruments in scope 

view (Pearson correlation test, N=7, r=0.808, p=0.028) for selected sessions. 

4. Discussion 

Segmentation of simulator-specific areas 

The neural network segmented the three AoIs and the background with an IoU above 94% for each. 

Interestingly, its performance was similar for three different simulation centers, suggesting its robustness to the 

background environment. 

Some images were complex to annotate due to (i) the lack of fixed delineation between the three screen areas, 

and (ii) the blurring of some images due to motion. In those cases, the network might be more objective than the 

annotators to predict the different classes. Although the network performance is sufficient as it is, its performance 

and learning speed could be refined through a fine-tuning step testing several parameters such as the learning-rate 

and the optimizer. 

 

Link between gaze position and simulator metrics 
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Some of the metrics returned by the simulator were correlated with the %gaze in the Arthroscope and with the 

Virtual shoulder areas. For instance, the more the trainees looked at the Virtual shoulder, the lesser they attempted 

to drill an incorrect location. Since the Virtual shoulder area is an anatomical visual aid, it helps the trainees to 

properly position their instruments relative to the shoulder joint. That the procedure score was higher when the 

%gaze on the Virtual shoulder was high tends to confirm our assumption that visual assistance carries the risk of 

skewing the skills transfer to a real environment. Since our dataset concerned the initial (first or second) trainees’ 

training session, we can assume that the visual aid is relevant at this point, but should be removed over the training 

program. 

Similar results were found during laparoscopic cholecystectomy. By dividing the environment into several 

AoIs such as the screen (endoscope feedback) and the instruments, they found that the more time spent fixing on 

the more relevant AoI (i.e. the screen), the higher the OSATS [22], indicating better technical skills. Another 

study showed that more time spent looking at the display led to a better objective prediction of trainees’ technical 

skills [23]. This emphasizes the role of gaze behavior in surgical technical skills with better performance linked 

to a specific usage of the surgeon’s gaze. Our findings align with those results highlighting the importance of gaze 

behavior in surgical training [17 - 20].  

 

Limitations 

This work presents several limitations. First, we did not record nor quantify distractions during the simulation. 

The simulation protocol and the simulation setup were designed to avoid distraction: the experiments took place 

in a closed room and only the trainee and the supervising surgeon were in the room during the simulation. 

Although the supervising surgeon limited its interactions with the trainee as much as possible, we could have 

added a simple camera to record the interactions, qualify the distractions and remove the corresponding gazes. 

There was a relatively high loss of raw video data due to camera freezes. For this proof of concept study, the 

ET device was chosen for its low price and its eyeglass compatibility and should be upgraded to avoid data loss. 

A loss of data was also found at the ET level, where the confidence threshold alone removed more than 70% of 

the gazes for 6 sessions. Although our 0.828 threshold might be too high, it is noteworthy that those 6 trainees 

wore eyeglasses. Despite the ET device’s eyeglass compatibility, it made a glare appear on the trainee's eye, 

preventing proper pupil detection and resulting in lower confidence. In future acquisitions, special attention should 

be paid to the light sources. 

The %gaze estimation in each AoI presents some limitations. First, this distribution depends on the 

segmentation network performance. The exploration of predicted segmentation masks shows that the inaccuracies 

are mainly at the edge of the areas. As the segmented areas are larger than the region of interest for the surgeon 

(e.g. the central circle for the Arthroscope area), we can assume that the number of impacted gazes is small. 

Another limitation is the calibration phase performed at the beginning of each session, allowing the estimation 

of the gaze position according to pupil position. Indeed, we assumed that a trainee whose %gaze in the Background 

area is higher than 50% (without calibration defect) could not complete the exercise. Since the cuff repair exercise 

was generally performed after 20 minutes of recording, the ET device’s micro-displacements might have gradually 

led to a decalibration. One solution would be to validate the calibration before each exercise, or perform a post-

hoc calibration by tracking a predetermined object. 

Regarding the gaze distribution in the environment, the meaning of the measurement itself could be a 

limitation. In our case, we considered the %gaze in an area and not gaze fixations. Indeed, the gazes crossing an 

area, to go from point A to point B, were counted in the percentage. However, we believe that over an exercise of 

about 15 minutes (∼160,500 gazes on average), the amount of time spent crossing a zone without actually fixing 

on it is negligible. 

The major limitation of our work is the number of individuals considered to perform the correlations between 

gaze position and simulator metrics (N=7). Indeed, although we performed 25 training sessions, we ended up 

excluding 18 of them to keep only those with good data quality. However, since all correlations make sense from 

a surgical point of view, this study provides a proof of concept regarding visual behavior of surgical trainees 

during simulation-based training. 

 

5. Conclusion 

Using a neural network, we were able to segment several AoIs specific to the VR simulator. The gaze 

distribution between those areas differed among trainees. After fitting out data based on their representativeness 

(considering data loss and calibration defect), we highlighted some correlations between the gaze position during 

the simulation and the metrics and scores returned by the simulator. Even though these correlations must be 

qualified due to the small number of individuals considered, it provides a proof of concept regarding visual 

behavior of surgical trainees during simulation-based training. With a calibration adjustment, this experimental 
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setup could be used to characterize the use of specific visual cues (such as arrows and colors) provided by the 

simulator with more accuracy. This would mean identifying to what extent the trainees use these cues, and how 

their visual behavior evolves without them and/or during the learning process. An analysis of the pupillometry 

could also provide an additional insight about the participant's workload and add to the potential impact and 

applicability of this study. Ultimately visual behavior could be used to quantitatively assess surgeons’ learning 

curve and expertise while training on VR simulators, in a way that complements existing metrics. 
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