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Refined Post-Impact Velocity Prediction for
Torque-Controlled Flexible-Joint Robots

Camilo Andres Rey Arias1 , Wouter Weekers2 , Marco Morganti1, Vincent Padois3 , Alessandro Saccon2

Abstract—Predicting the post-impact velocity for torque-
controlled flexible-joint robots enhances impact-aware control
schemes which exploit intentional collisions for achieving dynamic
robotic manipulation and locomotion. Compared to a previous
approach based on a fully rigid-robot assumption, this paper
shows how an improvement in the post-impact velocity prediction
can be obtained by taking into account the joints’ motor inertias,
transmission ratios, and low-level torque control gains, as well
as the impact surface friction. The paper also proposes a more
robust method to estimate the gross post-impact velocity profile
from experimental data via a polynomial fit. The improvement of
the new post-impact velocity prediction is illustrated by means of
both numerical simulations as well as 50 experimental trials on
a commercially available torque-controlled robot. The recorded
impact data and prediction algorithms are shared openly for
reproducibility and further research.

I. INTRODUCTION

IMPACT-AWARE robotics refers to the exploitation of in-
tentional collisions for achieving dynamic manipulation and

locomotion [1], [2]. This paradigm shift is envisioned to extend
state-of-the-art physical interaction control approaches that
resort to enforcing near-zero relative contact velocity between
a robot and its environment, treating collisions as disturbances
to be dealt with (cf.[3], [4]). This ambitious goal requires a
new holistic framework including modeling [5], learning [6],
planning [7], sensing [8], and control aspects [9], supported
by collision-tolerant hardware [10]–[12].

Impact-aware control strategies have to account for velocity
jumps induced by intentional collisions that occur along a
trajectory. These jumps, when they are not addressed directly
[9] or indirectly [13] by the control strategy, are seen as a
sudden large disturbance in the system which results in poor
tracking and even cause instability [14]. When employing an
impact-aware strategy such as reference spreading [9], [15],
[16], the availability of experimentally-validated post-impact
velocity prediction models for robotic manipulators is of high
relevance [5]. Other recent research in this direction, but for
velocity-controlled robots, includes [17], [18].

In this work, we focus on post-impact prediction models
with a single contact point, expanding on the seminal work
[5]. In [5], impact maps based on readily available rigid-
body robot models and nonsmooth impact laws are used
to estimate the gross post-impact response of flexible joint
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Fig. 1. Impact experiment example, recorded at Franka Emika: (1) The robot
stands still at initial configuration; (2) The end-effector moves downwards
and away from the robot base, as indicated by the red velocity arrow; (3) It
impacts the steel plate; (4) After impact, it slightly bounces and then slides.

robots impacting a rigid surface. The predictions are evaluated
against real experiments by means of a novel quantitative
comparison procedure [5], derived by the idea that the rigid-
robot response can be compared with real robot response by
suitably neglecting the post-impact higher-frequency behavior
of the non-rigid system. The rigid impact map proposed in
[5] does not include any effect of the low-level joint torque
controller. We show in this work that it is possible to include
these effects in an equivalent rigid-robot model with an adapted
nonsmooth impact law and that doing so the accuracy of the
prediction increases. Furthermore, we also model tangential
friction between the end-effector and the impacted surface.
This additional modeling is straightforward and contributes to
increase the prediction accuracy. In more detail, the contribu-
tions of this work are:

1) An improved post-impact velocity predictor, that incor-
porates the motor inertias, gear ratios, and low-level
joint torque-control gains, as well as a tangential friction
effects;

2) The experimental and numerical validation of the ap-
proach, showing the improvement with respect to two
baseline approaches missing the tangential friction and
low-level joint-torque control loop effects.

3) A post-impact velocity estimator to extract the rigid-
robot post-impact response from recorded data. This
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estimator is based on a polynomial fitting procedure at
position level and it is more robust in removing the post-
impact oscillatory response than the one proposed in [5].

Our work has also clear potential to contribute to robot safety
literature (cf. [19, equation (4)]), as our results show how
the low-level torque control loop affects the effective mass at
impact times. The recorded data of the 50 impact experiments
[20], the code to compute the prediction and ground truth
values of the post-impact velocity using the experimental data,
and the illustrative 2D numerical simulation code [21] are
openly available for reproducibility and further investigation.
The experimental impact motions are not limited to planar
motions as in [5], but they are fully 3D motions with changing
impact surface locations and orientations. Figure 1 illustrates
one such experiment.

This paper is structured as follows. Section II presents the
dynamics of the system including the low-level joint torque
controller, along with the derivation of the refined post-impact
velocity predictor. A simulation study for numerical validation
of the effectiveness of the predictor is presented in Section
III. Section IV describes the setup for the impact experiments
conducted to validate the accuracy of the predictor for a 7
degrees-of-freedom (DoF) robot, impacting a rigid surface
placed in different locations and with different orientations.
Finally, conclusions are drawn in Section V.

II. CONTACT MODELING AND DERIVATION OF THE
REFINED PREDICTOR

This section summarizes the standard flexible-joint robot
dynamic model in Section II-A. This is then enriched with a
continuous contact model in Section II-B, used in Section III
for illustrating the novel post-impact velocity predictor by
means of numerical simulations. In Section II-C, the novel
equivalent rigid-robot model and the adapted impact map that
incorporates the motor inertias, gear ratios, low-level joint
torque-control gains, and a tangential friction term are detailed.

A. Torque-controlled flexible-joint robot dynamics
Consider an n-degrees-of-freedom flexible-joint robot, whose
dynamics can be described as (cf., e.g., [22], [23])

τ = K(θ − q), (1)

M(q)q̈+ h(q, q̇) = τ +DK−1τ̇ + τ ext, (2)

Bρθ̈ + τ +DK−1τ̇ = τ act. (3)

Here, q ∈ Rn denotes the link-side joint positions, θ ∈ Rn

denotes the motor positions including the gear reduction, M ∈
Rn×n the joint space inertia matrix, h ∈ Rn the Coriolis,
centrifugal, and gravity effects, K = diag(ki) ∈ Rn×n the
joint stiffness matrix, D = diag(di) ∈ Rn×n the joint damping
matrix, τ ext ∈ Rn the externally applied joint torques, Bρ =
diag(bi) ∈ Rn×n the motor inertia matrix including the gear
reduction, and

τ act = BρB
−1
θ u+

(
In −BρB

−1
θ

) (
τ +DK−1τ̇

)
(4a)

= u+KT (u− τ )−KS τ̇ (4b)

the actuation torques resulting from a PD + feed-forward low-
level control loop, with KT = diag(kT,i) = BρB

−1
θ − In

a proportional torque gain matrix, KS = diag(kS,i) =
KTDK−1 a derivative torque gain matrix, u ∈ Rn the
desired link-side torques resulting from a high-level controller,
and Bθ = diag(bθ,i) ∈ Rn×n a positive definite matrix
corresponding to the targeted closed-loop behaviour of the
joint torque, such that bθ,i < bi, i = {1, . . . , n}. Note that,
by substitution of (4) in (3), the motor-side dynamics is
equivalently written as

Bθθ̈ + τ +DK−1τ̇ = u, (5)

showing that the control parameter Bθ can effectively be
considered as a motor inertia matrix whose diagonal entries
are reduced compared to those of Bρ.

B. Continuous contact model
Given the flexible-joint robot dynamics (1)-(3), the contact

dynamics –including impacts– can be incorporated for numeri-
cal simulation purposes by adding a continuous contact model.
This is a direct extension of what is called Model A in [5] to
the case of a robot manipulator.

For reasons that will shortly be apparent, the exponentially-
extended Hunt-Crossley model [24] is chosen as the specific
continuous contact model. Similar to the conventional Hunt-
Crossley model [25] used in [5], the exponentially-extended
Hunt-Crossley model prevents non-physical force jumps when
establishing contact with nonzero velocity. However, in addi-
tion to that, the exponentially-extended Hunt-Crossley model
prevents non-physical sticky contact forces to occur upon
forced separation at high velocity and is thus preferred here.
Explicitly, the contact model for inelastic impacts is given by

fN =


0, if δ < 0,

kcδ
η + dcδ

η δ̇, if δ ≥ 0 and δ̇ ≥ 0,

kc exp
(

dc

kc
δ̇
)
δη if δ ≥ 0 and δ̇ < 0.

(6)

In (6), δ is the penetration depth, kc is the nonlinear stiffness,
dc is the damping factor, and η is Hertz’ geometry-dependent
contact parameter. Given the expression for fN in (6), the
contact and impact effects can be added to (2) by setting
τ ext = JN (q)⊤fN , where JN (q) is the row of the contact
Jacobian associated with the linear velocity in the contact
normal direction.

C. Equivalent rigid-robot model and rigid impact map
A description of the rigid-joint robot dynamics based on

the flexible-joint robot dynamics is used to predict the post-
impact response via a rigid impact map (denoted as Model C
in [5]). This model is obtained by substituting τ in (2) by its
expression as a function of u, τ̇ , and θ̈ in (5), yielding

M(q)q̈+ h(q, q̇) = u−Bθθ̈ + τ ext. (7)

The above relationship is valid for any value of joint stiffness
K. Therefore, assuming that the limit K → ∞ would exist,
implying also that q̈ ≡ θ̈, then one would obtain

(M(q) +Bθ) q̈+ h(q, q̇) = u+ τ ext. (8)

Equation (8), that we name the rigid-joint robot model asso-
ciated to the torque-controlled flexible-joint robot model (1)-
(4), has a mass matrix which includes the apparent motor
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inertia Bθ, that in turn depends on the actual motor inertia Bρ

and the low-level torque control gain KT . Equation (8) has
already appeared in [26, Chapter 5] in the context of singular
perturbation analysis of the torque-controlled flexible-joint
robot dynamics (1)-(4). However, no contact dynamics was
included in [26, Chapter 5] and a formal proof of the derivation
of the reduced order model (8) from singular perturbation
theory with intermittent contacts and impacts is left for future
investigation (a possible direction would be to explore the
results presented in [27]). The observation that the mass matrix
is corrected by the apparent motor inertia is important for
the results discussed in Sections III and IV. However, it is
important to recall that the rigid-joint robot model (8) is
derived under the assumptions that (i) the low-level control
loop (4) reduces the motor dynamics (3) to (5), and (ii) the
motor-side joint accelerations θ̈ are equivalent to the link-
side joint accelerations q̈. The validity of these assumptions
especially under hard impacts is unclear, due to the short
time scale typically associated with impacts (typically a few
milliseconds) and the finite bandwidth of the low-level control
loop. Therefore, in Sections III and IV, extensive numerical
and experimental validation is performed to assess the ability
of the rigid-robot model (8) to capture the gross velocity
jump of the model (1)-(4) after an impact, without explicitly
modeling the flexible joint dynamics.

The rest of this subsection is devoted to the derivation
of the impact map corresponding to the rigid-joint robot
model expressed by (8), following the standard approach in
nonsmooth mechanics [28], [29]. To this end we start with the
following impact equation (cf. [5] for more details)

Mθ(q̇
+ − q̇−) = J⊤

NΛN + J⊤
TΛT , (9)

where Mθ = M(q) +Bθ, ΛN and ΛT represent the normal
and tangential impulsive forces, q̇+ ∈ Rn the post-impact joint
velocity, q̇− ∈ Rn the ante-impact joint velocity. Equation (9)
can be simplified using the definition of the frictional force

ΛT = −µuTΛN , (10)

with µ the friction coefficient and uT the 2-dimensional
direction of the frictional force determined using the ante-
impact Cartesian velocity along the xy−plane, v−

xy , as

uT =
v−
xy

||v−
xy||

. (11)

Substituting (10) into (9), we obtain

Mθ(q̇
+ − q̇−) = (J⊤

N − µJ⊤
T uT )ΛN , (12)

or equivalently

q̇+ = q̇− +M−1
θ J̃⊤

µΛN , (13)

where J̃µ is defined as JN −µu⊤
T JT . Considering a perfectly

inelastic impact law in the Cartesian space

JN q̇+ = 0, (14)

and substituting (13) into (14), we get

ΛN = −(JNM−1
θ J̃⊤

µ )
−1JN q̇−. (15)

Finally, substituting (15) into (13) leads to the post-impact
velocity predictor that we will use in this work

q̇+ =
[
I7 −M−1

θ J̃⊤
µ (JNM−1

θ J̃⊤
µ )

−1JN

]
q̇−. (16)

Compared to the original expression for the post-impact veloc-
ity predictor in [5, Equation (5)], (16) contains two additional
effects: first, the explicit dependence on KT and Bρ appearing
via the mass matrix Mθ; second, the effect of tangential
friction via the coefficient µ.

III. RIGID-ROBOT MODEL VALIDATION

This section is devoted to present numerical evidence that
the rigid-robot model (8) associated with the flexible-joint
robot with joint-torque control (1)-(4) is able to accurately
predict the gross velocity jump after an impact. More precisely,
the post-impact velocity prediction is obtained by employing
the rigid-robot impact map (16) with µ = 0 (for simplicity).

In this simulation study, we consider a planar RRR-
manipulator, based on joints 2, 4, and 6 of the Franka Emika
robot. We use a task-based QP controller with a sample rate
of 1 kHz to generate the desired joint torques u needed to
follow a linear trajectory from an initial point to a point
below the contact surface, to impact the surface with a desired
impact velocity and approach angle. The low-level control-
loop (4), which is implemented with a sample rate of 4 kHz
(mimicking the robot’s internal low-level torque controller),
uses the desired joint torques u to compute the real actuation
torques based on the motor accelerations and the measured
joint torques. The torque measurements are filtered with a first-
order low-pass filter with a cut-off frequency of 300 Hz in
order to include the lag effect that the sensors add on the real
robot. The link lengths li, masses mi, rotational inertias Ii,
and center of mass positions (cx,i, cy,i), i = {1, 2, 3}, are de-
termined by lumping the corresponding parameters identified
in [30] of the Franka Emika robot for the 1) second and third,
2) fourth and fifth, and 3) sixth, seventh and end-effector links.
The resulting parameters, along with several others used in the
simulations [21], are summarized in Table I.

The simulations clearly support the claim that the rigid-
joint robot model (8) with the impact map (16) is capable
of capturing the main post-impact response of a flexible-joint
robot, as long as the right inertia matrix Mθ = M+Bθ is used.
In particular, the following two key observations can be made.

TABLE I
PLANAR RRR-ROBOT SIMULATION PARAMETERS

Link/Joint number → 1 2 3 Units ↓
mi 3.8755 4.8138 2.7481 [kg]
Ii 0.0977 0.3804 0.0490 [kg·m2]
cx,i -0.1152 -0.2173 -0.0928 [m]
cy,i 0.0320 0.0274 0.0408 [m]
li 0.327 0.393 0.167 [m]
di 15 15 10 [Nm·s/rad]
ki 15·103 15·103 10·103 [Nm/rad]
bi 0.6 0.45 0.2 [kg·m2]
bθ,i 0.15 0.1125 0.05 [kg·m2]
η 1.5 [-]
kc 3.2·109 [N/mη]
dc 3.2·1012 [N·s/mη+1]



4

First, the magnitude of the velocity jump observed for the
associated rigid-robot model closely resembles the magnitude
of the velocity jump of the flexible-joint model with continuous
contact. Second, the flexible-joint model response oscillates
around the response of the rigid-robot model. To illustrate
these facts on a specific simulation, the joint velocities for
the representative impact scenario with an approach angle of
30 degrees with respect to the horizontal plane and an impact
velocity of 0.1 m/s in the direction of motion visualized in
Figure 2 are shown in Figure 3. Besides the aforementioned
observations, simulations with different inertia matrices in the
impact map (using M, M + Bθ, or M + Bρ as values for
Mθ in (16)) show that using Mθ = M+Bθ indeed leads to
the most accurate rigid-robot model. Comparing the different
post-impact responses one observes that the magnitude of the
velocity jump does not match the velocity jump of the flexible-
joint model in case M or M + Bρ are used, as shown in
Figure 3, nor does the resulting post-impact response in these
cases describe the response around which the flexible-joint
model oscillates.

IV. EXPERIMENTAL VALIDATION

In the following, given the numerical evidence provided in
Section III, we detail the validation of the post-impact velocity
predictor (16) on experimental data, including the new method
to extract the equivalent rigid body post-impact motion from
post-impact oscillatory responses. These validation results pro-
vide an indication of the expectable accuracy, together with
two ablation studies showing the importance of choosing the
correct mass matrix (recall the M+Bρ vs. M+Bθ discussion
in the previous section) as well as the relevance of accounting
for a tangential friction force, via friction coefficient µ in (16).

A set of 50 experiments was recorded where a 7 DoF
Franka Emika robot arm with a spherical aluminum end-
effector impacted a horizontal plate made of steel, as illustrated
by the sequence shown in Figure 1. During the recording
process 10 different initial robot configurations along with the

30◦ 30◦

30◦

Fig. 2. Simulated impact scenario with an approach angle of 30 degrees and
an impact velocity of 0.1 m/s. Time evolves from left to right, and from top
to bottom. The impact location is indicated by the vertical dashed line.
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Fig. 3. Comparison of the post-impact joint velocities for a flexible-joint robot
with a continuous contact model and three instances of a rigid-joint robot with
different inertia matrices for the impact map (impact as in Figure 2). Results
obtained with M+Bθ yield the best asymptotic behaviour w.r.t. the flexible
joints + continuous contact model which serves as a reference.

respective virtual force were set. This virtual force applied at
the end-effector is transformed via the end-effector Jacobian to
joint-torque commands, which are then sent to the robot via the
Franka Control Interface (FCI) 4. The virtual force is removed
before impact, causing the robot to move freely towards the
steel plate under pure gravity compensation and thus being
influenced during impact only by the low-level torque control
loop at 4 kHz, but not by any external higher-level controller.
The impact causes a jump in the velocity signal, with a post-
impact response with short-lived oscillations, as illustrated by
the joint velocity of a representative impact experiment in
Figure 4. These oscillations damp out after about 100 ms,
after which the arm continues to move until being stopped by
friction in both its own joints and the contact with the surface.

For each of the 10 sets of initial conditions, where each
set defines an experiment type, 5 repetitions were run in
order to prove the repeatability of the experiment type and
little sensitivity of the prediction for very similar responses.
These 10 groups of experiments can be subdivided in three
main subtypes depending on motion direction, each in turn
subdivided according to different end-effector orientations. An
overview of all types of experiments and additional details are
given in Table II.

A. Impact detection and post-impact velocity estimate
A practical offline impact detector was implemented for the

automatic identification of the impact time, to avoid manual
data annotation. The detector identifies sharp changes in the
joint velocity, q̇, using a joint acceleration estimate, computed
using central differences to eliminate phase lag.

The detector was applied in parallel to joints 1 to 6 because
it often retrieved false positives when applied to joint 7. From

4Further details on https://frankaemika.github.io/docs/overview.html.

https://frankaemika.github.io/docs/overview.html
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TABLE II
TYPES OF PERFORMED IMPACT EXPERIMENTS (EACH REPEATED 5 TIMES),
WITH DIFFERENT MOTION DIRECTIONS AND ORIENTATIONS (ROTATIONS)
PRIOR TO IMPACT. THE MOTION DIRECTION IS DEFINED W.R.T. THE BASE

FRAME DISPLAYED IN FIGURE 1, WHEREAS THE ORIENTATION IS DEFINED
W.R.T. A FRAME LOCATED AT THE CENTER OF THE END-EFFECTOR SPHERE

AND ALIGNED WITH THE BASE FRAME

Experiment Type Motion Direction End-Effector Orientation
1 Forward

(positive direction
along x-axis)

-30° about y-axis
2 -20° about y-axis
3 -10° about y-axis
4 z-axis aligned with gravity
5 Backward

(negative direction
along x-axis)

30° about y-axis
6 20° about y-axis
7 10° about y-axis
8 z-axis aligned with gravity
9 Lateral (negative

direction along y-axis)
-30° about x-axis

10 z-axis aligned with gravity

the six estimates the one that happens the earliest was selected,
and the impact time was assumed to be the same for the seven
joints.

In regard to the impact time detection, this study also
revealed that different joints exhibit a gradual lag in the time of
impact, with joints farther from the impact surface presenting a
larger lag. The simplifying modeling assumption that velocity
is jumping at each joint at the same time is therefore not fully
satisfied at millisecond scale and, therefore, having picked
for simplicity just one impact moment, one can see small
inaccuracies as visible in Figure 4. Therein, the selected impact
time used for polynomial fitting in all joints is slightly delayed
with respect to when the velocity really starts to change for the
specific joint 6. This leads to small inaccuracies in extracting
the ante- and post-impact velocities q̇− and q̇+ for some joints,
that are however at par with average velocity prediction errors
(≈ 1◦/s according to the error definition in the following
subsection) and therefore have been deemed not worth of
further refinement.

Following the approach that was proposed in [5], we are
mainly interested in predicting the gross velocity jump after
an impact, because that is the needed information for accurate
feedforward generation for reference-spreading impact-aware
control [9] and aim-aware collision-monitoring [8]. Therefore,
we need a method to filter out the impact-induced oscillations
shown, e.g., in Figure 4, and keeping lower frequency content.
Differently from [5], where a nonlinear least-square fitting was
performed on the velocity signal, here a simpler and more
robust approach based on a polynomial least-squares fit on
the post-impact joint position time signal is used. The gross
velocity jump is estimated by simply evaluating the derivative
of the fitted polynomial at the estimated impact time.

Given the time-scale of the post-impact oscillation at hand,
the fitting is applied over a window that spans 100 ms, starting
at the estimated impact time. This window was selected as
a result of the qualitative analysis of the velocity signals
throughout the 50 recorded experiments, that showed that
100 ms does correspond in all cases to the approximate
duration of the oscillations present in the post-impact response
of the robot (cf. oscillations in Figure 4). We have found that a
third order polynomial is sufficient in capturing the evolution
of joint position trajectories.

−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

10

20

30

40

t [s]

q̇ 6
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]
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192
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192.8

193
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[◦
]

q̇
Post-impact fit to q̇̂̇q+

i

q̇−

q
Post-impact fit to q

Fig. 4. Joint velocity of joint 6 for a representative impact experiment (type
1 in Table II), together with the joint position q (black line), post-impact
polynomial fit and its derivative (dashed lines), and gross velocity jump
estimation ̂̇q+

i .

As in [5], the gross velocity jump estimation provided by
the polynomial least-squares fit on the position data is used as
ground truth in the assessment of the prediction accuracy as
explained later in detail.

B. Selection of motor inertia constant
The numerical validation presented in Section III shows that

using M + Bθ as the inertia matrix within the post-impact
velocity predictor delivers the most accurate results. In the
following, we provide experimental evidence that this is indeed
the case, showing that the naı̈ve choice of using M + Bρ

leads to worse results (as well as using M, a fact that was not
understood in [5]).

The results of the prediction over the whole set of 50
experiments were assessed based on the quantitative com-
parison procedure proposed in [5, Section IV] that enables
a quantitative evaluation of the prediction by comparing the
experimental post-impact data, containing oscillations, and the
post-impact velocity estimated by the predictor derived using
nonsmooth mechanics theory. In this comparison we used the
absolute error metric

ei = |̂̇q+

i −
△
q̇+
i |, (17)

where, for each joint i, ̂̇q+

i is the virtual rigid-body post-
impact velocity obtained via the polynomial fit procedure of

Section IV-A on experimental data and
△
q̇+
i is the predicted

rigid-robot post impact velocity for joint i obtained via (16).
The influence of the selected dynamic model motor inertia

on the prediction of the post-impact velocity can be assessed
quantitatively joint-wise. Comparing the mean values obtained
for the experiments confirmed that the prediction based on
Bθ is more accurate overall than the prediction based on Bρ.
This means that the predictions using Bθ are in general closer
to the post-impact velocity obtained via the polynomial fit,
as illustrated by the representative results shown in Figure 5,
where an experiment of type 1, see Table II, is depicted. In
both predictions, surface friction at impact is accounted for (the
importance and effect of surface friction on the post-impact
velocity prediction will be discussed later).

For each of the 10 types of experiments reported in Table II,
a comparison of the absolute prediction error using Bθ and
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Fig. 5. Mean values of the virtual rigid-body post-impact velocity, ̂̇q+
(blue

line), the measured ante-impact velocity, q̇− (black line), and the predictions,
△
q̇+, for joints 1 to 7 using either Mθ = M+Bθ (green) or Mρ = M+Bρ

(red) (averaged over 5 experiments of type 1, see Table II).

Bρ is reported in Table III. The errors are averaged over the
5 experiment repetitions. The table shows that for most joints
there is not a significant difference in the absolute prediction
error when using Bθ and Bρ in (16). We have highlighted the
cells in the table where the difference between the magnitudes
of the absolute error in the predictions for Bθ and Bρ goes
over a threshold of 1.0◦/s. These cells represent the essential
differences. This threshold is selected based on a qualitative
analysis of plots such as the one displayed in Figure 5,
where differences below 1.0◦/s are hardly noticeable. For error
prediction differences above this threshold, we highlight in
green the case where the prediction based on Bθ outperforms
that of using Bρ and in red the opposite case.

Although there is not a significant difference in the predic-
tion accuracy when considering all joints, for joint 6, which
as expected is the most affected by the impact, the inclusion
of Bθ in the predictor improves the accuracy by at least a
factor of ≈ 2 (1.88) for all experiments where the difference
in the prediction is significant (7 out of 10). This provides
evidence that a prediction based on Bθ is to be preferred over a
prediction based on Bρ. To provide the reader with the ability
to also assess the relative error in the prediction, Table III
provides, besides the absolute error, the ante- and post-impact
velocities extracted from experimental data.

It has to be reported that the prediction based on Bθ appears
sometimes (5 out of 10 experiments) to worsen the prediction
for joint 5, with an error difference of about 2◦/s (red cells
in the respective column of Table III). Our claim is that
(this joint’s) motor static friction –currently not accounted for
in our nonsmooth modeling– plays a role in this apparent
inconsistency, but a thorough investigation of this fact is left
for further research. This decrease in prediction accuracy for
joint 5 is however a smaller effect when compared with the
gain in prediction accuracy that one obtains in joint 6.

C. Robot-surface tangential Coulomb friction

A value of 0.3 was identified for the friction coefficient
between the spherical aluminum end-effector and the impacted
steel plate. This parameter was tuned through the minimization

of the prediction error for one of the experiments (type 4
in Table II) as a function of the selected friction coefficient
included in J̃µ for the predictor expression (16). The friction
coefficient retrieved by the optimization was the same using
either of the two model motor inertia constants, i.e., either
Bθ or Bρ. Moreover, the identified magnitude of the friction
coefficient was verified using a force gauge, by fixating one
end to the spherical aluminum end-effector and pulling from
the other end of the gauge. This measurement provided a
similar value (difference below 10%).

The tuning of the friction coefficient already shows that
a minimum is obtained at a value that is different from
zero, but in order to provide evidence that the addition of
friction to the impact modeling is providing a substantial
increase in prediction accuracy, we report the prediction errors
corresponding to the case where no friction is considered
(µ = 0) and the one where µ = 0.3. In both predictions we
employed Mθ = M+Bθ as the inertia matrix.

The predictions including friction are much closer to the
virtual rigid-body post-impact velocity obtained in experi-
ments, as illustrated by the representative mean results of the
experiments of type 4 in Figure 6. In this figure, the green
dots representing the predictions with friction are closer to the
virtual rigid-body post-impact velocity, shown in blue, than
the predictions without friction, shown in red. Furthermore,
a comparison of the average absolute prediction error with
and without friction shows that the inclusion of the tangential
Coulomb friction term significantly improves its accuracy, as
illustrated by the values provided in Table IV. The absolute
prediction error is defined, as before, according to (17).

Cells highlighted in green indicate a significantly better
performance (> 1.0°/s) of the predictor that accounts for
friction, and cells in red indicate that the opposite is true. In this
table it can be observed that the most extreme differences occur
in joint 6, where the maximum error is 6.62 °/s with friction
and 19.58 °/s without it. This constitutes a 66% reduction in
the prediction error. This comparison shows that the inclusion
of the tangential Coulomb friction term significantly improves
the prediction accuracy, in almost all cases.

1 2 3 4 5 6 7
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q̇+ with friction

Fig. 6. Mean values of the virtual rigid-body post-impact velocity, ̂̇q+
(blue

line), the measured ante-impact velocity, q̇− (black line), and the predictions,
△
q̇+, for joints 1 to 7 with (green) and without (red) considering tangential
friction (averaged over 5 experiments of type 4, see Table II).



7

TABLE III
EACH DOUBLE LINE SHOWS ON TOP ROW THE ABSOLUTE PREDICTION ERROR ei[°/S] USING Mθ = M+Bθ OR Mρ = M+Bρ AND ON BOTTOM ROW

THE VIRTUAL RIGID-BODY POST-IMPACT VELOCITY, ̂̇q+
(BLUE) AND THE ANTE-IMPACT VELOCITY, q̇− (BLACK, IN PARENTHESES), FOR REFERENCE.

CELLS ARE HIGHLIGHTED IN GREEN WHEN Bθ PREDICTION IS SIGNIFICANTLY (> 1.0°/S) SUPERIOR AND IN RED WHEN Bρ PREDICTION IS BETTER

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ BρExp. Type # ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i ) ̂̇q+
i (q̇−

i )
0.17 0.21 0.73 0.46 0.57 0.68 0.88 0.91 0.64 0.50 2.97 10.06 0.42 0.171 0.34 (0.08) 14.74 (22.87) -0.96 (-0.10) 21.58 (23.95) -0.11 (-0.03) 24.01 (0.19) 0.02 (-0.00)
0.16 0.18 0.23 0.57 0.28 0.37 0.41 1.32 0.55 0.41 6.62 12.67 0.48 0.252 0.18 (0.04) 21.32 (27.42) -0.56 (-0.01) 34.04 (36.34) -0.08 (0.01) 24.53 (0.18) 0.05 (-0.08)
0.24 0.29 0.62 0.57 0.65 0.77 0.61 1.47 1.02 0.79 5.39 10.15 0.31 0.153 0.39 (0.06) 20.44 (27.47) -0.99 (-0.06) 35.54 (37.92) 0.26 (0.00) 17.90 (-0.02) 0.08 (0.03)
0.24 0.32 0.72 1.28 0.37 0.56 1.01 1.00 1.37 0.89 1.75 1.49 0.29 0.194 0.54 (0.17) 16.55 (26.13) -0.87 (-0.06) 31.55 (33.56) 0.20 (0.02) 5.70 (0.12) 0.10 (-0.01)
0.22 0.33 2.38 1.41 0.11 0.15 1.35 0.16 3.11 1.23 4.36 9.65 0.24 0.195 0.50 (-0.02) -8.93 (0.69) -0.37 (-0.03) -17.02 (-26.04) -0.93 (-0.50) -12.97 (0.31) -0.21 (-0.08)
0.15 0.22 1.14 0.68 1.15 1.00 0.85 1.51 3.76 1.84 1.41 1.13 0.90 0.546 0.29 (-0.07) -8.29 (0.50) 0.86 (0.12) -14.56 (-24.84) 0.21 (0.00) 1.68 (0.41) -0.44 (-0.04)
0.10 0.21 1.09 0.88 1.06 0.89 0.35 0.21 3.22 1.64 0.86 2.89 1.18 0.637 0.32 (0.00) -7.57 (0.92) 0.72 (0.04) -14.32 (-22.09) 0.25 (-0.04) 8.23 (0.08) -0.45 (0.00)
0.29 0.36 0.49 0.20 0.53 0.38 1.13 0.80 1.47 0.31 5.90 11.63 0.96 0.298 0.46 (0.02) -6.70 (0.47) 0.15 (-0.08) -13.92 (-21.65) -0.74 (0.03) 20.35 (0.12) -0.20 (-0.12)
0.30 0.28 2.16 2.15 1.52 1.44 0.93 1.02 4.32 2.21 1.83 2.35 0.06 0.079 -8.31 (-9.60) -2.52 (4.76) -1.46 (-3.84) -2.46 (-5.22) 0.12 (-0.01) 4.19 (0.05) -0.08 (-0.14)
0.41 0.44 1.04 0.87 0.69 1.08 0.44 1.03 0.90 0.80 1.10 2.58 0.48 0.3610 -9.46 (-9.59) -0.79 (4.39) -2.64 (-5.28) -2.86 (-4.64) 0.54 (0.01) 8.08 (0.04) 0.22 (-0.06)

TABLE IV
ABSOLUTE PREDICTION ERROR ei [°/S] WITH (µ = 0.3) AND WITHOUT (µ = 0) FRICTION TERM. GREEN CELLS INDICATE SIGNIFICANTLY BETTER

(> 1.0°/S) PERFORMANCE WHEN INCLUDING FRICTION, WHILE RED CELLS INDICATE THE OPPOSITE. FURTHER DETAILS IN THE MAIN TEXT

Exp. Type # Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
µ 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0
1 0.17 0.16 0.73 3.26 0.57 0.57 0.88 3.80 0.64 1.26 2.97 2.18 0.42 0.53
2 0.16 0.15 0.23 2.19 0.28 0.31 0.41 3.63 0.55 1.07 6.62 6.12 0.48 0.56
3 0.24 0.24 0.62 2.97 0.65 0.70 0.61 3.66 1.02 1.46 5.39 3.08 0.31 0.41
4 0.24 0.25 0.72 4.25 0.37 0.50 1.01 3.70 1.37 1.80 1.75 8.02 0.29 0.45
5 0.22 0.28 2.38 0.98 0.11 0.12 1.35 4.24 3.11 2.33 4.36 12.81 0.24 0.31
6 0.15 0.17 1.14 1.01 1.15 1.13 0.85 5.85 3.76 3.06 1.41 19.58 0.90 0.28
7 0.10 0.13 1.09 1.60 1.06 1.07 0.35 4.31 3.22 2.76 0.86 16.99 1.18 0.63
8 0.29 0.30 0.49 2.53 0.53 0.60 1.13 5.25 1.47 1.19 5.90 18.63 0.96 0.54
9 0.30 0.19 2.16 1.77 1.52 4.05 0.93 0.66 4.32 5.21 1.83 10.84 0.06 0.56

10 0.41 0.45 1.04 0.36 0.69 3.73 0.44 0.68 0.90 1.86 1.10 1.38 0.48 0.49

V. CONCLUSION AND FUTURE WORK

A refined post-impact velocity predictor for torque-
controlled flexible-joint robots, that aimed to improve the
prediction accuracy, has been presented. By means of numer-
ical simulation and experimental validation, the proportional
gain of the low-level torque control loop has been shown to
have an important effect on the impact dynamics of torque-
controlled flexible-joint robots. The inclusion of this effect
in conjunction with the effect of surface friction brings the
absolute error of the post-impact velocity prediction down from
tens of °/s to values below 7.0 °/s as shown in Tables III and
IV. This reduction is achieved with respect to the previously
proposed method by the authors. Additionally, an equivalent,
but simpler and more robust virtual rigid-robot post-impact
velocity estimate has been introduced, based on polynomial
fitting.

Follow-up studies will explore methods to further improve
the accuracy of the impact time detector, as well as validating
post-impact velocity predictors for simultaneous contact loca-
tions, focusing on inelastic impacts enabled by damped and

compliant robot hardware that is becoming available and is
designed for dynamic interaction.
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