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Refined Post-Impact Velocity Prediction for
Torque-Controlled Flexible-Joint Robots

Camilo Andres Rey Arias1, Wouter Weekers2, Marco Morganti1, Vincent Padois3, Alessandro Saccon2

Abstract—Predicting the post-impact velocity for torque-
controlled flexible-joint robots allows the implementation of
impact-aware control schemes which exploit intentional collisions
for robotic manipulation and locomotion. Starting from the
existing rigid-robot post-impact velocity prediction approach [1],
this paper shows how an improvement in the prediction quality
can be obtained by taking into account impact surface friction,
joint motor inertias, gear ratios, and low-level joint torque
control gains. Compared to the previous rigid-robot approach,
the paper also proposes a more robust method to estimate the
gross post-impact velocity profile from experimental data via a
polynomial fit, to remove unmodelled and secondary vibratory
effects. The approach is illustrated by means of simulation and
validated on 50 experimental trials on a commercially available
torque-controlled robot. The recorded impact data and prediction
algorithms are shared openly for reproducibility.

I. INTRODUCTION

THE work presented here aims to refine a post-impact
velocity predictor [1], that enables the use of non-

zero velocity contacts for robotic manipulation. Compared
to approaches in which contact is established at (near-)zero
velocity to minimize impact forces [2], the introduction of
non-zero velocity contacts in robotic manipulation enables a
reduction in cycle times and energy consumption per cycle,
for applications such as pick and place, as well as a higher
level of dexterity from which several tasks can profit, e.g.,
boxing 4.

For robotic impact-aware manipulation tasks, the imple-
mented control strategies have to account for velocity jumps
induced by intended contacts that occur along a trajectory.
These jumps, when they are not directly addressed by the
control strategy, are seen as a sudden large disturbance in the
system which results in poor tracking and might even cause
instability. A strategy to compensate for these velocity jumps
is reference spreading [3] that has been further developed in
[4]–[7], where the focus is on the quality of the reference tra-
jectory. This method prevents unpredictable behaviour which
may happen after jumps in the velocity signal due to contacts.
The performance of this approach depends on the accuracy of
the prediction of the post-impact response.
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Fig. 1: Illustration of an impact experiment recorded in
Franka Emika’s lab with a Franka Emika robot whose
end-effector moves downwards and away from the base,
before it impacts the steel plate and bounces slightly in
the direction displayed by the red arrow in the lower
picture on the right. Time evolves from left to right,
and from top to bottom.

Proper contact modelling enhances the prediction of the
post-impact response. This topic has recently gained relevance
in the field of robotic manipulation [1], [8]–[10], as literature
focused mainly on impact modelling for locomotion [11], [12]
and safe human/robot interactions [13] so far. Furthermore, a
large portion of the work in locomotion is based on assuming
zero velocity contact [14]–[16], and for non-zero velocity
contact there is not much attention given to impact dynamics
validation [17], [18]. Therefore, the improvement of the non-
zero velocity contact models for robotic manipulators along
with subsequent numerical and experimental validation is of
high relevance, and that is the goal of this work. Here, the fo-
cus is on impacts with a single contact point (as in [1]), leaving
the more complex case of impact with multiple simultaneous
contact points to future investigation. The recorded impact
data [19], the code to compute the prediction and ground
truth values of the post-impact velocity using the experimental
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data, and the 2D simulation code [20] are openly available for
reproducibility.

Impact maps with rigid-body robot models can be used to
estimate the post-impact response of flexible joint robots and
the accuracy of these predictions can be evaluated quantita-
tively based on the quantitative comparison procedure pro-
posed in [1], although the post-impact response incorporates
oscillations that are disregarded by the velocity predictor.
The rigid impact map proposed in [1] assumes a frictionless
contact between the end-effector and the impacted surface,
and it disregards the effects of the low-level joint torque
controller. These two modeling decisions reduce the accuracy
of the prediction, as shown later in this document. Moreover,
the validation of the results is limited to a 2-dimensional
scenario (vertical plane). Based on these observations, the
main contributions of this work are:

1) Analysis of the effects of the modeled motor inertia
constant related to the influence of the low-level joint
torque controller.

2) Introduction of a tangential Coulomb friction term for
the contact point.

3) Experimental validation with 3D motions.
4) Proposal of a more robust alternative fitting method to

the post-impact velocity to extract the response without
the transients.

The structure of this paper is as follows. Section II presents
the dynamics of the system including the low-level joint torque
controller, along with the derivation of the refined post-impact
velocity predictor. A simulation study for numerical validation
of the performance of the predictor is introduced in Section
III. Section IV describes the setup for the 3-dimensional
experiments conducted to validate the accuracy of the predictor
for a 7 degrees-of-freedom (DoF) robot. Finally, the drawn
conclusions are stated in Section V.

II. CONTACT MODELING AND DERIVATION OF THE
REFINED PREDICTOR

This section presents the flexible-joint robot dynamic model
in subsection II-A. The continuous model for the contact
between the robot end-effector and the impacted surface is
introduced in subsection II-B. Finally, the equivalent rigid-
robot model and the proposed impact map are detailed in
subsection II-C.

A. Torque-controlled flexible-joint robot dynamics

Consider an n-degrees-of-freedom flexible-joint robot, whose
dynamics can be described as (cf., e.g., [21], [22])

τ := K(θ − q), (1)

M(q)q̈+ h(q, q̇) = τ +DK−1τ̇ + τ ext, (2)

Bρθ̈ + τ +DK−1τ̇ = τ act. (3)

Here, q ∈ Rn denotes the link-side joint positions, θ ∈ Rn

denotes the motor positions including the gear reduction,
M ∈ Rn×n the joint space inertia matrix, h ∈ Rn the Coriolis,
centrifugal, and gravity effects, K = diag(ki) ∈ Rn×n

the joint stiffness matrix, D = diag(di) ∈ Rn×n the joint

damping matrix, τ ext ∈ Rn the externally applied joint
torques, Bρ = diag(bi) ∈ Rn×n the motor inertia matrix
including the gear reduction, and

τ act = BρB
−1
θ u+

(
In −BρB

−1
θ

) (
τ +DK−1τ̇

)
(4a)

= u+KT (u− τ )−KS τ̇ (4b)

the actuation torques resulting from a low-level control loop,
with KT = diag(kT,i) = BρB

−1
θ − In a proportional torque

gain matrix, KS = diag(kS,i) = KTDK−1 a derivative
torque gain matrix, u ∈ Rn the desired link-side torques
resulting from a high-level controller, and Bθ = diag(bθ,i) ∈
Rn×n a positive definite matrix such that bθ,i < bi, i =
{1, . . . , n}. Note that, by substitution of (4) in (3), the motor-
side dynamics is equivalently written as

Bθθ̈ + τ +DK−1τ̇ = u, (5)

showing that the control parameter Bθ can effectively be
considered as a motor inertia matrix whose diagonal entries
are reduced compared to those of Bρ.

B. Continuous contact model

Given the flexible-joint robot dynamics (1)-(3), the impact
dynamics can be incorporated for simulation purposes by
adding a continuous contact model (this is an extension of
Model A presented in [1] to the case of a robot manipulator).
For reasons that will shortly be apparent, the exponentially-
extended Hunt-Crossley model [23] is chosen here as the
specific continuous contact model. Similar to the conventional
Hunt-Crossley model [24] used in [1], the exponentially-
extended Hunt-Crossley model prevents non-physical force
jumps when establishing contact with nonzero velocity. But,
in addition to that, the exponentially-extended Hunt-Crossley
model prevents non-physical sticky contact forces to occur
upon forced separation at high velocity (an issue the classical
Hunt-Crossley model suffers from). Explicitly, the exponen-
tially extended Hunt-Crossley model for fully inelastic impacts
reads

fN =


0, if δ < 0,

kcδ
η + dcδ

η δ̇, if δ ≥ 0 and δ̇ ≥ 0,

kc exp
(

dc

kc
δ̇
)
δη if δ ≥ 0 and δ̇ < 0.

(6)

In (6), δ is the penetration depth, kc is the nonlinear stiffness,
dc is the damping factor, and η is Hertz’ geometry-dependent
contact parameter. Given the expression for fN in (6), the
contact and impact effects can be added to (2) by setting
τ ext = JN (q)⊤fN , where JN (q) is the row of the contact
Jacobian associated with the linear velocity in the contact
normal direction. Tangential contact forces could also be
added, but are not discussed here for the sake of brevity.

C. Equivalent rigid-robot model and rigid impact map

To obtain a description of the rigid-joint robot dynamics
based on the flexible-joint robot dynamics to be used to predict
the post-impact response via a rigid impact map (denoted as
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Model C in [1]), τ can be substituted in (2) by its expression
as a function of u, τ̇ , and θ̈ in (5) to obtain

M(q)q̈+ h(q, q̇) = u−Bθθ̈ + τ ext. (7)

The above relationship is valid for any value of joint stiffness
K. Therefore, assuming that the limit of the dynamics for
K → ∞ would exist, also implying that q̈ ≡ θ̈, then one
would obtain

(M(q) +Bθ) q̈+ h(q, q̇) = u+ τ ext. (8)

Equation (8), that we call the rigid-joint robot model associ-
ated with the torque-controlled flexible-joint robot model (1)-
(4), has a mass matrix which is corrected by the apparent
motor inertia Bθ, that in turn depends on the actual motor
inertia Bρ and the low-level torque control gain KT . Equation
(8) has already appeared in [25] in the context of singular
perturbation analysis of the torque-controlled flexible-joint
robot dynamics (1)-(4). The observation that the mass matrix
is corrected by the apparent motor inertia is important for
the results discussed in Sections III and IV. However, it is
important to recall that the rigid-joint robot model is derived
under the assumptions that 1) the low-level control loop (4)
reduces the motor dynamics (3) to (5), and 2) the motor-side
joint accelerations θ̈ are equivalent to the link-side joint accel-
erations q̈. The validity of these assumptions especially under
hard impacts is unclear, due to the short time scale typically
associated with impacts (typically a few milliseconds) and
the finite bandwidth of the low-level control loop. Therefore,
in Sections III and IV, extensive numerical and experimental
validation is performed to assess the ability of the rigid-robot
model (8) to capture the gross velocity jump of the model (1)-
(4) after an impact, without explicitly modeling the flexible
joint dynamics. The rest of this subsection is devoted to the
derivation of the impact map corresponding to the rigid-joint
robot model expressed by (8). To this end we start with the
following impact-equation

Mθ(q̇
+ − q̇−) = J⊤

NΛN + J⊤
TΛT , (9)

where Mθ = M(q) +Bθ, ΛN and ΛT represent the normal
and tangential impulsive forces, q̇+ ∈ Rn the post-impact joint
velocity, q̇− ∈ Rn the ante-impact joint velocity.

Equation (9) can be simplified using the definition of the
frictional force

ΛT = −µuTΛN , (10)

with µ the friction coefficient and uT the normalized 2-
dimensional direction of the frictional force determined using
the ante-impact cartesian velocity along the xy−plane, v−

xy ,
as

uT =
v−
xy

||v−
xy||

. (11)

Substituting (10) into (9), we obtain

Mθ(q̇
+ − q̇−) = (J⊤

N − µJ⊤
T uT )ΛN , (12)

or equivalently

q̇+ = q̇− +M−1
θ J̃⊤

µΛN , (13)

where J̃µ is defined as JN − µu⊤
T JT .

Considering a perfectly inelastic impact law in the Cartesian
space

JN q̇+ = 0, (14)

and substituting (13) into (14), we get

ΛN = −(JNM−1
θ J̃⊤

µ )
−1JN q̇−. (15)

Finally, substituting (15) into (13) leads to the post-impact
velocity predictor

q̇+ =
[
I7 −M−1

θ J̃⊤
µ (JNM−1

θ J̃⊤
µ )

−1JN

]
q̇−. (16)

Compared to the original expression for the post-impact
velocity predictor in [1, Equation 5], (16) contains two ad-
ditional effects: first, the explicit dependence on KT and
Bρ appearing via the mass matrix Mθ; second, the effect of
tangential friction via the coefficient µ. These two factors were
not included in [1].

III. RIGID-ROBOT MODEL VALIDATION

This section is devoted to present numerical evidence that
the rigid-robot model (8) associated with the flexible-joint
robot with joint-torque control (1)-(4) is able to accurately
predict the gross velocity jump after an impact. More precisely,
the post-impact velocity prediction is obtained by employing
the rigid-robot impact map (16) with µ = 0, derived by
following the standard procedure of nonsmooth mechanics to
combine the impact equation (9) with tangential and normal
impact laws (10)-(11) and (14).

In this simulation study we consider a planar RRR-
manipulator, based on joints 2, 4, and 6 of the Franka Emika
Robot. We use a task-based QP controller with a sample rate
of 1 kHz to generate the desired joint torques u needed to
follow a linear trajectory from an initial point to a point
below the contact surface, to impact the surface with a desired
impact velocity and approach angle. The low-level control-
loop (4), which is implemented with a sample rate of 4 kHz
(mimicking the robot’s internal low-level torque controller),
uses the desired joint torques u to compute the real actuation
torques based on the motor accelerations and the measured
joint torques. The torque measurements are filtered with a
first-order low-pass filter with a cut-off frequency of 300 Hz in
order to include the delay effect that the sensors add on the real
robot. The link lengths li, masses mi, rotational inertias Ii, and
center of mass positions (cx,i, cy,i), are determined by lumping
the corresponding parameters of the Franka Emika Robot’s
second and third, fourth and fifth, and sixth, seventh and end-
effector link, identified in [26]. The resulting parameters, along
with several others used in the simulations5, are summarized
in Table I.

The simulations clearly support the claim that the rigid-
joint robot model (8) with the impact map (16) is capable
of capturing the main post-impact response of a flexible-joint
robot, as long as the right inertia matrix Mθ = M + Bθ is
used. More in detail, the following two key observations can

5The simulation scripts are available via https://gitlab.tue.nl/
robotics-lab-public/refined-post-impact-velocity-prediction.

https://gitlab.tue.nl/robotics-lab-public/refined-post-impact-velocity-prediction
https://gitlab.tue.nl/robotics-lab-public/refined-post-impact-velocity-prediction
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TABLE I: Planar RRR-robot simulation parameters

Link/Joint number → 1 2 3 Units ↓
mi 3.8755 4.8138 2.7481 [kg]
Ii 0.0977 0.3804 0.0490 [kg·m2]
cx,i -0.1152 -0.2173 -0.0928 [m]
cy,i 0.0320 0.0274 0.0408 [m]
li 0.327 0.393 0.167 [m]
di 15 15 10 [Nm·s/rad]
ki 15·103 15·103 10·103 [Nm/rad]
bi 0.6 0.45 0.2 [kg·m2]
bθ,i 0.15 0.1125 0.05 [kg·m2]
η 1.5 [-]
kc 3.2·109 [N/mη]
dc 3.2·1012 [N·s/mη+1]

30◦ 30◦

30◦

Fig. 2: Visualization of a simulated impact scenario
with an approach angle of 30 degrees and an impact
velocity of 0.1 m/s. Time evolves from left to right, and
from top to bottom. The impact location is indicated by
the vertical dashed line.

be made. First, the magnitude of the velocity jump observed
for the rigid-robot model associated to the torque-controlled
flexible-joint robot closely resembles the magnitude of the
velocity jump of the flexible-joint model with soft contact.
Second, the flexible-joint model response oscillates around
response of the rigid-robot model. To illustrate these facts on
a specific simulation, the joint velocities for the representative
impact scenario with an approach angle of 30 degrees with
respect to the horizontal plane and an impact velocity of 0.1
m/s in the direction of motion visualized in Figure 2 are
shown in Figure 3. Besides the aforementioned observations,
simulations with different inertia matrices in the impact map
(using M, M + Bθ, or M + Bρ as values for Mθ in (16))
show that using Mθ = M + Bθ indeed leads to the most
accurate rigid-robot model. Comparing the different post-
impact responses one observes that the magnitude of the
velocity jump does not match the velocity jump of the flexible-
joint model in case M or M + Bρ are used as values for
Mθ, as shown in Figure 3, nor does the resulting post-impact
response in these cases describe the response around which
the flexible-joint model oscillates.
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Fig. 3: Comparison of the post-impact joint velocities
for a flexible-joint robot with a continuous contact
model, and three instances of a rigid-joint robot with
different inertia matrices used in the impact map for
the impact scenario shown in Figure 2. The resulting
velocities show that the reduced motor inertia matrix
Bθ should be included in the impact map.

IV. EXPERIMENTAL VALIDATION

This section describes the experimental framework used to
validate the introduced post-impact velocity predictor (16).
Additionally, the results of the experiments are presented along
with the respective analysis. These results are divided in two
subsections, one where the focus of the analysis is set on the
effect of the selected value of the modeled motor inertia, and
another one where the action of the tangential friction term is
examined.

A set of 50 experiments was recorded where a 7 DoF
Franka Emika Panda robot with a spherical aluminum end-
effector impacted a horizontal plate made of steel. During
the recording process 10 different initial robot configurations
along with the respective actuation joint torques required to
impact the plate were set. For each of the 10 experiment
types, 5 repetitions were run in order to prove the repeatability
of the experiment type and little sensitivity of the prediction
for very similar responses. These 10 groups of experiments
can be subdivided in three main types depending on motion
direction, each in turn subdivided according to different end-
effector orientations. An overview of all types of experiments
and additional details are given in Table II.

To command the robot for the experiments a virtual force
is applied at the end effector. This virtual force is transformed
to joint-torque commands via the end-effector Jacobian, which
are sent to the robot via the Franka Control Interface (FCI) 6.
The virtual force is applied for a fixed amount of time, and
stopped before impact, causing the robot to move toward the

6Further details on https://frankaemika.github.io/docs/overview.html.

https://frankaemika.github.io/docs/overview.html
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Experiment Type Motion Direction End-Effector Orientation
1 Forward

(positive direction
along x-axis)

-30° about y-axis
2 -20° about y-axis
3 -10° about y-axis
4 z-axis aligned with gravity
5 Backward

(negative direction
along x-axis)

30° about y-axis
6 20° about y-axis
7 10° about y-axis
8 z-axis aligned with gravity
9 Lateral (negative

direction along y-axis)
-30° about x-axis

10 z-axis aligned with gravity

TABLE II: List of types of impact experiments. Each
type is repeated five times. The motion direction and
orientation indicate the end-effector impact modality.

steel plate while preventing interference of the controller on
the post-impact response.

An offline impact detector was implemented for the auto-
matic identification of the impact time in the recorded data.
It detects sharp changes in q using the approximate joint
acceleration, computed using central differences. First, a rough
estimation of the impact time is determined automatically as
the point where the approximate second derivative reaches
its highest value within the entire set of samples of an
experiment. Then, two intervals of ten samples are selected.
An interval starts 15 samples before the time identified in the
previous stage, to estimate the average value of the second
derivative before impact. The other interval, centered at the
rough estimation of the impact time, is used to look for the first
instance where the value of the second derivative grows at least
8 times with respect to the average of the approximate ante-
impact acceleration. The length of the interval and minimal
growth rate were tuned by means of visual evaluation of the
results over the 50 experiments. This approach searched joints
1 to 6 because it often retrieved false positives when applied
to joint 7. The impact time was assumed to be the same for
the seven robot joints.

During the experiments the robot starts from standstill and
then accelerates due to the virtual force. After the virtual
force is removed, the robot decelerates before it impacts the
steel plate. This impact causes a jump in the velocity signal,
after which the post-impact response shows oscillations. These
oscillations damp out after about 100 ms, as shown in Figure 4.
Afterwards, the arm continues to move until being stopped by
its own joint friction. An experiment of type 1 (see Table II)
is illustrated in Figure 4.

As in [1], we are mainly interested in predicting the gross
velocity jump after an impact, discarding the impact-induced
oscillations. Therefore, we need a procedure to filter out these
oscillations. Differently from what is done in [1], a polynomial
least squares fit is obtained from the post-impact joint position
time-based signal, and the gross velocity at impact time is
estimated by evaluating the derivative of the polynomial (in
[1], the nonlinear fitting is performed on the velocity signal).
The fitting is applied to samples over a span of 100 ms, starting
at the impact time. We have found that a third order polyno-
mial is sufficient in capturing the evolution of joint position
trajectories. The interval length was selected as a result of the
qualitative analysis of the velocity signals throughout the 50
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Fig. 4: Joint velocities during an impact experiment
(type 1 in Table II). The vertical line denotes the impact
time.

recorded experiments, that showed that 100 ms corresponds in
all cases to the approximate duration of the oscillations present
in the post-impact response of the robot (cf. oscillations in
Figure 4). This approach turned out to be simpler and more
robust than the nonlinear least-square approach proposed in
[1], that can get stuck in local minima, providing essentially
the same result when both methods converge.

The polynomial fit applied to the oscillatory post-impact
response has good results, as illustrated by the representative
post-impact response of joint 6 in Figure 5. This fit is used
for assessment of the prediction accuracy as explained later
in detail, since the oscillations provoked by the impact are
disregarded by the predictor. However, note that the observed
impact time in Figure 5 is not completely accurate, as the
ante-impact velocity is initially zero and there is a significant
growth to about 1 °/s when the impact is detected.

In regard to the impact time detection, this study also
revealed that different joints exhibit a gradual lag in the time
of impact, with the first joint showing signs of impact at a
later instance, when compared to joint 6.

A. Selection of motor inertia constant

The numerical validation presented in Section III shows that
using M + Bθ as the inertia matrix within the post-impact
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Fig. 5: Close-up of joint 6 velocity for the impact
experiment displayed in Figure 4 (type 1 in Table II).
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velocity predictor delivers the most accurate results. In the
following we provide experimental evidence that this is indeed
the case for joint 6 also by comparing it to the prediction
obtained using Bρ as the modeled motor inertia, in place of
Bθ.

The results of the prediction over the whole set of 50
experiments were assessed based on the quantitative compar-
ison procedure proposed in Section IV of [1] that enables
a quantitative evaluation of the prediction by comparing the
experimental post-impact data, containing oscillations, and the
post-impact velocity estimated by the predictor derived using
nonsmooth mechanics theory. The absolute error metric is
selected in this study for the assessment,

e = |ˆ̇q+
i −

△
q̇+
i |, (17)

where ˆ̇q+
i is the virtual rigid-body post-impact velocity for

joint i obtained via the polynomial fitting procedure described

previously, considered as the ground truth value, and
△
q̇+
i is

the predicted rigid-robot post impact velocity for joint i.
The influence of the selected dynamic model motor inertia

on the prediction of the post-impact velocity was assessed
graphically in a joint-wise fashion. Comparing the mean values
obtained for the experiments of type 1 it became clear that
the prediction based on Bθ is more accurate overall than the
prediction based on Bρ. This means that the predictions using
Bθ are in general closer to the post-impact velocity obtained
via the polynomial fit, as illustrated by the representative
results shown in Figure 6. In both predictions, surface friction
at impact is accounted for. The effect of surface friction on
the post-impact velocity prediction will be discussed later.

A comparison of the average absolute prediction error for
Bθ and Bρ, for each of the 10 types of experiments, shows
that in many cases there is not a significant difference in the
absolute prediction error, as illustrated by the values provided
in Table III. There are some highlighted cells in the table,
where the difference between the magnitudes of the absolute
error in the predictions, for the two aforementioned motor
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Fig. 6: Mean values of virtual rigid-body post-impact
velocity (blue line), measured ante-impact velocity
(black line), and predictions for each joint from 1 to
7 using different motor inertia constants, Bθ (green)
and Bρ (red) (over experiments of type 1 in Table II).
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q̇+ with friction

Fig. 7: Mean values of virtual rigid-body post-impact
velocity (blue line), measured ante-impact velocity
(black line), and predictions for each joint from 1 to
7 with (green) and without (red) considering tangential
friction (over experiments of type 4 in Table II).

inertia matrices, goes over a threshold of 1.0 °/s. This threshold
is selected based on a qualitative analysis, of plots such as
the one displayed in Figure 6, since this value indicates a
significant difference when the scale of the y−axis (q̇) is kept
constant over the entire set of experiments. For error prediction
differences above 1 °/s, cases where the prediction with Bθ is
significantly better than the prediction with Bρ are highlighted
in green, in the opposite case the cells are highlighted in red.

Although there is not a significant difference in the pre-
diction accuracy overall, for joint 6 the inclusion of Bθ in
the predictor improves the accuracy considerably for most
experiment types. In contrast, this choice of motor inertia
seems to slightly worsen the prediction for joint 5 in some
experiments favoring the use of Bρ (red color in Table III),
but this is in general a smaller effect when compared with the
gain in prediction accuracy that one gets in joint 6 that is the
most affected by the impacts (cf. Figure 6).

B. Tangential Coulomb friction between the end-effector and
the impacted surface

A value of 0.3 was identified for the friction coefficient
between the spherical aluminum end-effector and the impacted
steel plate. This parameter was tuned through the minimization
of the prediction error for one of the experiments (type 4
in Table II) as a function of the selected friction coefficient
included in J̃µ for the predictor expression (16). The friction
coefficient retrieved by the optimization was the same using
either of the two model motor inertia constants, i.e., either
Bθ or Bρ. Moreover, the identified magnitude of the friction
coefficient was verified using a force gauge, that provided a
similar value (difference below 10%).

In order to compare the accuracy of the prediction between
the scenario where no friction is considered and the one with
a tangential Coulomb component with µ = 0.3, Bθ is set as
the motor inertia included in the predictor. The predictions
including this friction component are much closer to the post-
impact velocity obtained using the polynomial fit, as illustrated
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Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ Bρ Bθ BρExp. Type #
ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i ) ˆ̇q+
i (q̇−

i )
0.17 0.21 0.73 0.46 0.57 0.68 0.88 0.91 0.64 0.50 2.97 10.06 0.42 0.171 0.34 (0.08) 14.74 (22.87) -0.96 (-0.10) 21.58 (23.95) -0.11 (-0.03) 24.01 (0.19) 0.02 (-0.00)
0.16 0.18 0.23 0.57 0.28 0.37 0.41 1.32 0.55 0.41 6.62 12.67 0.48 0.252 0.18 (0.04) 21.32 (27.42) -0.56 (-0.01) 34.04 (36.34) -0.08 (0.01) 24.53 (0.18) 0.05 (-0.08)
0.24 0.29 0.62 0.57 0.65 0.77 0.61 1.47 1.02 0.79 5.39 10.15 0.31 0.153 0.39 (0.06) 20.44 (27.47) -0.99 (-0.06) 35.54 (37.92) 0.26 (0.00) 17.90 (-0.02) 0.08 (0.03)
0.24 0.32 0.72 1.28 0.37 0.56 1.01 1.00 1.37 0.89 1.75 1.49 0.29 0.194 0.54 (0.17) 16.55 (26.13) -0.87 (-0.06) 31.55 (33.56) 0.20 (0.02) 5.70 (0.12) 0.10 (-0.01)
0.22 0.33 2.38 1.41 0.11 0.15 1.35 0.16 3.11 1.23 4.36 9.65 0.24 0.195 0.50 (-0.02) -8.93 (0.69) -0.37 (-0.03) -17.02 (-26.04) -0.93 (-0.50) -12.97 (0.31) -0.21 (-0.08)
0.15 0.22 1.14 0.68 1.15 1.00 0.85 1.51 3.76 1.84 1.41 1.13 0.90 0.546 0.29 (-0.07) -8.29 (0.50) 0.86 (0.12) -14.56 (-24.84) 0.21 (0.00) 1.68 (0.41) -0.44 (-0.04)
0.10 0.21 1.09 0.88 1.06 0.89 0.35 0.21 3.22 1.64 0.86 2.89 1.18 0.637 0.32 (0.00) -7.57 (0.92) 0.72 (0.04) -14.32 (-22.09) 0.25 (-0.04) 8.23 (0.08) -0.45 (0.00)
0.29 0.36 0.49 0.20 0.53 0.38 1.13 0.80 1.47 0.31 5.90 11.63 0.96 0.298 0.46 (0.02) -6.70 (0.47) 0.15 (-0.08) -13.92 (-21.65) -0.74 (0.03) 20.35 (0.12) -0.20 (-0.12)
0.30 0.28 2.16 2.15 1.52 1.44 0.93 1.02 4.32 2.21 1.83 2.35 0.06 0.079 -8.31 (-9.60) -2.52 (4.76) -1.46 (-3.84) -2.46 (-5.22) 0.12 (-0.01) 4.19 (0.05) -0.08 (-0.14)
0.41 0.44 1.04 0.87 0.69 1.08 0.44 1.03 0.90 0.80 1.10 2.58 0.48 0.3610 -9.46 (-9.59) -0.79 (4.39) -2.64 (-5.28) -2.86 (-4.64) 0.54 (0.01) 8.08 (0.04) 0.22 (-0.06)

TABLE III: Table of average absolute prediction error [°/s] for comparison of Bθ and Bρ. Cells highlighted in green
show a significantly (at least 1.0°/s difference) better performance of the predictor that uses Bθ, when compared to the
predictor that includes Bρ. Cells are highlighted in red in the opposite case. The use of Bθ improves the accuracy of
the prediction for joint 6, while the incorporation of Bρ results in an enhancement for joint 5. The virtual rigid-body
post-impact velocity (ˆ̇q+

i ) and the ante-impact velocity (q̇−
i ) [°/s] are displayed to describe the gross velocity jump

induced by the contact.

Exp. Type # Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
Friction coefficient 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0

1 0.17 0.16 0.73 3.26 0.57 0.57 0.88 3.80 0.64 1.26 2.97 2.18 0.42 0.53
2 0.16 0.15 0.23 2.19 0.28 0.31 0.41 3.63 0.55 1.07 6.62 6.12 0.48 0.56
3 0.24 0.24 0.62 2.97 0.65 0.70 0.61 3.66 1.02 1.46 5.39 3.08 0.31 0.41
4 0.24 0.25 0.72 4.25 0.37 0.50 1.01 3.70 1.37 1.80 1.75 8.02 0.29 0.45
5 0.22 0.28 2.38 0.98 0.11 0.12 1.35 4.24 3.11 2.33 4.36 12.81 0.24 0.31
6 0.15 0.17 1.14 1.01 1.15 1.13 0.85 5.85 3.76 3.06 1.41 19.58 0.90 0.28
7 0.10 0.13 1.09 1.60 1.06 1.07 0.35 4.31 3.22 2.76 0.86 16.99 1.18 0.63
8 0.29 0.30 0.49 2.53 0.53 0.60 1.13 5.25 1.47 1.19 5.90 18.63 0.96 0.54
9 0.30 0.19 2.16 1.77 1.52 4.05 0.93 0.66 4.32 5.21 1.83 10.84 0.06 0.56

10 0.41 0.45 1.04 0.36 0.69 3.73 0.44 0.68 0.90 1.86 1.10 1.38 0.48 0.49

TABLE IV: Table of average absolute prediction error [°/s] for analysis of the effects of the friction term on the
predictor. Cells highlighted in green show a significantly (at least 1.0°/s difference) better performance of the predictor
that accounts for friction, when compared to the predictor that assumes frictionless impact. Cells are highlighted in red
in the opposite case. The consideration of a tangential Coulomb friction term improves the accuracy of the prediction
overall.

by the representative mean results of the experiments of type 4
in Figure 7. There the green dots representing the predictions
with friction are closer to the post-impact fit, shown in blue,
than the predictions without friction, shown in red.

A comparison of the average absolute prediction error with
and without friction, for each of the 10 types of experiments,
shows that the inclusion of the tangential Coulomb friction
term significantly improves its accuracy, as illustrated by the
values provided in Table IV. In this case cells highlighted in
green show a significantly (at least 1.0°/s difference) better
performance of the predictor that accounts for friction, when
compared to the predictor that assumes frictionless impact.
The average absolute prediction error is computed according
to (17).

V. CONCLUSION AND FUTURE WORK

A refined post-impact velocity predictor for torque-
controlled flexible-joint robots has been presented. The propor-
tional gain of the low-level torque control has been shown to
have an important effect on the impact dynamics of the torque-
controlled flexible-joint robots by means of numerical simula-
tion and experimental validation. The inclusion of this effect in
conjunction with the surface friction brings the absolute error
of the post-impact velocity prediction down from tens of °/s to
values below 7.0 °/s as shown in Tables III and IV. This error
reduction is achieved with respect to the previously proposed
method by the authors. An equivalent, but simpler and more
robust virtual rigid-robot post-impact velocity estimate has
also been introduced, based on polynomial fitting. Follow-up
studies could explore methodologies to further improve the
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accuracy of the offline impact time detector.
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