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Multiple Description Coding (MDC) is an errorresilient source coding method designed for transmission over noisy channels. We present a novel MDC scheme employing a neural network based on implicit neural representation. This involves overfitting the neural representation for images. Each description is transmitted along with model parameters and its respective latent spaces. Our method has advantages over traditional MDC that utilizes auto-encoders, such as eliminating the need for model training and offering high flexibility in redundancy adjustment. Experiments demonstrate that our solution is competitive with autoencoder-based MDC and classic MDC based on HEVC, delivering superior visual quality.

I. INTRODUCTION

Multiple Description Coding (MDC) has been studied for many years. In [START_REF] Vivek | Multiple description coding: compression meets the network[END_REF], the authors presented an efficient source coding solution able to manage packet errors, random bit errors and routing delays. MDC for image encoding involves encoding multiple representations of an image; if one is lost or corrupted during transmission, the remaining descriptions can still be used to reconstruct the original image with some quality degradation.

Classic MDC methods have typically dealt with some problems. The first application with a scalar quantizer was proposed in [START_REF] Vinay | Design of multiple description scalar quantizers[END_REF], where the index assignment refers to the process of mapping from the source to a set of output descriptions to achieve the best rate, redundancy, and distortion tradeoff. This problem is complex. The wavelet transform MDC is based on [START_REF] Pereira | Multiple description coding for internet video streaming[END_REF], where authors confront issues of quantization and redundancy index assignment, and attempt to solve the problem of non-linearity during optimization by modeling each subband a Gaussian model. However, this model has limited accuracy at lower rates, and its complexity is very high. Standard-compliant MDC methods such as HEVC [START_REF] Hieu | Multiple description video coding for real-time applications using HEVC[END_REF], [START_REF] Tillo | Redundant slice optimal allocation for H.264 multiple description coding[END_REF], [START_REF] Wang | Spatialfrequency HEVC multiple description video coding with adaptive perceptual redundancy allocation[END_REF] can achieve high performance with low latency. However, rate distortion control is carried out with an empirical formula that is based on linear regression, which limits the quantization range and thereby constrains their performance.

Recent research has indicated the potential use of neural networks for image compression [START_REF] Ballé | End-to-end optimization of nonlinear transform codes for perceptual quality[END_REF], [START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF], [START_REF] Mentzer | Conditional probability models for deep image compression[END_REF], but a few work have applied it to MDC. The most recent applications for MDC This project is funded by the Région Sud, France are [START_REF] Zhao | Multiple description convolutional neural networks for image compression[END_REF], [START_REF] Zhao | LMDC: learning a multiple description codec for deep learning-based image compression[END_REF], which employ Generative Networks and Compressive Autoencoders. However, these methods' drawbacks include the requirement of a high computing capacity for the training process. Furthermore, the training process must be performed with very large datasets to be efficient. This is even more challenging in the MDC context due to the redundancy adaptation mechanism, which requires retraining the model.

In recent image compression research using neural networks, the so-called Implicit Neural Representation (INR), the neural network learns to represent an image implicitly through its weights, a coordinate map, and possibly a latent space [START_REF] Vincent Sitzmann | Implicit neural representations with periodic activation functions[END_REF], [START_REF] Strümpler | Implicit neural representations for image compression[END_REF]. More recently, the Coordinate-based Low Complexity Hierarchical Image Codec (COOL-CHIC) framework [START_REF] Ladune | COOL-CHIC: Coordinate-based low complexity hierarchical image codec[END_REF] has achieved performance close to the state of the art of the compressive autoencoder presented in [START_REF] Ballé | End-to-end optimization of nonlinear transform codes for perceptual quality[END_REF], without the need for a training process. In this paper, we propose the Implicit Neural Representation Multiple Description Scalar Quantization Codec (INR-MDSQC) method based on the COOL-CHIC architecture. The advantages of the proposed solution are: no need for model training, high performance and flexible redundancy tuning.

In the rest of the paper, we first formulate in section II-A our MDC problem using this network. Then, we present in section II-B and II-C the detailed architectures of the synthesis model and the auto-regressive model, both of which are optimized during training. Following that, we discuss in section II-D the post-training quantization process designed for precision reduction. Lastly, in section II-E we outline the bitstream's organization and the decoding process. Finally, we show the experimental result in section III and conclude the paper in section IV.

II. PROPOSED METHOD A. Multiple description problem statement

Inspired by the COOL-CHIC framework [START_REF] Ladune | COOL-CHIC: Coordinate-based low complexity hierarchical image codec[END_REF], we propose an overfitted INR-MDSQC network based on hierarchical latent scalar quantization. The architecture of the INR-MDSQC has three main components as illustrated in figure 1: 1) Two sets of discrete hierarchical latent spaces: y 1 and y 2 for descriptions 1 and 2, respectively. Then, y 0 is constructed from the interlacing of y 1 and y 2 . For each set, ŷj , ∀j ∈ {0, 1, 2} represents their quantized versions. 2) Synthesis model (f θ ): A Multi-Layer Perceptron (MLP) that creates ŷj , ∀j ∈ {1, 2} from the original image (θ represents its parameters). 3) Auto-regressive model (f ψj ): A MLP that estimates the distribution of subsequent pixels based on previously decoded pixels for latent spaces ŷj , ∀j ∈ {1, 2} (ψ j represents its parameters).

In the COOL-CHIC framework, image encoding is achieved by overfitting parameters {θ, ψ, ŷ} to the image characteristics, and transmission is carried out by transmitting these parameters. INR-MDSQC takes inspiration from this, generating two descriptions S 1 : {θ, ψ 1 , ŷ1 } and S 2 : {θ, ψ 2 , ŷ2 }. The encoding minimizes a cost function, that takes into consideration the difference between the descriptions in the latent spaces. Depending on the number of received descriptions, we use either ŷ1 or ŷ2 for reconstruction. If all the descriptions are received, the interlaced ŷ0 is used for reconstruction. The images reconstructed with f θ are denoted as x1 , x2 , and x0 , respectively. The distortion metric of each reconstruction relative to the original is the Mean Squared Error (MSE) and is defined as follows:

D j = 1 C × W × H C×W×H i=1 (x i|j -x i ) 2 (1) 
where xi|j ∈ xj and ∀j ∈ {0, 1, 2}

with C represents the number of image channels (for example 3 for RGB, 1 for gray image), W is the image width, H is the image height, and i is the position of the pixels in raster-scan order. Thus, we denote distortions in MSE of side reconstructions with D 1 , D 2 and central reconstruction with D 0 .

In each set S j with j ∈ {1, 2}, the latent space is entropycoded for efficient transmission. This requires estimating the probability distribution p of each value from the unknown signal probability distribution q. The entropy coding algorithm can asymptotically achieve the rate of the signal's crossentropy H(ŷ j ), which is given by:

H(ŷ j ) = -E ŷj ∼q [log 2 p(ŷ j )], ∀j ∈ {1, 2} (2) 
To estimate the distribution p, the autoregressive model f ψj estimated the entropy with the input ŷj : p ψj = f ψj (ŷ j ). Therefore, we can establish the global MDC cost function as:

J = D 0 + α 2 j=1 D j + 2 j=1 λ j (R(ŷ j ) + R(ψ j ) + R(θ)) (3) 
where α ∈ [0, 1] is redundancy factor, R(ŷ j ) is the rate for the latent space ŷj from p ψj and will be defined in section II-C. The rates R(θ) and R(ψ j ) are estimated for the model parameters and will be described in section II-D. As the selected MLP is small in size, the bitrate costs for the parameters θ and ψ j are considered negligible during training and only comes into play in the post-training optimization process. Therefore, from 3 the MDC cost function J t used in the training process is defined as:

J t = D 0 + α 2 j=1 D j + 2 j=1 λ j R(ŷ j ) (4) 
Our training objective involves minimizing the cost function J t , as given in Equation ( 4). The minimization process is represented below:

minimize θ, ψ 1 , ψ 2 , ŷ1 , ŷ2 J t (5) 

B. Multiple description synthesis model

First we defined the uniform scalar quantization Q as:

ŝ = Q(s, ∆s) (6)
with s is the element to quantize and ∆s is its associated quantization step. We define y k|j as the 2D latent space at level k of description j. Each of these has a unique quantization step, and their quantized version ŷk|j is defined as:

ŷk|j = Q(y k|j , ∆y k|j )
The quantized set of latent spaces ŷj for each description j is defined as:

ŷj = {ŷ k|j ∈ Z H k ×W k , k = 0, .., N -1}
where

H k = H 2 k , W k = W 2 k
, and N represents the total number of hierarchical levels of ŷj . When transmission is achieved without any loss of packets, we can fully receive both ŷ1 and ŷ2 , and the central latent space ŷ0 is the product of interleaving between ŷ1 and ŷ2 and it is defined as:

ŷ0 = {ŷ 2k ′ |1 , ŷ2k ′ +1|2 , k ′ = 0, 1.., ⌊N/2⌋}
We design the MDC synthesis model as shown in Figure 2, each level of latent space will be up-sampled to the image size of [H × W ] using bi-cubic interpolation. For each level in the hierarchy we have their up-sampled version:

ẑk|j = upsampled(ŷ k|j )
In the end, the shape of the upsampled latent space ẑj is [N × H ×W ]. Then, the synthesis model (f θ ) presents each pixel in the reconstructed image as a function of the up-sampled latent space as follows:

xj = f θ (ẑ j ) with ẑj = {ẑ k|j , k = 0..N -1}
Inspired from LMDC [START_REF] Zhao | LMDC: learning a multiple description codec for deep learning-based image compression[END_REF], during training, the three upsampled sets ẑ1 , ẑ2 , ẑ0 are fed into a shared synthesis model. The network's goal is to minimize the cost function (4), with the differences in distortion between the side and central reconstructions being dependent on the redundancy factor α, which ranges from 0 to 1. The setup of the cost function ( 4) compels the Synthesis model to partition the image information into two sets of latent descriptions, ŷ1 , ŷ2 , under rate constraints. However, because the latent space is discrete and the quantization process isn't differentiable, uniform noise is introduced, based on [START_REF] Ballé | End-to-end optimization of nonlinear transform codes for perceptual quality[END_REF]. This introduction of noise allows for a differentiable operation, thereby enabling gradient-based optimization. The process is detailed as:

ŷj = y j + u, u ∼ U[-0.5, 0.5] during training Q(y j ) otherwise
where U: the uniform noise and ∀j ∈ {1, 2}

C. Auto-regressive probability model

The auto-regressive probability model so called f ψj , implemented as MLP, aims to closely estimate the image's unknown latent distribution as p ψj . Since the distribution of each pixel in the latent space is conditioned by their neighbor, according to [START_REF] Minnen | Joint autoregressive and hierarchical priors for learned image compression[END_REF], the probability of the pixels is determined by a factorized model:

p ψj (ŷ j ) = i,k p ψj (ŷ ik|j |c ik|j ) (7) 
With ŷik|j is the latent pixel at the position i of level k of description j and c ik|j are the set of decoded neighbors pixels of ŷik|j . Therefore, c ik|j ∈ Z C where C is the set of causal spatially neighboring pixels. The discrete distribution p ψj (ŷ j ) of quantized latent variables is modeled by integrating the continuous distribution of the non-quantized latent g(y i ), modeled as a Laplace distribution. The MLP f ψj learns to estimate proper expectation (µ ik|j ) and scale(σ ik|j ) parameters for Laplacian distribution g of the set of context pixels c ik|j . Consequently, the probability of a latent pixel is modeled as:

p ψj (ŷ ik|j |c ik|j ) = ŷik|j +0.5 ŷik|j -0.5

g(y)dy

where g ∼ L(µ ik|j , σ ik|j ) and µ ik|j , σ ik|j = f ψj (c ik|j ).

As the p ψj approximates the real probability of latent space. From the article [START_REF] Ladune | COOL-CHIC: Coordinate-based low complexity hierarchical image codec[END_REF], by using the factorized model equation [START_REF] Ballé | End-to-end optimization of nonlinear transform codes for perceptual quality[END_REF], the rate defined in equation ( 2) can be expressed as:

R(ŷ j ) = -log 2 (p ψj (ŷ j )) = -log 2 i,k p ψj (ŷ ik|j |c ik|j ) = - i,k log 2 p ψj (ŷ ik|j |c ik|j ) (8) 
In our MDC scheme, we aim to quantize with coarser grains in redundant latent levels and finer grains in principal ones. Given the multi-resolution latent organization, the smallest resolution latent space that captures low-frequency information is more critical and must be quantized finely. Therefore, we introduce a spatial resolution coefficient β k to avoid excessive quantization. From equation [START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF], our final MDC weighted rate function becomes:

R(ŷ j ) = - i,k β k log 2 p ψj (ŷ ik|j |c ik|j ) where β k = W k × H k 2 2k

D. Model parameters quantization

Compressing the INR-MDSQC model parameter consists of compressing {ψ 1 , ψ 2 , θ}. During the training phase, 32-bit floating-point precision was used. However, once the training is finished, such high-precision representation is not required. From equation ( 6), we use three separate quantization steps, ∆ ψ1 , ∆ ψ2 and ∆ θ , to produce ψ1 , ψ2 and θ, respectively. The entropy coder needs a probability model for each quantized model symbol ŝi ⊂ ŝ, where ŝ ∈ { ψ1 , ψ2 , θ}, in order to encode it. Empirically, the distribution of model parameters is usually best approximated by a Laplace distribution centered at 0. Therefore, we employ a Laplacian model to estimate the entropy of ŝi :

p( ŝi ) = ŝi+0.5 ŝi-0.5 g(s)ds
where g ∼ L(0, σ ŝ), σ ŝ is the standard deviation. Same as function [START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF], the estimated rate function of ŝ can be expressed as:

R(ŝ) = - ŝi∈ŝ log 2 (p(ŝ i ))
We denote ŷj as the quantized latent space, which is fixed after training. Drawing from the cost function in (3), our MDC post-training J p is defined as:

J p = D 0 + α 2 j=1 D j + 2 j=1 λ j (R(ŷ j ) + R( θ) + R( ψj ))
As post-training quantization involves quantizing the model parameters, the optimization depends solely on θ, ψ1 , and ψ2 . Therefore, we can represent the optimization as follows:

minimize θ, ψ1 , ψ2 J p (9)
The solution to the minimization problem 9 above is achieved by finding the best set {∆ ψ1 , ∆ ψ2 , ∆ θ } within a predefined range (e.g., from 10 -1 to 10 -5 ). To identify the optimal set, we independently conduct a linear search for each module. This procedure involves incrementing the quantization step sequentially and locating the corresponding step of minimum cost for each module. We apply the discovered quantization step to its respective module before moving on to the next. In our approach, we initiate this linear search with ∆ θ , followed by ∆ ψ1 , ∆ ψ2 . From the trained and quantized model, the transmitted data, formatted as depicted in Figure 4, starts with a header detailing the decoder's configuration parameters, including image size, layer count, model parameter quantizer steps ∆ψ 1 , ∆ψ 2 , ∆θ, and context pixel count. ŝi where s can be either ψ 1 , ψ 2 or θ are entropy-coded using respective probabilities derived from g ∼ L(0, σ ŝ). Finally, each latent pixel is entropy-coded using estimated probabilities from p ψj as discussed earlier.

E. Bitstream structure

At decoding, the header is decoded first, followed by the network parameters. Latent pixels are then decoded from the bitstream using an entropy coder initialized with source statistics estimated by the decoded auto-regressive model. Depending on the number of received descriptions, the image is reconstructed from the decoded latent space directly or via an interlacing operation between the latent space levels of the two descriptions. III. EXPERIMENTAL RESULT A. Implementation detail the upper limit of the SDC set by the original coder COOL-CHIC, nor should it fall below the SDC at double rate. As showcased in the Lena and boat images (see Figure 5), with α = 0.1, the solution approaches the upper bound limit of the single SDC. When full redundancy is applied, α = 1.0, the performance of our MDC coincides with the lower limit SDC at double rate.

B. Rate distortion study

We benchmarked our solution against LMDC [START_REF] Zhao | LMDC: learning a multiple description codec for deep learning-based image compression[END_REF]. Additionally, we compared our approach with classic MDC methods such as HEVC-MDC (HMDC) [START_REF] Hieu | Multiple description video coding for real-time applications using HEVC[END_REF]. The results for LMDC can be found in [START_REF] Zhao | LMDC: learning a multiple description codec for deep learning-based image compression[END_REF], and the results for HMDC were obtained from a re-implementation of the method.

With the small images of lena and of the boat from the SET4 , with redundancy α = 0.1, our solution shows an improvement in PSNR at high bit-rates compared to LMDC and overperform the HMDC method. This can be attributed to the fact that, at low bit-rates, the cost of coding θ, ψ j becomes significant. However, at high bit-rates, our solution adapts more effectively to the image characteristics, thus enhancing the quality of the reconstruction. In terms of the MS-SSIM metric, our method also surpasses the LMDC and HMDC methods. Figure 6 presents a comparison of the visual outcomes from HMDC and our solution. Our method tends to produce less blocking artifacts. When full redundancy (α = 1.0) is applied, our method achieves higher performance in side reconstruction, with improved central reconstruction performance compared to LMDC

In the high-resolution dataset DIV4K-10, traditional MDC strategies such as HMDC still outperform INR-MDSQC methods in terms of PSNR for side reconstruction. However, INR-MDSQC achieves nearly identical PSNR performance for central reconstruction. Moreover, in terms of MS-SSIM, our solution outperforms the HMDC method. Importantly, our method maintains superior central reconstruction performance compared to LMDC while achieving similar distortion levels for side reconstruction.

IV. CONCLUSION We introduce INR-MDSQC, an Implicit Neural Representation Multiple Description Scalar Quantizer Codec, which is built based on the COOL-CHIC framework. By overfitting the neural network for each image, INR-MDSQC can capture more details, thereby enhancing performance compared to the traditional Autoencoder MDC approach. Furthermore, this framework allows for more flexible redundancy tuning. When compared to conventional MDC frameworks, our solution delivers superior reconstruction quality in term of MS-SSIM at almost the same central PSNR. From our perspective, a study aimed at reducing complexity is necessary to enhance the method's efficiency. Moreover, an evaluation of the system's performance under noisy channel conditions will be required in our future works. 
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 1 Fig. 1. INR-MDSQC: Given an image, the synthesis model (f θ ) divides it into two latent spaces, ŷ1 and ŷ2 . Each latent space is then compressed based on the probability estimates derived from the auto-regressive model. The entropy coder proceeds to compress both the model parameters (θ, ψ) and the pixels in the latent space to generate two descriptions S 1 and S 2

Fig. 2 .

 2 Fig. 2. Synthesis model: In this example, with three decomposition levels (N=3), the central latent set ŷ0 is created by interleaving two side latent sets ŷ1 and ŷ2 as showed in the figure. Then they are upsampled to create the sets ẑ0 , ẑ1 and ẑ2 respectively. Finally, each up-sampled set is fed into a shared MLP for reconstruction.

Fig. 3 .

 3 Fig. 3. Autoregressive model: In this example, the model uses 12 pixels, c ik|j , to yield µ ik|j and σ ik|j , modeling a Laplacian distribution. The symbol probability is calculated, and an entropy decoder estimates the latent pixel, ŷik|j , from a bitstream.

Fig. 4 .

 4 Fig. 4. Bit-stream structure
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 56 Fig. 5. The rate distortion performance was evaluated on Lena and Boat images (512x512 pixels) for two values of redundancy (α = 0.1 and α = 1) and the The DIV2K-10 dataset (1920x1080 px) for one redundancy factor (α = 0.1)

https://github.com/mdcnn/MDCNN test40/tree/master/SET4

https://github.com/mdcnn/MDCNN test40/tree/master/DIV2K-10
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