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Abstract: Rhizospheric plant–microbe interactions have dynamic importance in sustainable agricul-

ture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the 

interactions between plants and the surrounding symbiotic microorganisms that facilitate the de-

velopment of rhizobiome diversity, which is beneficial for plant productivity. Plant–microbe com-

munication comprises intricate systems that modulate local and systemic defense mechanisms to 

mitigate environmental stresses. This review deciphers insights into how the exudation of plant 

secondary metabolites can shape the functions and diversity of the root microbiome. It also elabo-

rates on how rhizosphere interactions influence plant growth, regulate plant immunity against phy-

topathogens, and prime the plant for protection against biotic and abiotic stresses, along with some 

recent well-reported examples. A holistic understanding of these interactions can help in the devel-

opment of tailored microbial inoculants for enhanced plant growth and targeted disease suppres-

sion. 

Keywords: rhizosphere; microbial metabolites; plant–microbe signaling; quorum sensing; phyto-

hormones; defense priming; sustainable agriculture 

 

1. Introduction 

The rhizosphere is a most captivating environment, which harbors a variety of mi-

croorganisms that are deeply involved in plant–microbe communication. This high-den-

sity niche allows plants to interact with associated microorganisms through chemical sig-

nals that are produced in response to specific stimuli, which in turn activate many regu-

latory mechanisms [1]. Rhizospheric regions possess higher bacterial activity than non-

rhizospheric regions. The composition of a microbiome is determined by different biotic 

and abiotic factors, i.e., the climate, type of soil, and chemical signals that are produced 

by the plant and its associated microbes [2,3]. 

Plants and microbes have diverse interactions that involve close interactions, either 

positive or negative, including mutualism (symbiosis), parasitism, and commensalism [4]. 

Positive interactions include those with microorganisms, e.g., rhizobia, plant growth-pro-

moting rhizobacteria (PGPR), and mycorrhiza, which result in beneficial outcomes, such 

as growth promotion, nutrient accessibility, and protection against abiotic and biotic en-

vironmental stresses [5–7]. On the other hand, plant interactions with microbial pathogens 

result in negative outcomes, i.e., plant diseases [8,9]. The interaction between both part-

ners depends on specialized signaling molecules or chemical signals that are also 
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significant in cooperative, as well as competitive, microbial behavior [10,11]. The chemical 

cues or secondary metabolites act as mediators in plant–microbe and microbe–microbe 

communication and also trigger plant responses [12]. 

In the past decade, progress has been made in the understanding of the types of 

chemical signals that are responsible for controlling the activities of plants and associated 

microbes [13–15]. The most studied signaling compounds are N-Acyl homoserine lactones 

(N-AHLs), which are produced by a variety of bacterial taxa and regulate quorum sensing 

and pathogenicity within a bacterial population [16–18]. Likewise, plant roots secrete a 

variety of metabolites as exudates, including photosynthetically derived carbon com-

pounds, e.g., organic acids, vitamins, flavonoids, polysaccharides, amino acids, and sug-

ars. These root exudates create an enriched environment for the rhizomicrobiome to in-

teract and increase diversity based on the composition of the exudates [15,19,20]. Moreo-

ver, plants release secondary metabolites against pathogens and insects that act as defen-

sive signals [21,22]. Plants use adaptive strategies to enhance the defensive capacity of 

their innate resistance to biotic and abiotic factors by interacting with beneficial microbes 

[23,24]. To unravel the process of microbial interaction with plants, an understanding of 

the types of chemical communication between all members is necessary. Thus, the known 

microbial community and their interactions could help in the optimal use of beneficial 

microbes for better plant growth. 

Some of the literature on different signaling molecules that participate in the devel-

opment of interactions within the rhizosphere for enhanced plant growth has been re-

viewed [15,25–28]. However, much still needs to be explored in terms of the significance 

of these interactions as far as microbial or chemical diversity and the understanding of 

signaling molecules are concerned. This review aims to enlighten our understanding of 

rhizosphere signaling in plant–microbe communication, both cooperative and competi-

tive, and its significance in plant productivity and the development of sustainable agri-

culture systems. Nonetheless, the signaling compounds have a prodigious potential to 

escalate plant functions when they are understood in depth. 

2. Rhizosphere: A Pool of Plant–Microbe Signaling 

The rhizosphere serves as a hotspot for diverse microbial activity. It is an intricate 

ecosystem comprising nutrient-rich soil that surrounds the plant roots, which provides a 

pool for plant–microbe communication. The term “Rhizomicrobiome” is defined as a mi-

crobial community that is present in the rhizosphere [29]. A variety of microorganisms 

reside within the rhizosphere, including bacteria, fungi, nematodes, protists, and inverte-

brates [11]. Most of the microbiome studies within the context of rhizosphere signaling 

have been focused on the bacteria and fungi that make up the major portion of the rhizo-

sphere microbiome. However, viruses that infect bacteria, which are known as phages, 

have an influence on the dynamics of the rhizosphere microbiome. The most abundant 

known phages in the soil virome include Microviridae, Siphoviridae, and Podoviridae [30]. 

The diversity and amount of identified viruses in the rhizosphere is much less, i.e., 2700 

less than bacterial abundance, which amounts to around 1010 species per g of soil [31,32]. 

The complete biological entity comprising a plant and its associated microbial commu-

nity, i.e., the symbionts (facultative and obligate) and microbes that have parasitic rela-

tionships with the host plant, is referred to as a “holobiont” [33]. The cascade of intricate 

chemical signals develops a communication within the rhizosphere that facilitates various 

mechanisms in a holobiont, i.e., root–root interactions, biofilm formation, nutrient acqui-

sition, microbiota development, and resistance against pathogens [34–36]. Different types 

of interactions between microbes and plants are depicted in Figure 1. 
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Figure 1. Schematic representation of interactions between rhizo-microorganisms and plants. 

According to the “rhizosphere effect”, this region is associated with a lesser microbial 

diversity but a higher bacterial abundance compared to bulk soil [37]. The recruitment of 

microbes within the rhizosphere directly depends on the soil properties, soil type, and 

plant metabolites [38]. Different plant genotypes and physicochemical soil properties de-

velop specific environments for the selection of a promising microbiome [10,34]. Plant-

derived metabolites or root exudates play a significant role in the shaping of the rhizomi-

crobiome by modifying the soil chemistry around the plant roots and serving as substrates 

for the growth of specific microbiota [39]. The root exudates differ both in quality and 

quantity depending on the type, nutritional status, and growth stage of the plant [40]. 

These root exudates, including both primary and secondary metabolites, contain 10–16% 

of the total plant nitrogen and 11% of the photosynthetically fixed carbon that actively 

tune the microbiota in the microbial reservoir that is within the vicinity of the plant roots 

[41]. Another factor that affects the rhizomicrobiome is the cellular response that is shown 

either by the microbes or the plants, which results in transformation, catabolism, and re-

sistance to the chemical that is being sensed [11]. The release of root exudates into the 

rhizosphere by plants selects the desired microbial community by attracting it while de-

terring harmful communities, which in turn allows plants to be adaptable. This selection 

process for microbiota is known as “niche colonization” [42,43]. 

Signaling in the rhizosphere can be categorized into two major types based on the 

direction of the communication, i.e., the inter- and intraspecies microbial signaling and 

the interkingdom signaling between microbes and plants. 

2.1. Inter- or Intraspecies Signaling among Microorganisms 

Microbes in the rhizomicrobiome interact with each other by producing signaling 

molecules that adjust their gene expression [11]. Inter- or intraspecies communication 

among microbes occur via the quorum sensing mechanism, which involves cell density-

dependent coordination. Quorum sensing (QS) is the cell-to-cell signaling process that 

takes place through the synthesis, release, and detection of chemical signals [44,45]. These 

chemical signals are also known as autoinducers (AIs) and they regulate the gene expres-

sion of some bacterial functions upon the recognition of the signal by the recipient, i.e., 

biofilm formation, adhesion, motility [46–48], propagation, virulence, metabolism [49], 

and symbiotic association [1]. 

Quorum sensing signals in bacteria are categorized into two groups: acyl-homoserine 

lactone (AHLs or AI-1), which is found in Gram-negative bacteria, and autoinducer pep-

tides (AIPs), which are found in Gram-positive bacteria; and autoinducer type 2 (AI-2), 
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which has the traits of both AHLs and AIPs and is found in both Gram-negative and 

Gram-positive bacteria [50,51]. N-acyl homoserine lactone (N-AHL) has been majorly re-

ported in various Gram-negative bacteria, including Burkholderia sp., Pseudomonas syrin-

gae, Pseudomonas putida, Pseudomonas chlororaphis, Erwinia sp., and Serratia sp. (Table 1) 

[52,53]. As well as AHLs, a diverse range of signals have been reported in Gram-negative 

bacteria, i.e., fatty acid methyl esters, 2-alkyl-quinolones, furanone, and γ-butyrolactones 

[16,50,54]. 

Table 1. Characterization of quorum sensing signaling molecules that are produced by different 

rhizomicrobes with respect to the type of communication within the rhizosphere. 

Type of Microbe Rhizo-Microorganisms Quorum Sensing Molecules Type of Communication Reference 

G
ra

m
-p

o
si

ti
v

e 
b

ac
te

ri
a 

Bacillus subtilis ComX pheromone Inter- and intraspecies [6] 

Streptomyces spp. 

Gamma-butyrolactones (A-fac-

tor) and methylenomycin fu-

rans (MMF1) 

Interspecies [55] 

Staphylococcus aureus Circular oligopeptide Interspecies [16] 

Stenotrophomonas chelatiph-

aga 
DSF (diffuse signal factor) 

Interkingdom (poplar 

plant) 
[56] 

Bacillus velezensis 

AI-2 synthetase (2-methyl-

2,3,3,4-tetrahydroxytetrahydro-

furan (THMF)) 

Interkingdom (maize 

plant) 
[57] 

G
ra

m
-n

eg
at

iv
e 

b
ac

te
ri

a 

Burkholderia sp. 
N-3-oxo-hexanoyl-homoserine 

lactone (3OC6-HSL) 

Interkingdom (wheat and 

arabidopsis plant) 
[58] 

Serratia glossinae 

N-hexanoyl-L-homoserine lac-

tone (m/z 200) and N-octanoyl-

L-homoserine lactone (m/z 228) 

Interkingdom 

(rice plant) 
[59] 

Serratia plymuthica 

N-butanoyl-HSL, N-hexanoyl-

HSL, and N-3-oxo-hexanoyl-

HSL (OHHL) 

Interkingdom (oil seed 

rape) 
[60] 

Burkholderia graminis M12 

and B. graminis M14 

N-(3-oxododecanoyl)-L-ho-

moserine lactone (3-oxo-C12-

HSL or OC12-HSL (where “O” 

indicates an oxo substitution at 

the third carbon atom)) and 3-

oxo-C14-HSL (OC14-HSL) 

Interkingdom (tomato 

plant) 
[61] 

Serratia marcescens 
N-3-oxo-hexanoyl-homoserine 

lactone (3OC6-HSL) 

Intraspecies and interking-

dom (tobacco plant) 
[62] 

Burkholderia sp. and Pseu-

domonas sp. 

N-butyryl-homoserine lactone 

(C4-HSL) 

Interkingdom (arabidopsis 

plant) 
[63] 

Ochrobactrum sp. 3O-C7-HSL and 3OH-C7-HSL Interkingdom (bean plant) [64] 

Stenotrophomonas malto-

philia 
DSF (diffuse signal factor) 

Interkingdom (oil seed 

rape) 
[65] 

Serratia glossinae 

N-octanoyl-L-homoserine lac-

tone and N-hexanoyl-L-ho-

moserine lactone 

Interkingdom (sesame 

plant) 
[59] 

F
u

n
g

i 

Candida albicans 
Tyrosol, γ-butyrolactone, and 

farnesol 
Intraspecies [66] 

Another type of QS bacterial signals is antibiotics, which have been reported for in-

tra- or interspecies communication [67]. A recent study revealed some antibiotic signals 

in a bacterial strain that resided in the tobacco rhizosphere, Lysobacter capsica. The strain 
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possessed biocontrol potential due to its production of antifungal and antibiotic signals, 

i.e., cyclic lipodepsipeptides and cyclic and polycyclic tetramate macrolactams [68]. Fungi 

also produce quorum sensing signals that communicate with bacterial species, e.g., γ-hep-

talactone, tyrosol, γ-butyrolactone, dodecanol, and farnesol [69]. Fungal and bacterial in-

teraction through QS signals creates a competition for existence among the associated mi-

crobes in the rhizosphere in terms of infecting the host [70]. 

Another important class of signaling molecules is volatile organic compounds 

(VOCs). Microbial VOCs are synthesized and released for long-distance communication 

among a microbial community and also in microbe–plant interaction [71]. VOCs are low 

molecular weight lipophilic compounds (100–500 Da) that are produced by various bac-

terial and fungal species through distinct metabolic pathways that are specific to the spe-

cies genotype [72]. The VOCs of bacterial origin include alkanes, ketones, alkene, terpe-

noids, and sulfurs [73,74]. VOCs play an important role in microbe–microbe communica-

tion by serving as antimicrobial QS signaling molecules and influencing microbial activ-

ity, i.e., virulence, stress resistance, and biofilm formation [75,76]. These attributes are ex-

emplified as a low concentration of nitric oxide (NO) influences the biofilm formation in 

bacterial species such as P. aeruginosa, B. licheniformis, and S. marcescens [77]. Apart from 

this, VOC signals have been reported to regulate plant growth (root architecture and hor-

monal signaling) and plant immunity against biotic and abiotic stresses [71]. Additional 

studies will further unravel other signaling mechanisms that are associated with microbial 

VOCs. 

Hence, these intricate signaling mechanisms among rhizospheric microorganisms 

have a key role in the shaping of the rhizomicrobiome by recruiting specific microbes 

through inter- or intraspecies communication. 

2.2. Interkingdom Signaling 

Microbes and plants interact with each other via interkingdom signaling, which can 

influence plant growth by either inducing or suppressing gene expression. Interkingdom 

signaling can be subdivided into two categories based on the stimulus direction: microbe–

plant signaling and plant–microbe signaling. 

2.2.1. Microbe–Plant Signaling 

In microbe–plant signaling, microbes produce and emit signals that induce symbiotic 

interactions with the plant. Microbial signals that are of rhizosphere origin can trigger 

definite changes in the plant transcriptome. As in plants, phytohormones are also pro-

duced by PGPR. These plant growth-stimulating signals can regulate the developmental 

processes of plants and can also provide plants with resistance to abiotic and biotic 

stresses. Many PGPRs, including Azospirillum spp., Bacillus amyloliquefaciens, B. muralis, B. 

thuringiensis, Rhizobium spp., and Pseudomonas spp., have been reported to produce a 

diverse group of phytohormones, e.g., auxin, abscisic acid, salicylic acid, cytokinin, gib-

berellin, and strigolactones [78–81]. A recent study in Nature reported three newly iso-

lated strains of Phoma spp. in the rhizosphere of Pinus tabulaeformis. These strains secreted 

stress the resistance substance abscisic acid (ABA) when under drought stress, which trig-

gered drought resistance mechanisms in the pine tree and also stimulated its antioxidant 

activities [82]. 

Most of the literature on microbe–plant communication has been focused on benefi-

cial interactions, such as the induction of plant growth and plant defenses against biotic 

and abiotic stresses. Rhizospheric microbes that have plant-friendly associations include 

mycorrhiza, rhizobia, plant growth-promoting bacteria, and fungi (PGPR or PGPF) [11]. 

Microbial signals are recognized by plants as microbe-associated molecular patterns 

(MAMPs), i.e., flagellin, chitin, and lipopolysaccharides, via pattern recognition receptors 

(PRRs) that trigger a local defense through a hormonal signaling network, which in turn 

produces immune responses [83–85]. 
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Quorum sensing signals have also been reported in interkingdom communication. 

Bacterial QS signals that are perceived by plants elicit various plant responses, e.g., AHLs 

(N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone), which aid in the 

development of symbiotic association with plants and enhance root growth by modifying 

the hormonal levels in the plant [46,86]. Another bacterial QS molecule, DSF, stimulates 

innate immunity (the detection of harmful microbes via PRRs) in different plants [87]. 

Some other examples of QS sensing in interkingdom communication is presented in Table 

1. As well as causing physiological changes in plants, bacterial QS molecules also provoke 

the plants into secreting molecules that mimic the QS molecules of pathogenic microbes 

[88,89]. For example, the p-coumaric acid that is produced by garlic [90], the isothiocya-

nate sulforaphane that is produced by broccoli [91], the curcumin that is produced by 

turmeric [92], and the patulin that is produced by fruits (apple, banana, pear, grape, etc.) 

[93]. Studies on AHL mimicry have shown that the mimicry molecule of bacterial AHL 

(AHL analog) specifically interferes with QS regulatory pathways and can either stimulate 

or inhibit the gene expression of the original QS receptor or host, as illustrated in Figure 

2 [94,95]. This type of interference in microbial QS signaling for attenuating pathogenicity 

is known as quorum quenching (QQ) [44,96,97]. A recent study identified a quorum 

quenching mechanism in a novel bacterial strain, Acinetobacter sp. strain XN-10, which 

degraded the QS molecules of the AHL family that was acting against the QS-mediated 

pathogenicity. The strain suppressed the pathogenicity of Pectobacterium carotovorum 

subsp. carotovorum (Pcc), thereby protecting tissue maceration in potatoes, cabbage, and 

carrots [98]. Another study reported a quorum quenching defense mechanism against 

Pseudomonas aeruginosa infection in plants. Upon the interaction of the plant with P. aeru-

ginosa, the plant-secreted QQ molecule (rosmarinic acid) mimicked and competed with 

the QS pathogenic signal (C4-HSL) and stimulated QS-mediated responses that provide 

disease protection to the plant, i.e., virulence factors and biofilm formation [88]. 

 

Figure 2. Schematic representation of quorum sensing (QS) and quorum quenching (QQ) inhibition 

of signal perception pathways. The binding of QQ agents to the LuxR receptors either inactivates 

quorum sensing receptors or reduces the quantity of receptors in the QS molecules for targeted gene 

expression. 

Rhizospheric bacteria have been reported to produce antimicrobial signaling com-

pounds. These compounds stimulate systemic resistance in plants against phytopatho-

gens by altering hormonal pathways, e.g., the di-acetyl phloroglucinol (DAPG) that is pro-

duced by Pseudomonas sp. [99]. It is common that microbially produced VOCs can induce 

plant growth and resistance to biotic stress [72,100]. Plants perceive and respond to 
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various VOC signals of PGPR or PGPF origins, such as undecanone and heptanol. For 

example, 2-heptanol and 2-undecanone, which are produced by B. subtilis and B. amyloliq-

uefaciens, promote the growth of Arabidopsis thaliana when cultivated with these PGPR 

strains [101,102]. 

2.2.2. Plant–Microbe Signaling 

Plants serve as residences for microbial communities, which include mutualists, com-

mensals, and parasitic microorganisms. Plants respond to the microbial signals by secret-

ing chemical compounds, which are known as root exudates. These include low molecular 

weight compounds (organic acids, sugar, aliphatic acids, fatty acids, amino acids, flavo-

noids, and secondary metabolites) and high molecular weight compounds (proteins and 

mucilage) [20,34,103]. The plant–microbe interaction through the secretion of phytochem-

icals affects the biology of the rhizosphere [104]. The secreted chemicals attract rhizo-

spheric microbes toward the plant roots and develop either pathogenic or symbiotic in-

teractions with them. The most studied plant–microbe interaction is the symbiotic rela-

tionship of legumes with nitrogen-fixing bacteria. The cascade of signals that is produced 

upon plant–microbe interaction forms root nodules. Rhizospheric microbes feed on these 

nodules and in turn provide the plant with an available form of nitrogen. Plant signals for 

nodule formation have been extensively studied over the last decade [15,105]. 

A recent work demonstrated pathogenic plant–microbe interaction through a broc-

coli plant induced defense system, which released root exudates upon interaction with 

fungal species. The root exudates (isothiocyanates (ITC) and glucosinolates (GLS)) 

showed antifungal potential against the rhizospheric microbes Pseudomonas syringae, 

Sphingomonas suberifaciens, and Fusarium oxysporum [106]. The chemical complexity and 

specificity of the root exudates depend on the genotype of the plant. The chemical signals 

of root exudates attract specific microorganisms for interaction [34,35]. For example, cu-

cumber secretes citric acid, which attracts Bacillus amyloliquefaciens, whereas bananas se-

crete fumaric acid, which attracts B. subtilis N11, but both interactions result in biofilm 

formation [107]. Therefore, specific root exudates recruit specific microbial communities 

within the rhizosphere. Phytochemicals are also capable of stimulating the QS signaling 

mechanism in microbes, e.g., the flavonoids that are produced by legumes upregulate the 

gene expression of AHL genes in rhizobia [108]. 

Plants also release volatile organic compounds (VOCs) from different parts: leaves, 

flowers, fruits, and roots [109]. These include terpenoids, fatty acids, phenylpropanoids, 

and amino acids that constitute approx. 1% of the total plant secondary metabolites. VOCs 

can easily cross plant membranes and be released into the atmosphere or soil. In soil, they 

attract root colonizing pathogens and inhibit their growth [110]. 

Plant secretions, including root exudates, volatiles, and strigolactones, are wide-

spread signaling compounds that bind with bacterial receptor proteins and elicit a re-

sponse in microbes that regulates gene expression. The signaling molecules that have been 

identified so far are known to influence the developmental and defense processes of 

plants. These phytochemical compounds are responsible for shaping or adapting the rhi-

zomicrobiome due to their specificity and complexity. However, many of these chemical 

compounds and their target functions are yet to be explored. The rhizosphere signaling 

mechanisms that are involved in the interactions between microorganisms and between 

the microorganisms and plants are represented in Figure 3. 
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Figure 3. Overview of rhizosphere communication in intra- or interspecies signaling among micro-

organisms and interkingdom signaling between microbes and plants. Myc, mycorrhizal; LCOs, lipo-

chitooligosaccharides; Nod, nodulation; VOCs, volatile organic compounds; Ais, autoinducers; 

AHLs, N-acyl homoserine lactone; QSMs, quorum sensing molecules. 

3. Significance of Signaling in Plant–Rhizomicrobiome Interaction 

The plant–microbe signaling in the rhizosphere contributes toward sustainable 

agronomy. Some features of rhizosphere signaling that have significant importance are 

elaborated here. A summary of the significant factors of rhizosphere signaling is shown 

in Figure 4. 

 

Figure 4. Summary of significant factors of rhizosphere signaling. SAR, systemic acquired re-

sistance; ISR, induced systemic resistance; LCOs, lipo-chitooligosaccharides; Nod, nodulation; Myc, 

mycorrhizal; PRR, pattern recognition receptor; PAMPs, pathogen-associated molecular patterns. 
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3.1. Nutrient Acquisition for Phytostimulation 

A plant can acquire nutrients from the rhizomicrobiome in two ways: either through 

symbiotic or non-symbiotic interactions with rhizospheric microorganisms. 

3.1.1. Signal-Mediated Symbiosis 

Plants are known to develop synergistic interactions with the associated rhizomicro-

biome. Nutrient acquisition is a crucial consequence of these interactions as once the sym-

bionts have established the association, a cascade of signals results in the continuous ex-

change of nutrients between both symbionts. The most studied interkingdom signal-me-

diated interactions are the mutualistic associations between rhizobia and legumes and be-

tween AMF and non-vascular plants. These interactions have been extensively studied 

throughout the last decade; however, research is still ongoing with regards to signal-me-

diated symbiosis. 

• Rhizobia–legume symbiotic interactions 

Signal-mediated symbiosis plays a key role in nutrient acquisition for plants. Rhizo-

bia provide a reduced form of nitrogen, i.e., ammonia, to plants and in exchange, the 

plants provide dicarboxylates to the rhizobia [111]. 

The symbiotic interactions between rhizobia and legumes are initiated after the se-

cretion of phytochemicals by the roots of the host plant, i.e., flavonoid derivatives [112]. 

Flavonoids have been well studied regarding their role in legume–rhizobia symbiosis. 

They can accumulate auxin in the root tissues, which facilitates the nodulation process 

[113]. The flavonoids act as a chemical attractant for rhizobia and guide the rhizobial cells 

into activating the nodulation genes (nod, noe, and nol), which in turn synthesize nodu-

lation (Nod) factors, i.e., lipo-chitooligosaccharides (LCOs) [114]. LCOs are major signal-

ing molecules for the initiation of nodule formation, which is perceived by receptors that 

are present in the root epidermis of the host plant (known as kinases). This results in nod-

ule formation in the roots of the legumes [15,115,116]. The legume secretions are rhizobia-

specific and attract specific rhizobial species. Likewise, the rhizobia response is specific to 

the flavonoids, i.e., distinct LCOs diffuse through rhizobia and activate certain nodulation 

genes that are specific to legume species in order to develop an accurate symbiotic inter-

action [117,118]. LCOs can promote plant growth by modulating legume root architecture, 

which in turn enhances nutrient acquisition. This process has been implicated in the in-

crease in the number of root hairs for increased nutrient uptake [119]. This behavior, in-

cluding an increase in root surface area, length, and hair number, was observed in Ara-

bidopsis thaliana that was inoculated with Bradyrhizobium japonicum [120]. As with flavo-

noids, some other signaling molecules have also been reported to activate nod genes, e.g., 

chalcones, betaines, vanillin [121], jasmonate, and aldonic acid [122]. Thus, these signaling 

compounds regulate the gene expression of particular partner symbionts for successful 

symbiosis. 

The neighboring microbes of rhizobia in a phytomicrobiome assist in nodule for-

mation by producing synergistic consortia that play an important role in the alleviation of 

abiotic stress, nutrient uptake, and disease resistance [118]. The co-inoculation of PGPR 

has shown drastic plant growth-promoting effects, e.g., Mesorhizobium cicero that was co-

inoculated with Bacillus sp. and Enterobacter aerogenes demonstrated significantly en-

hanced root nodulation, uptake of nitrogen and phosphorous, and total protein content 

in the chickpea plant [123]. 

• Mycorrhizal symbiotic interactions 

Mycorrhizal symbiosis involves the interactions between arbuscular mycorrhizal 

fungi (AMF) and land plants. The signaling pathways are quite similar to those in rhizo-

bia–legume symbiosis. Plant secretions of strigolactones, which are known as branching 

factors (BFs), send signals to the AMF that, upon recognition, release mycorrhizal lipo-

chitooligosaccharides (Myc factors) that are responsible for the development of the sym-

biotic interactions between plants and AMF [124,125]. As well as acting as AMF stimuli, 
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strigolactones are plant hormones that are capable of interfering with auxin transport 

[126]. Intriguingly, AMF penetrate through the epidermal cells of plant roots after per-

ceiving plant signals. There, they start to differentiate into highly branched structures 

called arbuscles. AMF colonize, either intercellularly or intracellularly, within the cortical 

tissues that have a key role in the nutrient exchange between both symbionts [127,128]. A 

complex cascade of signals enhances the nutrient uptake of the roots, such as nitrates, 

amino acids, immobile ortho-phosphates, starch, and calcium, using specialized trans-

porters. This improves the metabolic pathways of the plant while the host plant fulfills 

the carbohydrate requirements of the AMF in return [129–131]. 

Recently, studies have reported a tripartite interaction between three symbionts: 

AFM–rhizobia–plant (ARP). This tripartite interaction increases nitrogen fixation, helps 

the plant to survive in drought conditions [132,133], and enhances root soluble sugar con-

tent and dry weight, as well as increasing the total number of nodules [133,134]. Some of 

the literature also considered tripartite symbiosis to be an efficient interaction for plant 

growth [98,135–137]. Further research is required to understand the gene expression pro-

files and metabolic events that are associated with ARP tripartite interactions. Meta-ge-

nomics would provide better ways to monitor and understand the role of each partner 

that is involved in the symbioses within the rhizosphere. 

3.1.2. Nutrient Acquisition without Symbiosis 

Plants can acquire nutrients without symbiosis with rhizobia or AMF. Various mi-

crobes meet nutrient requirements via the production of certain metabolites [19,138,139]. 

During iron deficiency, certain microbes colonize the roots of a plant in iron deficit soil 

and produce chelating compounds to sequester iron from the soil. Bacterial colonization 

induces the gene expression that is responsible for iron uptake in plants in response to 

iron deficiency [139–141]. The phosphate requirements of the arabidopsis plant are pro-

vided by endophytic bacteria Colletotrichum tofieldiae via the translocation of phosphate 

through the roots [142]. The rhizospheric and endophytic consortium of Bacillus sp. and 

Pseudomonas sp. Has been shown to significantly enhance the phosphate solubilization 

efficiency of wheat cultivars that were growing in phosphate deficient soil [143]. Similarly, 

microbes other than rhizobia meet the nitrogen demands of non-leguminous plants 

[19,144]. The decomposition of organic matter by rhizospheric microbes enhances plant 

productivity and soil fertility by providing nutrients to plants. For example, lignocellulo-

lytic fungi, such as, Pleurotus ostreatus, Phanerochaete, and Trichoderma harzianum, and bac-

teria, including Pseudomonas sp., Sporocytophaga sp., Cytophaga sp., and Streptomyces sp., 

degrade plant biomass and release nutrients into the soil, which are taken up by the plants 

that are growing in nutrient-poor soil [145,146]. The soil phages or virus-like particles 

(VLPs) affect the availability of nutrients to plants by modulating mutations in microbial 

phylotypes or interfering with the structure and diversity of the bacterial population. 

These effects generate mutations in rhizodeposits and aid in nutrient uptake (N, S, and P) 

by the plants. Despite the lower abundance of the lysogenic virus community than the 

bacterial community, viruses play their role in the resilience of the rhizosphere microbi-

ome [30]. 

3.2. Regulation of Plant Immunity against Phytopathogens 

Biotic stresses cause a 30% loss in crop yield and a 15% loss in food worldwide due 

to various pathogen attacks, i.e., bacteria, fungi, viroids, viruses, protists, nematodes, and 

insects [147]. PGPR induce an innate immune response in plants against the phytopatho-

gens in a sequential manner, i.e.: (i) perceive the stress stimulus; (ii) regulate defense re-

sponses by activating defense-related signaling pathways; and (iii) defense priming that 

prepares the plant to respond against the stress after recognition by the PGPR [148,149]. 

The perception of the stimulus by the plant triggers a local immune defense response that 

is translated into a systemic defense response, which is mediated by hormonal signaling 

pathways [150]. 
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3.2.1. Pattern-Triggered Immunity (PTI) 

Plant immunity is initiated by host–pathogen interactions, in which plant receptors 

and pattern recognition receptors (PRRs) recognize the pathogen- or microbe-associated 

molecular patterns (PAMPs or MAMPs) that induce the resistance mechanisms. After 

PAMP recognition, the plant triggers signaling modules, i.e., mitogen-activated protein 

kinases (MAPKs) and calcium-dependent protein kinases (CDPKs), which further triggers 

a signal cascade that is responsible for the activation of specific transcription factors that 

lead to the induction of multiple intracellular defense responses. The induction of the sig-

nal cascade is either hormone-dependent (MAPKs and CDPKs) or -independent 

[12,151,152]. The plant signals that make up the signal cascade include methyl jasmonate 

(MeJA), azelaic acid (AzA), pipecolic acid (Pip), and salicylic acid (SA) signals that regu-

late defense genes [153,154]. Some phytohormones, such as auxins, cytokinins, gibberel-

lins, and abscisic acid, also take part in this signal cascade [28]. This type of defense re-

sponse is known as MAMP- or PAMP-triggered immunity [155–157] or more generally as 

pattern-triggered immunity (PTI) [158], which is depicted in Figure 5. 

 

Figure 5. Schematic representation of plant immunity against phytopathogens through pattern-trig-

gered immunity (PTI) and effector-triggered immunity (ETI). PTI is activated through the recogni-

tion of pathogen-associated molecular patterns (PAMPs) by the pattern recognition receptors 

(PRRs) in plant cell walls. After PAMP recognition, the plant triggers a signal cascade that further 

induces multiple intracellular defense responses and activates defense genes. In response to PTI, 

pathogens secrete effectors that are recognized by nucleotide-binding (NB) and leucine-rich repeat 

(LRR) receptors (NLRs) and develop another defense layer called ETI. Activated NLRs with many 

intracellular signaling events trigger the hypersensitive response (HR). 

The induction of PTI stimulates intracellular defense responses, including stomatal 

closure, the deposition of callose, and the induction of reactive oxygen species (ROS) and 

antimicrobial metabolites (Figure 5) [158,159]. Several AHLs and diffusible signal factors 

(DSFs) have been identified as quorum sensing signals in phytopathogenic interactions. 

In the host–pathogen interaction between Arabidopsis thaliana and Sclerotinia sclerotirum, 

small sRNAs were abundantly identified in the signal pathways [160]. Plants produce sec-

ondary metabolites upon pathogen interaction, which are known as “phytoanticipins” or 

“phytoalexins” (Figure 5) [157,161]. The biosynthesis of these inducible compounds is reg-

ulated by phytohormone signaling pathways, phosphorylation, and defense-related 
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genes [162]. Capsidiol production in Nicotiana benthamiana has been shown to be mediated 

by an ethylene signaling pathway that provides defense against Phytophthora infestans 

[163]. 

3.2.2. Effector-Triggered Immunity (ETI) 

In response to PTI signaling, pathogens resist the plant defense mechanisms by pro-

ducing effectors that prevent their detection by the host plant. This response mechanism 

is known as effector-triggered susceptibility (ETS) [83,155,164]. Upon ETS activation, the 

plant in turn develops another defense layer, which is known as effector-triggered im-

munity (ETI). ETI is activated upon the detection of pathogen effectors through a special-

ized intracellular protein, which is known as NB-LRR (nucleotide-binding and leucine-

rich repeat domains) [83,156,165]. NB-LRR is encoded by a plant resistance gene (R gene) 

that mediates resistance to specific phytopathogens, i.e., viruses, oomycetes, fungi, nem-

atodes, and bacteria. It recognizes the specific pathogen effectors either by direct binding 

or by changing its protein binding site during pathogen–effector binding [165], as de-

picted in Figure 5. The virulence specificity of pathogen effectors has been as yet undis-

covered because several PRRs can recognize specific pathogens and pathogens have 

evolved effectors that dislocate the defense signaling of plants [166]. This protective mech-

anism is called the hypersensitive response (HR) [167]. For example, Phytophthora infestans 

produces the effector protein (PexRD2), which increases its susceptibility to Nicotiana ben-

thamiana by suppressing the host’s defense signaling [168]. Effector proteins have also 

been reported to attenuate hormonal signaling, i.e., salicylic acid and jasmonic acid signals 

induce P. infestans colonization and infection in plants [169]. 

3.3. Defense Priming 

Plants use adaptive strategies to enhance the defensive capacity of their innate re-

sistance. Warning signals or stimuli, such as pathogens, abiotic stresses, chemicals, PGPR, 

and arthropods, trigger their innate resistance and prime the plants against secondary 

stresses. This type of enhanced defense response state is known as priming. During this 

phase, plants change at transcriptional, physiological, metabolic, and epigenetic levels 

[23]. Primed plants show induced and more competent responses against stresses 

[170,171]. Defense priming can be sustained throughout the life of a plant and can be 

transferred on to the next generation. Defense priming is mediated by two induced sig-

naling resistance pathways: systemic acquired resistance and induced systemic resistance. 

• Systemic acquired resistance (SAR) 

PTI and ETI trigger long-distance defense signals that induce resistance against the 

future localized infection via broad-spectrum phytopathogens, which involves the activa-

tion of proteins and pathogenesis-related (PR) genes. This type of long-distance immune 

priming that is induced by a pathogen is known as systemic acquired resistance (SAR). It 

is a salicylic acid (SA)-dependent pathway [83,153,172]. Salicylic acid is produced by var-

ious rhizobacteria that are responsible for activating PR genes, PTI, and ETI in SAR sig-

naling [173]. 

SAR pathways are regulated by the key protein NPR1 (non-repressor of PR genes), 

which interacts with transcriptional co-factors that in turn induce the expression of path-

ogen-related proteins that are associated with systemic resistance [174]. SA binds with 

NPR1 and induces conformational changes in its structure to further expose it to tran-

scriptional factors for PR gene activation (Figure 6) [175]. Jasmonic acid (JA) pathways in 

SAR protect the plant from necrotrophic pathogens by activating a regulatory protein: 

COI1 in the form of a ubiquitin complex. The activated protein complex participates in 

the defense of the plant [174]. 
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(a) (b) 

Figure 6. Schematic representation of defense priming: (a) a picture depicting induced systemic re-

sistance (ISR), which is induced by plant growth-promoting rhizobacteria that provide resistance to 

biotic stresses, and systemic acquired resistance (SAR), which is induced by phytopathogens that 

provide resistance to biotic and abiotic stresses; (b) a flowchart showing signal transduction path-

way of ISR that are followed by jasmonate (JA) and ethylene (ET) plant hormones, which are en-

coded by the jar1 and etr1 genes, respectively, whereas SAR is followed by salicylic acid (SA), which 

is encoded by the sid1 and sid2 genes. 

SA pathways have been reported to induce the biosynthesis of flavonoids, i.e., pro-

anthocyanidins and catechin, which inhibit the proliferation of foliar rust fungus 

Melampsora larici-populina in poplar trees [176]. SA and methyl jasmonate (MeJA) have 

been shown to mediate the induction of defense-related genes and proteins against the 

blight disease-causing pathogen Xanthomonas axonopodis pv. manihotis in cassava plants 

[177]. Trichoderma harzianum has also been shown to induce systemic resistance via ET, 

SA, and JA pathways against the cucumber mosaic virus in tomato plants [178]. Tricho-

derma viride has been reported to provide resistance against Phytophthora infestans infection 

via SA signaling in potato plants [179]. 

• Induced systemic resistance (ISR) 

The induction of defense signaling by a beneficial rhizomicrobiome, such as PGPR 

against phytopathogens and pests, is known as induced systemic resistance (ISR), which 

is an SA-independent pathway [83,180]. This defense signaling pathway also increases 

plants’ tolerance of abiotic and biotic stresses and is therefore also known as induced sys-

temic tolerance [181,182]. The core difference between ISR and SAR is the dependency of 

SAR on the SA synthesis and accumulation by PGPR that activates SA signaling path-

ways, whereas ISR is SA-independent and includes ET and JA signaling pathways (Figure 

6) [14]. 

Beneficial microbes do not possess virulence genes but they do have the potential to 

sensitize plants by exploiting them to perceive MAMPs that lead to the activation of ISR 

[183]. Defense priming by rhizobacteria overlaps under biotic and abiotic stresses. 

ISR is regulated by the signaling pathways of phytohormones, including ethylene 

(ET) and jasmonic acid (JA) [184,185]. The reactive oxygen species (ROS) and reactive ni-

trogen oxygen species (RNOS) form a complex defense signaling network by stimulating 

the biosynthesis of JA, ET, and SA [186]. As an example, JA and ET were shown to regulate 

a defense response by stimulating the lipid transfer protein gene against Fusarium 
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graminearum [187]. Another defense response that is induced by JA and ET includes the 

RSL1 (recombinant Solanum lycopersicum) protein that triggers the gene expression of ET 

and JA against phytopathogens, e.g., Alternaria alternata and Botrytis cinerea [188]. ISR ex-

pression is usually determined by the type of bacterial strain and the plant in which re-

sistance is induced [189]. PGPR consortiums have also been reported to induce ISR. For 

instance, a PGPR consortium was shown to trigger ISR in the cucumber plant by increas-

ing its antioxidants and root vigor index while also regulating the photosynthetic machin-

ery [190]. Moreover, the co-inoculation of AMF with Pseudomonas sp. reportedly enhanced 

the antioxidant machinery in the leaves and the phosphatase activity in the roots of lettuce 

plants under drought stress [191]. 

PGPR products that elicit defense priming include VOCs, LOCs, AHLs, ACC deam-

inase, antibiotics, siderophores, and lipopolypeptides [192,193]. The literature has re-

ported that Bacillus amyloliquefaciens produced lipopolypeptides that primed the lettuce 

plant against Rhizoctonia solani [194]. AHLs from Acidovorax radicus N35 reportedly 

primed the defense response by stimulating the production of flavonoids, i.e., lutonarin 

and saponarin, in barley [195]. Furthermore, a siderophore-producing Pseudomonas putida 

mutant strain was shown to have an efficient biocontrol ability over the siderophore-de-

ficient Pseudomonas aeruginosa mutant strain in controlling Fusarium wilt in tomato plants 

[196]. 

Many rhizobacteria have been reported to have parasitic traits due to the production 

of cell wall degrading enzymes, e.g., Stenotrophomonas maltophilia secretes proteases that 

have a parasitic action on Bursaphelenchus xylophilus (nematode) and P. ultimum (oomy-

cetes) [197,198]. Some phages play a role in controlling the infection of a plant through 

bacterial phytopathogens. A recent study that was published in Nature reported that a 

combination of phages lessened the infection of tomato plants that was caused by Ralstonia 

solanacearum [199]. 

3.4. Regulation of Plant Defenses against Abiotic Stresses 

Plants experience about 70% damage due to various abiotic stresses, including tem-

perature, drought, nutrient deficiency, salinity, and heavy metal toxicity. A rhizomicrobi-

ome manages to ameliorate abiotic stresses through induced systemic tolerance via mi-

crobe–plant signaling, which involves biochemical and physiological changes in the 

plants [200]. Many PGPR have been reported to ameliorate abiotic stresses by adopting 

defense-related mechanisms, i.e., biofilm formation or the production of phytohormones, 

antibiotics, siderophores, hydrolytic enzymes, and quorum quenching compounds 

[201,202]. Rhizobacteria that possess the genetic capability to mitigate abiotic stresses in-

clude Caulobacter, Rhizobia, Serratia, Flavobacterium, Erwinia, Chromobacterium, Burkholderia, 

Methylobacterium, Trichoderma, Micrococcus, and Pseudomonas [203–205]. 

Plants manage to respond to abiotic stresses through a complex signal cascade that 

is activated following the perception of stress stimuli by the receptors or sensors that are 

in the plant cell walls. The sensed signals are then translated into intracellular signals 

through secondary messengers, i.e., calcium ions, nitric oxide, sugars, cyclic nucleotides, 

inositol phosphate, and ROS. These secondary messengers transduce the signaling path-

ways of the stress signals [206,207]. As a result, various physiological and metabolic re-

sponses become activated during different stages of plant development, such as the syn-

thesis of jasmonic acid, ethylene, salicylic acid, abscisic acid [208,209], flavonoids, phenolic 

compounds [210], antioxidants, and osmolytes, as well as the activation of certain tran-

scription factors for the expression of stress genes [211,212]. 

PGPR-produced phytohormones, mainly ethylene (ET), jasmonate (JT), salicylic acid 

(SA), abscisic acid (ABA), cytokinin, auxin, and gibberellins, regulate abiotic stress re-

sponses in plants. These hormones interact either synergistically or antagonistically to ad-

just their biosynthesis according to the stress response [213,214]. ABA biosynthesis genes 

are triggered upon osmotic stress to enhance its production, which is responsible for 

maintaining water balance through the closure of stomata [215]. ABA acts synergistically 
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with SA and antagonistically with ET to regulate osmotic stress, stomatal movement, and 

leaf senescence under drought conditions [216]. The exact mechanisms of bacterially pro-

duced phytohormones need to be explored further. However, some of the reported hor-

monal signaling pathways of rhizo-microorganisms in different host plants are presented 

in Table 2. PGPR can effectively stimulate antioxidant activity in plants under drought 

and salinity conditions. As a result, plants increase their antioxidant signaling, i.e., the 

production of redox enzymes and phenolic-like compounds (glycine, proline, and beta-

ine) [217]. 

Table 2. Amelioration of abiotic stresses by rhizo-microorganisms using different signaling path-

ways in different plant species. 

Stress Type Host Plant Rhizo-Microorganisms Signaling Pathways Reference 

S
al

in
it

y
 

Triticum aestivum 

Arthrobacter protophormiae 

(SA3) and Dietzia natrono-

limnaea (STR1) 

IAA, ET [218] 

Lycopersicum esculen-

tum 
Leclercia adecarboxylata IAA [219] 

Triticum aestivum Dietzia natronolimnaea SOS, ABA [220] 

Cucumis sativus 

Burkholdera cepacia, Promi-

cromonospora sp., and Aci-

netobacter calcoaceticus 

GA, ABA, SA [221] 

Cucumis sativus Trichoderma asperellum IAA, ABA, GA [222] 

D
ro

u
g

h
t 

Lolium multiflorum 
Bacillus sp. and Pseudomo-

nas sp. 
ABA [223] 

Triticum aestivum, Zea 

mays 

Bacillus sp. and Enterobac-

ter sp. 
IAA, SA [224] 

Oryza sativa Pseudomonas fluorescens ABA [225] 

Nicotiana tabacum 

Glomus versiforme (AMF) 

and Bacillus methylotrophi-

cus 

ABA, IAA [226] 

H
ea

t 

Eucalyptus grandis 
Brevibacterium linens 

 
ET [227] 

Lycopersicum esculen-

tum 
Bacillus cereus ET [228] 

Arabidopsis Bacillus licheniformis JA, ABA [229] 

Triticum aestivum 
Bacillus safensis and Ochro-

bactrum pseudogrignonense 
ROS [230] 

L
o

w
 t

em
p

er
a-

tu
re

 

Triticum aestivum Bacillus velezensis ROS, ABA [231] 

Oryza sativa Bacillus amyloliquefaciens ABA, SA, JA, ET [232] 

Solanum lycopersicum 
Funneliformis mosseae and 

Paraburkholderia graminis 
ROS [233] 

Arabidopsis thaliana Burkholderia phytofirmans ROS [234] 

H
ea

v
y

 m
et

al
s C

d
 

Oryza sativa Enterobacter aerogenes IAA, ET [235] 

Momordica charantia 

Stenotrophomonas malto-

philia and Agrobacterium fa-

brum 

ET [236] 

N
i,

 

C
d

, 

an
d

 

A
l 

Glycine max 
Paecilomyces formosus and 

Penicillium funiculosum 
IAA, GA [237] 

C
d

, C
u

, 

P
b

, a
n

d
 

N
i 

Spartima maritima 

Bacillus methylotrophicus, 

Bacillus licheniformis, and-

Bacillus aryabhattai 

COX, AOX [238] 



Microorganisms 2022, 10, 899 16 of 27 
 

 

Solanum tuberosum Bacillus sp. ROS [239] 
A

s 

Glycine max 
Bradyrhizobium japonicum 

and Azospirillum brasilense 
IAA [240] 

IAA, indole acetic acid; ET, ethylene; GA, gibbberellin; JA, jasmonic acid; ROS, reactive oxygen spe-

cies; ABA, abscisic acid; SOS, salt overly sensitive; COX, cytochrome oxidase; AOX, alternative oxi-

dase. 

Enzymatic pathways, including phosphatases and protein kinases, i.e., calcium-de-

pendent protein kinases (CDPKs), mitogen-activated protein kinases (MAPKs), and re-

ceptor-like kinases, have been reported to regulate dephosphorylation and phosphoryla-

tion in the management of abiotic stresses in plants [241]. Plants can deregulate the salt-

sensitive gene expression under salinity stress via calcium ion signaling pathways [242]. 

PGPR-mediated stress resistance is involved in these signaling pathways that modulate 

the transcription factors in order to enhance the expression of stress-responsive genes 

[232]. For instance, Bacillus amyloliquefaciens has been shown to ameliorate the salt stress 

response in Oryza sativa by upregulating MAPK and CDPK pathways [243]. Another 

study showed an improved salinity stress resistance in wheat plants following inoculation 

with bacterial strains, i.e., Enterobacter cloacae, Pseudomonas fluorescens, Pseudomonas putida, 

and Serratia ficaria, which elevated the Na+/K+ ratio [244]. 

4. Conclusions and Future Perspectives 

The interaction intricate chemical signaling between plants and their associated mi-

crobiome deciphers the communication dynamics that are underway within the rhizo-

sphere and their outcomes in terms of plant productivity and development. Over the last 

decade, quorum sensing has been studied in the gene expression of both beneficial and 

harmful interactions between inter- and intramicrobial species and in the interkingdom 

signaling between plants and PGPR, i.e., nitrogen-fixing bacteria and rhizobia. Most of 

the plant metabolites that have been reported to date have been characterized by the Ara-

bidopsis thaliana plant model. The recent literature suggests that other plants need to be 

investigated for the analysis of more plant metabolites and chemical cues. Expanding the 

research on rhizosphere communities will aid in the discovery of new chemical cues and 

their potential to enhance plant productivity in terms of symbiosis, resistance against en-

vironmental stresses, and immunity or defense mechanisms toward phytopathogens. 

Based on experimental evidence, there is no doubt that plants create an environment that 

recruits a specific rhizomicrobiome and shape microbial associations that are beneficial 

for their growth. Therefore, the escalating pressure of the demand for high crop produc-

tion has opened up new avenues for research on rhizosphere signaling to reduce depend-

ency on synthetic processes and agrochemicals. The alterations in the metabolic pathways 

of plants, microbes, rhizodeposits, and signaling molecules could be effective in the de-

velopment of a rhizomicrobiome that is beneficial for effective plant productivity and re-

sistance toward biotic and abiotic stresses, which could ultimately lead to more sustaina-

ble agriculture. Moreover, future research can be expanded by using novel “multi-omics 

techniques”, which encompass genomics, proteomics, transcriptomics, phenomics, meta-

genomics, metabolomics, metatranscriptomics, metaproteomics, and metagenomics and 

could reveal multi-layered information about new chemical cues, cellular mechanisms, 

signaling mechanisms, and plant genes. Furthermore, future research on rhizosphere en-

gineering is essential to dissect the targeted outcomes of the beneficial plant–microbe com-

munications that could broaden the application of sustainable agriculture. 
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MAPKs Mitogen-activated protein kinases 

CDPKs Calcium-dependent protein kinases 
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NPR1 Non-expressor of pathogenesis-related genes 
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JA Jasmonic acid 
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AzA Azelaic acid 

Pip Pipecolic acid 

ISR Induced systemic resistance 

ACC 1-Aminocyclopropane-1-carboxylic acid 

ABA Abscisic acid 

AOX Alternative oxidases 

COX Cytochrome oxidase 

GA Gibberellin 
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